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Abstract - A class of strictly nonblocking (SNB) net-
works ���� �� �� can be constructed from vertical stack-
ing of multiple planes of Banyan networks. Fast routing
algorithms are needed for finding available connection
paths in ���� �� �� networks. In this paper, by model-
ing the switching routing problem in SNB networks as
strong edge coloring problem, we propose a simple and
fast parallel routing algorithm for routing connections in
SNB ���� �� �� networks. The proposed algorithm can
route connections in SNB ���� �� �� networks in ��

�
��

time using a completely connected multiprocessor system
of � processing elements. Our algorithm can be trans-
lated into algorithms with an ����� �� ���� slowdown
factor for the class of � -processor hypercubic networks,
whose structures are no more complex than a single plane
of ���� �� �� networks.

Keywords: Banyan networks, crosstalk, strictly non-
blocking networks, graph coloring, parallel algo-
rithm.

1 Introduction

A switching network usually comprises a number of
switching elements (SEs), grouped into several stages in-
terconnected by a set of links. In an electrical switching
network, links are wires and SEs are crossbar switches.
In an optical switching network, links are implemented
by optical waveguides and SEs can be implemented
by electro-optical SEs such as common lithium-niobate
(LiNbO�) SEs (e.g. [5, 6, 18]). Without loss of generality,
we assume that the size of an SE is �� �, i.e. each SE has
� inputs and � outputs. In a switching network, if two in-
puts (resp. outputs) of an SE intend to be connected with
the same output (resp. input), output link conflict (resp.
input link conflict) occurs.

An electronically controlled optical SE can have
switching speed ranging from hundreds of picoseconds

to tens of nanoseconds [17]. However, due to the nature
of optical devices, optical switches introduce additional
challenges. One is crosstalk1 problem, which is caused by
undesired coupling between signals with the same wave-
length carried in two waveguides so that two signal chan-
nels interfere with each other within an SE. The crosstalk
problem in photonic switching networks adds a new di-
mension of blocking, called node conflict, which happens
when more than one connection with the same wavelength
passes through the same SE at the same time. If an I/O
connection path does not have any conflict with other con-
nection paths, it is called a conflict-free path.

Nonblocking switching networks have been favored in
switching systems because they can be used to set up any
conflict-free one-to-one I/O connection paths. There are
three types of nonblocking networks: strictly nonblocking
(SNB), wide-sense nonblocking (WSNB) and rearrange-
able nonblocking (RNB) [2, 7]. In both SNB and WSNB
networks, a connection can be established from any idle
input to any idle output without disturbing existing con-
nections. In SNB networks any of available conflict-free
paths for a connection can be chosen and in WSNB net-
works, however, a rule must be followed to choose one.
RNB networks can establish a conflict-free path for the
connection from any idle input to any idle output if the
rearrangement of existing connections is allowed.

Recently, a class of multistage nonblocking switch-
ing networks has been proposed. In this class each net-
work, denoted by ���� �� �� ��, has relatively low hard-
ware cost ��� ��� ���� and short connection diameter
������ in terms of the number of SEs. A ���� �� �� ��,
� � ��� ��, is constructed by horizontally concatenating
��� � � �� extra stages to an � � � Banyan-type net-
work, and then vertically stacking � copies of the extended
Banyan2. ���� �� �� �� and ���� �� �� �� are similar in
structure, but the latter does not allow any two connec-

1In this paper, the crosstalk is referred to the first-order non-filterable
SE crosstalk [14, 15].

2In this paper, � � �� (� � ��� ) and all logarithms are in base 2.



tions with the same wavelength passing through the same
SE at the same time while the former does. ���� �� �� ��
and ���� �� �� �� are suitable for electronic and opti-
cal implementation, respectively. It has been shown that
���� �� �� �� can be SNB, WSNB and RNB with certain
values of � and � for given � and � [8, 9, 15, 19, 20].

In a switching network, when more than one input re-
quests to be connected with the same output, output con-
tention occurs. Output contentions can be resolved by
switch scheduling. For a set of connection requests with-
out output contention, the process of establishing conflict-
free connection paths to satisfy these requests is called
switch routing. A switch routing (or simply, routing) algo-
rithm is needed to find these paths. Once a set of conflict-
free paths is found, the SEs on these paths can be prop-
erly set up. Routing algorithms play a more fundamental
role in WSNB and RNB networks since the nonblocking-
ness depends on them. For SNB networks, routing algo-
rithms tend to be overlooked since a conflict-free path is
always guaranteed for the connection from any idle in-
put to any idle output without rerouting the existing con-
nections. An efficient routing algorithm, however, is still
needed to find such a conflict-free path for each connec-
tion request. Any routing algorithm requiring more than
linear time would be considered too slow. Thus, finding
efficient algorithms to speed up routing process is crucial
for high-speed switching networks.

The focus of this paper is studying the control aspect of
the class ���� �� �� �� networks, simply as ���� �� ��, in
the context of being used as electrical and optical switch-
ing networks. In particular, our objective is to speed up
routing process in SNB ���� �� �� networks using paral-
lel processing techniques. By examining the connection
capacity of ���� �� ��, we reduce the routing problems
for this class of networks to strong edge-colorings of bi-
partite graphs. Basing on our model, we propose a fast
routing algorithm for ���� �� �� using parallel process-
ing techniques. We show that the presented parallel rout-
ing algorithm can route any set of ���� connections in
SNB ���� �� �� networks in ��

�
�� time, which im-

proves the best known algorithm with time complexity
�����

�
��in [12].

The remainder of this paper is organized as follows.
In Section 2, we discuss the topology of ���� �� ��. In
Section 3, we model routing in ���� �� �� as strong edge
coloring problems of an I/O mapping graph 	��� 
� ��.
In Section 4, we present a fast parallel routing algorithm
for SNB ���� �� �� networks. We conclude our paper in
Section 5.

2 Nonblocking Networks Based on
Banyan Networks

2.1 Banyan-type Networks

A class of multistage self-routing networks, Banyan-type
networks, has received considerable attention. A network
belonging to this class satisfies the properties of short con-
nection diameter, unique connection path, uniform mod-
ularity, etc. Banyan-type networks are very attractive
for constructing switching networks. Several well-known
networks, such as Banyan, Omega, and Baseline, belong
to this class. It has been shown that these networks are
topologically equivalent [1, 21]. In this paper, we use
Baseline network as the representative of Banyan-type
networks.

An � � � Baseline network, denoted by �����, is
constructed recursively. A ����� is a ��� SE. A �����
consists of a switching stage of �
� SEs, and a shuf-
fle connection, followed by a stack of two ����
��s.
Thus a ����� has � stages labeled by �� � � � � � � �
from left to right, and each stage has �
� SEs labeled
by �� � � � � �
� � � from top to bottom. The upper and
lower outputs of each SE in stage � are connected with
two ����
�����s. The � links interconnecting two ad-
jacent stages � and � � � are called output links of stage
� and input links of stage � � �. The input (resp. output)
links in the first (resp. last) stage of ����� are connected
with � inputs (resp. outputs) of �����. To facilitate our
discussions, the labels of stages, links, SEs, inputs and
outputs are all represented by binary numbers. An exam-
ple is shown in Fig. 1.
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Figure 1: ����	�.

����� is self-routing networks. The self-routing in
����� is decided by the destination, �������� � � � ��, of
each connection. If ������ 
 �, the input of the SE on the



connection path in stage � is connected to the SE’s upper
output, and to the lower output otherwise (i.e., ������ 

�). As shown in Fig. 1, connection paths ��, ��, and ��

are set up by self-routing in ����	�. By this self-routing
property, we have the following simple fact:

Lemma 1 Given any ���� one-to-one distinct in-
put/output pairs, the unique paths in ����� for these
pairs can be computed in ������ time using � process-
ing elements (PEs) if each PE is assigned to ���� pairs.

2.2 Structure of ���� �� �� �� Networks

If Baseline network is used for photonic switching, it is a
blocking network since two connections may pass through
the same SE, which causes node conflict. Even if Base-
line network is used for electronic switching, it is still a
blocking network since two connections may try to pass
through the same input (resp. output) link, which causes
input (resp. output) link conflict. Fig. 1 shows three con-
nection paths ��, ��, and ��. �� and �� have link and
node conflicts in stages � and �. �� and �� have node
conflict in stage �.

Although a Baseline network is blocking, a nonblock-
ing network can be built by extending it in three ways:
horizontal concatenation of extra stages to the back of a
Baseline network, vertical stacking of multiple copies of a
Baseline network, and the combination of both horizontal
concatenation and vertical stacking [8, 9, 19, 20]. In the
general approach, a network is constructed by concatenat-
ing the mirror image of the first ��� �� stages of �����
to the back of a ����� to obtain ����� ��, then verti-
cally making � copies of ����� ��, the extended �����

(each copy is called a plane), and finally connecting the
inputs (resp. outputs) in the first (resp. last) stage to �
� � � splitters (resp. � � � combiners). Specifically, the
�-th input (resp. output) of the �-th plane is connected
with the �-th output (resp. input) of the �-th � � � split-
ter (resp. � � � combiner), which is connected with the
�-th input (resp. output) of this network. We denote a net-
work constructed in this way by ���� �� �� ��, where �

is crosstalk factor: � 
 � if the network has no crosstalk-
free constraint (i.e. the network has only link conflict-free
constraint) and � 
 � if the network has crosstalk-free
constraint (i.e. the network has node conflict-free con-
straint). If � 
 �, ���� �� �� �� becomes ���� �� ��. In
this paper, we focus on designing fast routing algorithm
for a class of SNB ���� �� �� networks. Fig. 2 shows the
structure of ���� �� ��.

For ���� �� ��, let � be a set of � inputs,
��� � � � � ����, and � be a set of � outputs,
��� � � � � ����. Let � 
 ��, � � � � �.
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Figure 2: A network ���� �� ��.

The �-th modulo-� input group comprises in-
puts ������� � ���������� � � � � �����, and the �-
th modulo-� output group comprises outputs
������� � ���������� � � � � �����, where � � � � �
�.
Let � 
 � 	�
 � be an �
� mapping that indicates
connections from � to �. If there is a connection from � �

to �� , then set ���� 
 � and ������ 
 �; otherwise set
���� 
 ��. If � �
 ���� for any ��, then set ������ 
 ��.
We say that an input (resp. output, link, SE) is active if
it is on a connection path, and idle otherwise. An I/O
mapping from � to � is one-to-one if each � � is mapped
to at most one �� and ���� �
 ���� for any � �
 �.
In this paper, all I/O mappings are one-to-one and all
connections belong to a one-to-one I/O mapping.

2.3 Designing Parallel Switch Routing Al-
gorithms

A trivial lower bound on the time for routing 
 �� � 
 �
�� connections sequentially in ���� �� �� is ��
 ����.
This lower bound is obtained by Lemma 1 and assum-
ing that for any connection it takes ���� time to cor-
rectly guess which plane to use without causing conflict.
Clearly, when the number of connection requests is large,
the routing time complexity is greater than ����. Paral-
lel processing techniques should be used to meet the strin-
gent timing requirement [7]. In [12], we proposed a par-
allel routing algorithm with time complexity ����

�
��

for ���� �� �� on a completely connected multiprocessor
system.

In this paper, we try to improve the time complexity
to ��

�
�� using graph coloring approach. We choose

to present our parallel algorithm on a completely con-
nected multiprocessor system. A completely connected
multiprocessor system of size � consists of � process-
ing elements (PEs), ���, � � � � � � �, connected in
such a way that there is a connection between every pair



of PEs. We assume that each PE can communicate with
at most one PE during a communication step. The time
complexity of an algorithm on such a multiprocessor sys-
tem is measured in terms of the total number of parallel
computation and communication steps required by the al-
gorithm. Such a multiprocessor system is by no means to
be practical, but used as a general abstract model to derive
parallel algorithms. Efficient algorithms on more realistic
models, such as the class of hypercubic parallel comput-
ers, whose architectural complexity is the same as that of
a single plane of ���� �� ��, can be easily obtained from
our algorithms.

3 Graph Model

3.1 I/O Mapping Graphs

Given any I/O mapping with 
 connections for
���� �� ��, we construct a graph 	��� 
� ��, named
I/O mapping graph, as follows. The vertex set con-
sists of two parts, �� 
 ����� ���� � � � � ������ and �� 


����� � ���� � � � � � �������. Each modulo-� input (resp. output)
group is represented by a vertex in �� (resp. ��). There
is an edge between vertex ��
�
 in �� and vertex ��
�
 in
�� if � 
 ����. Thus, 	��� 
� �� is a bipartite graph with
�
� vertices in each of �� and �� and 
 edges, where
at most � edges are incident at any vertex. Clearly, the
degree of 	��� 
� ��, the maximum number of edges in-
cident at a vertex, is no larger than �. Since there may be
more than one connection from a modulo-� input group to
the same modulo-� output group, 	��� 
� �� may have
parallel edges between two vertices and it may be a multi-
graph. Fig. 3 (a) shows an I/O mapping with �� inputs,
25 of which are active. Fig. 3 (b) shows the I/O map-
ping graph 	���� ��� �� of Fig. 3 (a), where �� (resp.
��) of 	���� ��� �� has � vertices and each vertex in ��

(resp. ��) includes � inputs (resp. outputs) belonging to
the same modulo-� input (resp. output) group.

3.2 Graph Coloring and Nonblockingness

We say that two connections share a modulo-� input (resp.
output) group if their sources (resp. destinations) are in
the same modulo-� input (resp. output) group.

Lemma 2 For any connection set � of ���� �� ��, if no
two connections in � share any modulo-� input (resp.
output) group, then the connection paths for � satisfy the
following conditions:
(i) they are node conflict-free in the first (resp. last) �� �
stages;
(ii) they are input link conflict-free in the first �� � � �
(resp. last �� �) stages and output link conflict-free in the
first �� � (resp. last �� � � �) stages.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

6

10

-1

0

4

-1

-1

3

11

26

12

22

5

16

9

20
-1

-1

1

28

23

30

21

24

7

27

29

-1

17

15

-1

25

(i )i

(  a  ) (  b  )

V
1

V
2

Figure 3: (a) An I/O mapping �; (b) An I/O mapping
graph 	���� ��� ��.

It is easy to verify that Lemma 2 is true according to the
topology of ����� (refer to [13] for formal proof).

We say that a set � of I/O connections is feasible for
���� �� �� (resp. ���� �� ��) if they can be routed with-
out any link (resp. node) conflict. Using the above lemma,
the following claim can be easily derived from the results
of [15].

Lemma 3 Given a connection set � of ���� �� ��, if any
two connections in � do not share any modulo-��

���

�
� in-

put group and also do not share any modulo-� ����
�

� out-
put group, then � is feasible for ���� �� ��.

By Lemma 3, if we assign the connections of
���� �� �� with sources (resp. destinations) passing
through the same modulo-� input (resp. output) group
to different planes, then we can route connections in
���� �� �� without conflict. Thus, in order to route
conflict-free connections in ���� �� ��, we only need to
determine which plane to be used for each connection.
To achieve this goal, we decompose a set of connections
into disjoint subsets, and route each subset in one plane of
���� �� �� so that each subset is feasible for its assigned
plane. By constructing an I/O mapping graph 	��� 
� ��

with � 
 ��
���

�
�, we can reduce the problem of routing


 connections in ���� �� �� to the following strong edge
graph coloring problem:

Strong Edge Coloring Problem (SEC problem): Given an
I/O mapping graph 	��� 
� �� with 
��� 
� colored



edges, color 
 � 
� uncolored edges with a set of col-
ors such that no two edges with the same color are in-
cident at the same vertex of 	��� 
� �� without chang-
ing the colors of the 
� colored edges. If we can find a
strong edge-coloring of 	��� 
� �� using at most � differ-
ent colors, we call this coloring a strong �-edge coloring
of 	��� 
� ��.
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Figure 4: (a) A edge-coloring (b) A strong edge-coloring.

If we consider the colored (resp. uncolored) edges in
	��� 
� �� as the existing (resp. new) connections in
���� �� ��, a solution to the ��� problem is a plane as-
signment for routing in an SNB network since rerouting
existing connections is prohibited. In Fig. 4, we show a
simple example. There are three edges labeled �, �, �, re-
spectively. Edges � and � have already been colored using
colors � and �, respectively. An edge coloring solution is
given in (a), and an ��� solution is given in (b). Note
that, in (b), an additional color is needed for edge � be-
cause the colors of existing colored edges � and � cannot
be changed.

4 Routing in Strictly Nonblocking
Networks

4.1 Strict Nonblockingness

The following lemma can be easily derived from the re-
sults of [20].

Lemma 4 If

� �
�

�
�

� � �� �
�
���� �� for even �

�
���

� �� � �
��� � �� for odd �

then ���� �� �� is strictly nonblocking.

For an SNB network, we can route new connections
(as long as these connections form an I/O mapping from
idle inputs to idle outputs) without disturbing the exist-
ing ones; however, this routing problem is harder than
that in an RNB network when we need to route the new
connections simultaneously. Based on the discussions
in Section 3, we know that the routing problem for an
SNB ���� �� �� can be solved by finding a strong edge-
coloring of the I/O mapping graph 	��� 
� ��.

We consider a subclass of SNB networks, ���� ��� ��

with �� 
 ��
���

�
��� � �. By Lemma 4, we know that

���� ��� �� is an SNB network. Since each plane of
���� ��� �� is a Baseline network, the routing of connec-
tions in any plane can be done by self-routing. Thus, the
problem of routing connections in ���� ��� �� is reduced
to finding a plane for each new connection so that all con-
nections, including existing ones, are conflict-free.

Lemma 5 Any multigraph 	 has a strong ���� ��-edge
coloring, where � is the degree of 	.

By Lemmas 3 and 5 (proved in [12]), this can be done
by finding a strong ������-edge coloring for 	��� 
� ��
of ���� ��� �� with 
� existing connections and 
�
�

new connections, where � 
 ��
���

�
� 
 	���

� . In the next
subsection, we present a parallel algorithm to find a strong
��� � ��-edge coloring of 	��� 
� �� using strong edge
coloring approach.

4.2 Algorithm for Strong ������-Edge Col-
oring of ����	� ��

Let 	��� 
 � 
�� �� denote the graph obtained from
	��� 
� �� by removing the 
� colored edges. Since
	��� 
� �� is a bipartite multigraph, 	��� 
 �
�� �� is
also a bipartite multigraph. The edges between the same
two vertices are called parallel edges. We say color � is
free at vertex � if none of edges adjacent to � has color �.
If color � is free at two ends of edge �, then � is free for
�. One edge � is conflict with another edge � if � and �
are adjacent to each other and they have the same color.
Let ��
� 
 ���
� 
 ����

��
� ���
� � 	��� 
�
�� ���. Thus,

��
� contains all uncolored parallel edges between nodes
��� and ���� . Clearly, each uncolored edge is in and only in
one of such ��
�s.

Our algorithm consists of �� iterations. In each itera-
tion, we try to color a set of non-parallel uncolored edges
using one of colors in a set of �� colors, ��� �� � � � � �����,
so that no two edges with the same color adjacent to the
same vertex. Then for each edge � with color �� � �, we
recolor it by a free color in ��� �� � � � � �� � ��.

In order to find a set of non-parallel uncolored edges
in each iteration, we need a preprocessing step. For each
vertex ���, we can sort all parallel edges in ��
� in nonde-
creasing order of �s where �s are the input labels corre-
sponding to edges. The sorting for each � �
� can be done
in ����� ���
� �� time using ���
� � PEs. Thus, the prepro-
cessing step can be done in ����� �� time using � PEs
since ���
� � � � and

�
�
� ���
� � 
 � . After this prepro-

cessing, the operation of finding uncolored non-parallel
edges can be done in ���� time in each iteration. The
outline of the algorithm is listed in Algorithm 1.

The correctness of this algorithm can be derived from
the following facts.



Algorithm 1 A Strong Edge Coloring of an I/O Mapping
Graph 	��� 
� ��

for  
 � to �� � � do
for all �� � � ��� �� � � � � �
�� do

��
� 

 �� � � �  � ��� ���
if there is an uncolored edge in ��
� and color ��
�
is free at both ��� and ���� then

assign color ��
� to this edge;
update free colors at � �� and ���� and remove the
colored edge from ��
� ;

end if
end for

end for
for all edges with color �� � � do

color these edges with one of free colors in
��� �� � � � � �� � ��;

end for

(i) In iteration �, one uncolored edge, if any, in each
��
� is selected. Fact (i) is assured by preprocessing step.

(ii) In iteration �, if two edges, one in ��
� and one in
�	
� , are assigned the same color, i.e. ��
� 
 �	
� , then
� �
 � and � �
 !. Fact (ii) can be proved by contradiction
as follows. Assume there are two pairs of ��� �� and ��� !�

with � �
 ! and ��
� 
 ��
� . (For the case that there are two
pairs of ��� �� and ��� �� with � �
 � and ��
� 
 �	
� , the
proof is similar). Thus, there is  so that ����  � ��!�
 ��� ��. Then � � ! 
 �� � � where � is a nonnegative
iteger. Since �� ! � ��� �� � � � � �
�� and � 
 ��

���

�
�,

we have � � ! � ��. Thus, � 
 � and � 
 !, which
contradicts the assumption.

(iii) For uncolored edges in 	��� 
 � 
�� ��, all ��
possible colors are tried. Fact (iii) is obviously true from
the algorithm.

(iv) After �� iterations, none of adjacent edges is as-
signed the same color ��. By Fact (iii), it is clear for
any non-parallel edges. By preprocessing, we know that
any two parallel edges are colored in different iterations.
Since there are total �� iterations and in each iteration we
assign different colors to the edges in ��
� , fact (iv) is true.

(v) The edges with the same color �� can be recolored
concurrently using the colors in ��� �� � � � � ����� so that
none of adjacent edges is assigned the same color. By
Lemma 5, for any edge � with color ��, we know such
a free color in ��� �� � � � � �� � �� is available. Since all
edges with original color �� are not adjacent to each other
by fact (ii), the recoloring will not result in any conflict
colors.

Now, we show that this algorithm can be implemented
in ���� time using a completely connected multipro-
cessor system of � PEs. By the previous discussion,
we know that the preprocessing step takes ����� �� time

using a completely connected multiprocessor system of
� PEs. Then we show that, each of the �� iterations
takes ���� time. We associate a ��-bit binary array
���� " " " �� � �� with each vertex � of 	��� 
� �� such
that ����� 
 � if and only if color � is free at vertex �, and
assign �
� PEs to �. Then the operations of finding out if
a given color � is free at � and updating ����� can be car-
ried out in ���� time. Finally, the recoloring of the edges
with color �� can be done in ���� �� since the degree of
	��� 
� �� is �. In summary, we have the following re-
sult:

Theorem 1 For any I/O mapping graph 	��� 
� �� with

��� 
� colored edges, a strong ���� ��-edge coloring
can be found in ���� time using a completely connected
multiprocessor system of � PEs.

4.3 Performance Analysis

Since ���� 
 ��
�

�� in 	��� 
� ��, by Lemma 1 and
Theorem 1, we summarize the overall performance of our
routing algorithm for SNB network ���� ��� �� by the
following theorem.

Theorem 2 For an SNB network ���� �� �� with � �
�� 
 ��

���

�
��� � �, connections from any 
 � 
� idle

inputs to any 
 �
� idle outputs, with 
� existing con-
nections, can be correctly routed in ��

�
�� time using a

completely connected multiprocessor system of � PEs.

By Lemma 4, we can derive the minimum number
of planes, �	
�, in ���� �� �� as follows: If there is
no crosstalk-free constraint (i.e., � 
 �), then �	
� 

�
��

�

� � � for even � and �	
� 
 �
���

� � � for odd �.
If there is a crosstalk-free constraint (i.e., � 
 �), then
�	
� 
 �

�

�
�� � � for even � and �	
� 
 �

��
���

� � � for
odd �. Compared with ���� �	
�� ��, the hardware re-
dundancy �
�� 
 ����	
� of ���� ��� �� is: �
�� 
 � if
� 
 � and � is odd or � 
 � and � is even, �
�� 


�
�
�

if � 
 � and � is even, and �
�� 

�
��
� if � 
 � and

� is odd. The hardware cost of ���� ��� ��, in terms of
the number of SEs, is higher than that of ���� �	
�� �� in
half of the cases, but both have the same hardware com-
plexity of ��� ��� ����. The time for routing ���� con-
nections, however, is improved from ��� ���� to sub-
linear ��

�
�� in the worst case.

5 Conclusion

The major contribution of this paper is the design
and analysis of parallel routing algorithms for a class of
strictly nonblocking switching networks, ���� �� ��. Al-
though the assumed parallel machine model is a com-
pletely connected multiprocessor system of � PEs, the



proposed algorithms can be transformed to algorithms for
more realistic parallel computing models. Let ���� be
the time for sorting � elements on a parallel machine
# with � processors, then our algorithms can be imple-
mented with a slow-down factor ���� on # . It is known
that sorting � numbers on the class of hypercubic net-
works takes ����� �� ���� time [4, 10]. This class of
networks include hypercube, cube-connected-cycles, but-
terfly networks, baseline networks, reverse baseline net-
works, Omega networks, flip networks, de Bruijin graphs,
shuffle-exchange networks, banyan networks, delta net-
works, bidelta networks, �-ary Butterflies, and Benes
networks [10]. Our algorithms can route connections
in ���� �� �� with a slow-down factor ����� �� ����
on all these realistic parallel machine models, though
some have topologies that are quite different from others,
whose structural complexity is no larger than one plane
of ���� �� ��. Compared with sequential algorithms, we
consider that our algorithms on realistic parallel comput-
ers provide a significant speedup, making them potentially
valid and useful for large switches.

The approach of applying edge-coloring techniques to
investigate the capacity and routability of RNB switching
networks has been widely used (refer to [3, 7, 11, 16]).
We extended this approach to SNB networks by defining
strong edge-coloring. For a class of SNB banyan-based
switching networks we proposed a unified mathematical
formulation, namely SEC problems, for designing paral-
lel routing algorithms using this approach. Our algorithm
can find the solutions for SEC problem in sublinear time.
Finding faster parallel algorithms for the SEC problem,
however, remains to be very challenging.
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