

A FAST ALGORITHM FOR SORTING BY SHORT SWAP

Xuerong Feng†, Ivan Hal Sudborough‡ and Enyue Lu§

† Department of Mathematics and Computer Science, Valdosta State University, Valdosta, GA 31698, USA
‡ Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA

§ Department of Mathematics and Computer Science, Salisbury University, Salisbury, MD 21801, USA

ABSTRACT
A short swap is an operation that switches two elements
that have at most one element in between. In this paper,
we consider the problem of sorting an arbitrary
permutation by short swaps. We give an algorithm which
sorts any permutation of length n within (3/16)n2 +O(n
log n) steps, improving the previous (5/24)n2 +O(n log n)
upper bound.

KEY WORDS
Short Swap, Sorting, Algorithm, Gene Rearrangement

1. Introduction

Analysis of genome rearrangements is a
fundamental task in computational biology. Any genome
rearrangement study involves solving a combinatorial
puzzle of transforming one genome into another [1]. The
shortest, also called the most parsimonious rearrangement
scenarios represent the most likely molecular evolution
path. Scientific studies show that for uni-chromosomal
genomes, inversions (reversals) are the dominant
rearrangement event, and for multi-chromosomal
genomes, reversals, transpositions and translocations are
common rearrangement events.

 Research comparing human and mouse genomes
shows that a large number of micro-rearrangements, e.g,
intra-chromosomal rearrangement with a span < 1Mb,
happen during the draft of human and mouse genomic
sequence [2]. If we think of a genome as a particular
ordering of genes, then the problem of analysis of
rearrangement events, where one species has evolved into
another, can be viewed as a problem of transforming one
permutation into another by reversals. And if we take the
micro-rearrangement scenario into account, the problem
can be viewed as transforming one permutation into
another by bounded length reversals.

 So far, the majority of research has focused on
calculating the unbounded reversal distance. Using the
notion of breakpoint, Kececioglu and Sankoff [3] were
the first to give a 2-approximation algorithm for sorting
by unbounded length reversals. Pevzner [4], Christie [5]
improved the approximation ratio, currently the best is a
1.375 approximation algorithm due to Berman [6]. Capara
[7] proved this problem is NP hard. One also consider the

case where each element of the permutation has either a
“+” or “-” sign and when reversed, the sign changes from
“+” to “-” or from “-” to “+”. This is the case of signed
permutations. Hanehalli and Pevzner [8] showed that
sorting signed permutations in the minimum number of
steps by unbounded length reversals is polynomial
solvable. Kaplan, Shamir and Tarjan [9] gave a faster and
simpler algorithm for this problem. For the unsigned
permutation, if each reversal must start from the first
element, the sorting problem is known as the pancake
problem [10]. Gates and Papadimitriou showed an upper
bound of (5/3)n+5/3 and a lower bound of (17/16)n.
Heydari and Sudborough [11] tightened the lower bound
to (15/14)n and showed that the conjectured hardest
signed permutation, namely In = -1, -2, … , -n, can be
sorted in (3/2)n+1/2 steps. Chen and Skiena [12] gave
big-Oh asymptotic upper and lower bounds for sorting
with fixed length reversals. Walter, Dias and Meidanis
[13] discuss the problem of sorting by reversals and
simultaneous transpositions. Gu, Peng and Sudborough
gave an approximation algorithm for this problem [14].
Lin and Xue [15] discuss the signed version of sorting by
both reversal and transposition.

 The problem of sorting an arbitrary permutation
by switching two adjacent elements or two elements with
one element in between is called sorting by short swap
[16]. We can view a short swap operation as a substring
reversal of length 2 or 3. Heath and Vegera [16] showed a
(1/4)n2 upper bound and a (1/6)n2 lower bound for this
problem. In [17] we gave an algorithm with an improved
upper bound of (5/24)n2 +O(n log n). In this paper, we
further improve the upper bound and show a (3/16)n2
+O(n log n) upper bound.
 In section 2, we give the proof of the new upper
bound, in section 3, we discuss some open questions.

2. A (3/16)n2 +O(n log n) Upper Bound

Let L = {1, 2, 3, , n}. A permutation π =
π1π2π3…πn of L is an ordered arrangement of the
elements in L. The element at position i is denoted by
π(i), where 1� i � n. We will use integers 1, 2, …, n to
indicate both positions and elements. Without loss of
generality, assume n ≡ 1(mod 4), let n = 4k+1 and let k
be even. First we use a linear number of steps to put
element 2k+1 in the middle, i.e. at position 2k+1. This

540-014 62

kirk

divides the permutation into a left and right part, where
each part has 2k numbers. Assume there are p numbers
(0 ≤ p ≤ 2k) which are in the range [1, 2k] but are
positioned in the right part, there must also have p
numbers which are in the range [2k+2, 4k+1] but are
positioned in the left part. Based on p’s value, we
consider the following two cases and for each case, we
use a different algorithm to sort.

2.1 Case 1: 0 ≤ p ≤ k

 For this case, independently for the left and right
part, we do the following. For the left part, without
sorting we move the p numbers in the range [2k+2, 4k+1]
to the middle, occupying positions from 2k-p+1 to 2k.
Similarly for the right part, without sorting we move the p
numbers in the range [1, 2k] to the middle, occupying
positions from 2k+2 to 2k+p+1. During above procedure,
we use length 3 reversals as much as possible. Use the
following permutation as one example:

Position i : 1 2 3 4 5 6 7 8 9 10 11 12 13
π: 9 5 4 1 13 3 7 11 10 6 12 8 2

here n = 13, k = 3 and p = 2, since number 9, 13 which are
in the range [2k+2, 4k+1] but are positioned in the left
part on position 1 and 5. There must also have two
numbers, in above case, 6 and 2, which are in the range
[1, 2k] but are positioned in the right part. Consider the
left part only, by a length 2 reversal, we switch 13 with 3
and get the following permutation:

Position i : 1 2 3 4 5 6 7 8 9 10 11 12 13
π1: 9 5 4 1 3 13 7 11 10 6 12 8 2

Next, by two length 3 reversals, number 9 first switches
with number 4, then switch with number 3, we get the
following permutation:

Position i : 1 2 3 4 5 6 7 8 9 10 11 12 13
π2: 4 5 3 1 9 13 7 11 10 6 12 8 2

We do similar thing on right part and move number 6 and
2 to position 8 and 9 respectively and get the following
permutation:

Position i : 1 2 3 4 5 6 7 8 9 10 11 12 13
π3: 4 5 3 1 9 13 7 6 2 11 10 8 12

Next, first we switch number 13 with 2 by a length 3
reversal, followed by a length 2 reversal. We switch 9
with 6 first by a length 2 reversal, followed by a length 3
reversal, and the permutation now is:

Position i : 1 2 3 4 5 6 7 8 9 10 11 12 13
π4: 4 5 3 1 6 2 7 9 13 11 10 8 12

We do similar operations on an arbitrary
permutation satisfying the condition stated in case 1,

namely, 0 ≤ p ≤ 2k. For a general case, the worst case
happens when the 2p numbers are at the two ends. That
means for the left part, the p numbers which are in the
range [2k+2, 4k+1] occupy positions from 1 to p, and
similarly for the right part, the p numbers in the range [1,
2k] occupy positions from 4k-p+2 to 4k+1. In this case, it
takes at most 2* p* [(n/2- p)/2] steps to move them to the
middle. Once these 2p numbers are put into the middle,
we swap the left p numbers with the right p numbers.
Similarly as we show in above example, this is done in p
phases, at phase i (1 ≤ i ≤ p), using length 2 or 3 reversal,
we put the number at position 2k+i+1 into position 2k-
p+i. During this procedure, we use length 3 reversals as
much as possible and only use length 2 at the beginning
or at the end when necessary. Note that the p numbers
originally occupying positions from 2k-p+1 to 2k are
pushed to the right and will then occupy positions from
2k+2 to 2k+p+1. It takes p*(p/2) steps to do the swaps.
Combining the above two steps, the total number of
exchanges needed is:

2* p* [(n/2- p)/2] + p*(p/2)
= (1/2)np-p2+ (1/2) p2
= (1/2)np-(1/2)p2 (1)

Then all the numbers in the range [1, 2k] are in the left
part and all the numbers in the range [2k+2, 4k+1] are in
the right part. Once this is done, we treat the left and right
part as two separate permutations each of size (n-1)/2, and
we will apply our algorithm separately to sort the left and
right part permutation. Notice function in (1) is an
increasing function of p in the range of [1, k]. When p = k
(k = (n-1)/4), the function has the maximum value which
is (3/32)n2. Let T(n) denote the total steps needed to sort a
permutation π, if every time case (1) happens, we have
the following recursive formula:

T(n) = 2*T(n/2) + (3/32)n2+O(n)

The solution to above recurrence is T(n) = (3/16)n2+O(n
log n)

2.2 Case 2: k < p ≤ 2k

For this case, our algorithm will include 3 stages.

Stage 1: Normalization
For this stage, we use a similar algorithm as

described in [17]. To make the analysis simple, we
consider an even integer n, suppose that the elements of
the set {1,2, …, n} are partitioned into two subsets A and
B, each with n/2 elements. For an arbitrary permutation π
of L, where L = {1, 2, 3…n}, say π = π1π2π3…πn, we
consider the problem of moving all of the elements in A
to the odd positions, namely position 1, 3, 5, …, n-1 and
all of the elements of B to the even positions, namely
position 2, 4, 6, …, n. Neither the elements of A nor the
elements of B need to be sorted. We call a procedure to
do this normalization. For example, the set A could be

63

the largest n/2 elements and the set B could be the
smallest n/2 elements and, for n = 12, one could have the
permutation π = (1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7).
Then, every element of A ={7,8,9,10,11,12} is in an even
position and every element of B = {1,2,3,4,5,6} is in an
odd position, so all are out of place. In this case, simply
exchanging each element in an odd position with its
neighboring even position element, resulting in the
permutation (12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6)
accomplishes the goals of normalization.
 We now establish, for any choice of a partition
of {1,2, …, n} into two sets A and B, each with n/2
elements, and any permutation π of {1,2, …, n} the worst
case number of short swaps to do the task of
normalization. That is, we describe an optimum
normalization procedure and analyze the number of steps
the procedure takes. The procedure begins with a left-to-
right scan of the given permutation π. Call the elements
in A that are in even positions and the elements of B that
are in odd positions out of place elements. Then, during
this initial scan of the input, the procedure exchanges any
out of place elements that are adjacent. Clearly, in
general, out of place elements will still exist, but they will
not be adjacent.
 The remaining set of out of place elements can
be put into positions of the correct parity by moving them
to the positions of out of place elements of the other set
through positions of elements that are not out of place by
exchanges between elements at distance two. Note that
the number of elements in A that are out of place is equal
to the number of elements in B that are out of place, so if
there is an out of place element from one set there must be
a one in the other set. Now, consider a situation where we
move the leftmost out of place A element, say x, in an
even position, to the position of the leftmost out of place
B element, say y, in an odd position, where y is to the left
of x. As x and y are not adjacent, x will be swapped with
other even position elements by length 3 reversals until it
becomes adjacent with y, and then x and y will be
exchanged. The elements in even positions that x is
swapped with are not out of place, as x is the leftmost out
of place element of A, so moving them to a different even
position does not make them out of place. So, in this
movement of the leftmost out of place A element to the
position of the leftmost out of place B element, we
eliminate both the leftmost out of place A element and the
leftmost B element. The situation is entirely symmetric
when x is to the left of y. In that case, one moves y to the
left through other odd positions by length 3 reversals until
y becomes adjacent to x.
 The worst case is when n is a multiple of 4 and
there are n/4 out of place B elements in positions 1,3,5,
…, (n/2)-1 and there are n/4 out of place A elements in
positions (n/2)+2, (n/2)+4, …, n. In this case, each of the
n/4 iterations takes the leftmost out of place A elements to
the leftmost out of place B element, by the process
already described, and takes (n/4)+1 exchanges. That is,
at each iteration the leftmost out of place element of A is
at a distance of (n/2)+1 from the leftmost out of place

element of B, and as all but the last exchange is a reversal
of length 3, the total number of reversals is (n/4)+1.
Consequently, the total number of steps in the worst case
is (n/4)*(n/4+1) = (n/4)2 + O(n) = n2/16 + O(n).

Now consider the case 2, where k < p ≤ 2k and
k = (n-1)/4. Independently for the left part, for all those p
numbers in the range [2k+2, 4k+1], using the
normalization procedure described above, we place the
biggest k of them on the left even positions. Similarly for
the right part, of all the p numbers in the range [1, 2k], we
place the smallest k of them on the right even positions.
This takes 2*(1/16)(2k)2 = (1/2)k2 + O(k) = (1/32)n2
+O(n), since k = (n-1)/4 steps. Notice that after the above
steps, there are p-k numbers, which are in the range
[2k+2, 4k+1], which have been put in the left odd
positions, and there are p- k numbers, which are in the
range [1, 2k], which have been put in the right odd
positions.

Stage 2: Swap

Now consider the biggest k numbers, which are
3k+2, 3k+3, 3k+4, …, 4k+1 since we assume n = 4k+1
and k is even. After Stage 1 normalization procedure,
some of these k numbers are put on the left even
positions. The remaining are put on right odd positions.
Similarly, for the smallest k numbers, after stage 1, some
are put on right even positions. The remaining are put on
left odd positions. We swap the numbers on left even
positions with those on right even positions.

This is done in k phases, at phase i (1 ≤ i ≤ k), if
the element at position 2k-2i+2 belongs to the range
[3k+2, 4k+1], we use length 3 reversal to move it right to
the position 4k-2i+2. We do this by swapping it with
elements at position 2k-2i+4, 2k-2i+6, …, 4k-2i+2. This
takes k steps. If an element at position 2k-2i+2 does not
belong to the range [3k+2, 4k+1], let’s denote it by “a”.
We shall swap “a” with elements at position 2k-2i+4, 2k-
2i+6, …, etc. Suppose at some point we found it is at
distance � 2 from some element “b” which is in a right
odd position and belongs to the range [3k+2, 4k+1]. In
that case, we use an exchange to swap “a” with “b”. Now
“b” is on even position and we continue swapping “b”
with elements on subsequent even positions until “b” is
put into position 4k-2i+2. In this case, it takes k+1 step to
move an element from position 2k-2i+2 to position 4k-
2i+2. If “a” does not pass any element which is on right
odd position and belongs to the range [3k+2, 4k+1], we
simply move “a”, until “a” is put in position 4k-2i+2. This
takes k steps.

As above movements take place, i.e. after each
phrase i (1 ≤ i ≤ k), elements on the right even positions
are moved 2 positions left. Symmetrically if the element
originally on position 2k+2i belongs to the range [1, k],
after k phases it will be put on position 2i. If it does not
belong to the range [1, k], we denote it as “c”. Suppose at
phase i, it passes an element “d” which is on left odd
position and belongs to the range [1, k]. Then we use an
exchange to swap “c” with “d”. Then “d” is in an even
position and it will be shifted left 2 positions with each

64

phase until it is put on position 2i after k phases. If the
element originally on position 2k+2i does not belong to
the range [1, k] and during those k phases it does not pass
over any elements which are on left odd positions and
belong to the range [1, k], it will simply be put into
position 2i. For stage 2, it takes k * k = (1/16)n2+O(n)
steps of short swaps, since k = (n-1)/4.

Stage 3: Locally sort

We will use the same algorithm as used to sort
the basic class permutation in [17] Stage 3. In brief, this is
done in 2 steps:
 Step 1: For the left part of the permutation,
starting from element 1, and in increasing order, using
reversals of length 2 or 3 and through odd positions, put
1, 2, 3, 4,…, k/2 into their correct positions. Similarly for
the right part, starting from element 4k+1, in decreasing
order, using reversals of length 2 or 3 through the odd
positions, put 4k+1, 4k, 4k-1,…, 4k-k/2+2 into their
correct position. As a result of the above, elements in the
range [(k/2)+1, k] will be put together and will occupy
positions from (k/2)+1 to k in random order. Similarly for
the elements in the range [3k+2, 4k-(k/2)+1], they will be
put together and will occupy positions from 3k+2 to 4k-
(k/2)+1, but in random order.
 Step 2: Now, independently for the left and right
part, using the earlier swap sorting algorithm described in
[17], sort the elements that occupying position from
(k/2)+1 to k and from 3k+2 to 4k-(k/2)+1. As described in
[17], the above procedure needs a total of (3/64)n2+O(n)
steps. As a result, the elements in the range [1, k] and
[3k+2, 4k+1] are sorted. Note, in [17], for the basic class
permutation, after Stage 2, numbers in the range [1, k] are
all on left even positions and numbers in the range [3k+2,
4k+1] are all on right even positions. But for an arbitrary
permutation π of length 4k+1 which satisfy k < p ≤ 2k,
after stage 2, all the elements in the range [1, k] are in the
left part of the permutation, but might not all be on even
positions, some may be on the left odd positions; similarly
for the right part, all the elements in the range [3k+2,
4k+1] are in the right part of the permutation but might
not all be on the even positions, some may be on the right
odd positions. Below we show that for an arbitrary
permutation π which satisfy k < p ≤ 2k, using the above
algorithm, it takes equal or less than (3/64)n2+O(n) steps
to get the numbers in the range [1, k] and [3k+2, 4k+1]
into sorted order.
 Let us use πr and πl to denote the left part and
right part of the permutation after Stage 2. As the left part
and right part are symmetric, we shall just consider the
right part first. For the right part of the permutation, from
left to right, let us use a1, a2, a3,…, aj (0 ≤ j ≤ k) to denote
those elements that are on the right even positions but do
not belong to the range [3k+2, 4k+1]. Among them aj is
the rightmost. There must be j elements which are in the
range [3k+2, 4k+1] but are on right odd positions, let use
b1, b2, b3, …, bj (0 ≤ j ≤ k) to denote them, where b1 is the
leftmost. We claim that b1’s position must be to the right
of aj’s position. This is the result of Stage 2. According to

our algorithm in Stage 2, if b1’s position were to the left
of aj’s position, then aj would pass through b1 and the two
would get exchanged. Below Figure 1 describe the right
part of the permutation after stage 2. We use to denote
the odd position and “_” to denote the even position.

… 1� … 2� … 3� … j� …

__ 1b __… __ 2b __ … __ 3b __ … __ jb __…

Figure 1. Permutation ππππr

We construct a basic class permutation �r

relevant to the permutation πr, we switch a1 with b1, a2
with b2, …, and aj with bj and all the other elements
remain unchanged. See Figure 2 for the resulting
permutation �r.

… 1b … 2b … 3b … jb …

__ 1a __…__ 2a __… __ 3a __…__ ja __…

Figure 2. Permutation �r

 For permutation �r, all the numbers in the range
[3k+2, 4k+1] are on even positions. Now compare
permutation πr with �r, notice that in πr, b1 through bj are
more close to the right end than they are in �r, as b1

through bj belong to the range [3k+2, 4k+1], that means it
takes less steps to put them into their correct positions in
πr than in �r. Similar analysis applies to the left part of the
permutation, suppose we get �l from πl, it will take less
steps in πl than in �l to put the numbers in the range [1, k]
into their correct positions. We know that �l and �r can be
sorted within (3/64)n2 +O(n) steps by using the algorithm
described in [17] stage 3, so πl together with πr will use
equal or less than (3/64)n2+O(n) steps to get the numbers
in the range [1,k] and [3k+2, 4k+1] sorted.
 After the above 3 stages, numbers in the range
[1, k] and [3k+2, 4k+1] are sorted and the middle is a
permutation of length 2k+1, which we will sort it
recursively by apply the algorithm describe above. Since
in normalization stage, it takes at most (1/32)n2+O(n)
steps, in swap stage, it takes at most (1/16)n2+O(n) steps,
and in locally sort stage, it takes at most (3/64)n2+O(n)
steps. Let T(n) denote the total steps needed to sort a
permutation � in the above case 2. If we assume that
every time case (2) is true, we have the following
recursive formula:

T(n) = T(n/2) + (1/32)n2+ (1/16)n2+ (3/64)n2+ O(n)
 = T(n/2) + (9/64)n2+ O(n)

The solution to above recurrence is

T(n) = (3/16)n2+O(n log n)

65

Combine the recursion we get for case 1 and case
2, we have the following:

T(n) =
��

�
�
�

≤<++

≤≤++

)2()()64/9()2/(

)0()()32/3()2/(2
2

2

kpknOnnT

kpnOnnT

And using induction on n and on case 1 and case 2, we
conclude that:

T(n) ≤ (3/16) 2n + O(n log n)

This yields our improved upper bound for sorting by short
swap.

3. Conclusion and Open Questions

We have given a recursive algorithm that sorts
any permutation by short swaps within (3/16)n2 +O(n log
n) steps. Some questions remain. Can one improve the
(3/16)n2 +O(n log n) general upper bound? What is the
worst case permutation for sorting by short swaps? Can
one get a better approximation algorithm for sorting by
short swaps?

For the first question, the answer is positive.
Recall that in Section 2, for Case 2, we obtained the
following recursive formula: T(n) = T(n/2) + (9/64)n2+
O(n). In this recurrence, out of (9/64) n2, (3/64) n2

represents the number of steps used for Stage 3 and Step
2, which was described in detailed in [17]. In order to
sort the elements in the range [(k/2)+1, k] and [3k+2, 4k-
(k/2)+1], we use the algorithm in [16]. The algorithm in
[16] has an upper bound of (1/4)n2+ O(n). If we use the
improved (5/24)n2+ O(n log n) upper bound in [17], and
do not differentiate between Case 1 and Case 2. That is,
use the algorithm described for Case 2 in Section 2 for
every permutation �, even if 0 � p � k. If 0 � p � k, simply
spread the p numbers on left/right even positions and
swap them. By doing this, we are able to get an upper
bound which is better than (3/16) n2 +O(n log n).
However, it is a very small improvement and hence is not
included in the results given here.

For the second question, the backwards order
permutation seems like a good candidate for a worst case
permutation, since it has the maximum number of
inversions, namely n(n-1)/2. But we have shown in [17]
that we can sort it in optimum time, namely in (1/6)n2

+O(n log n) steps. Let B be the set of permutation that all
elements in the left half are bigger than all elements in its
right half. In [17], we call set B the basic class
permutations. All permutation in B has the maximum
vector sum of (n2)/2, we have shown that this class of
permutations can be sorted in (3/16)n2 + O(n log n) steps.
Is the class B permutations hardest to sort? If so, we need
to know how to prove it.

For the third question, currently, there is a 2-
approximation algorithm due to Heath and Vergara [16].
We have shown a 3/2-approximation algorithm for all
permutations in the basic class B in [17].

References

[1] H. J. Greenberg, W. E. Hart, G. Lancia,

“Opportunities for Combinatorial Optimization
in Computational Biology”, INFORMS Journal
of Computing, 2003

[2] P. A. Pevzner, G. Tesler, “Genome

Rearrangements in Mammalian Evolution:
Lessons From Human and Mouse Genomes”,
Genomes, 2003, Jan; 13(1):37~45

[3] J. Kececioglu, D. Sankoff, “Exact and

Approximation Algorithm for Sorting by
Reversals, with Application to Genome
Rearrangement”, Algorithmica, 13:1/2, 1995, pp.
180-210.

[4] V. Bafna, P.A. Pevzner, “Genome

Rearrangement and Sorting by Reversals”, SIAM
Journal of computing, Vol. 25, No. 2, 1996,
pp.272-289.

[5] D.A. Christie, “A 3/2-approximation Algorithm

for Sorting by Reversals”, Proceedings of the
Ninth Annual ACM-SIAM on Discrete Algorithm,
1998, pp.244 – 252.

[6] P. Berman, S. Hannenhalli, M. Karpinski,

“1.375-approximation Algorithm Sorting by
Reversals”, in Proceedings of Annual European
Symposium on Algorithm (ESA), volume 2461 of
Lecture Notes in Computer Science, Springer,
2002, pp. 200-210.

[7] A. Caprara, “Sorting Permutations by Reversals

and Eulerian Cycle Decompositions”, SIAM
Journal of Discrete Mathematics, Vol. 12, No. 1,
1999, pp. 91-110.

[8] S. Hannehalli, P.A. Pevzner, “Transforming

Cabbage into Turnip (Polynomial Algorithm for
Sorting Signed Permutations by Reversals)”, in
Proc. 27th Annual ACM Symposium on the
Theory of Computing, ACM Press, New York,
1995, pp.178-187.

[9] H. Kaplan, R. Shamir, R.E. Tarjan, “A faster and

Simpler Algorithm for Sorting Signed
Permutation by Reversals”, SIAM Journal of
Computing, Vol. 29, No.3, 1999, pp.880-892.

[10] W.H. Gates, C.H. Papadimitrioro, “Bounds for

Sorting by Prefix Reversal”, Discrete
Mathematics, 27, 1979, pp. 47-57.

[11] M.H. Heydari, I.H. Sudborough, “On sorting by

Prefix Reversals and the Diameter of Pancake

66

Network”, Journal of Algorithm, 25(1), 1997,
pp.67-94.

[12] T. Chen, S.S. Skiena, “Sorting with fixed-length

reversals”, Discrete Applied Mathematics, 71
(1996), pp. 269-295

[13] M.E. Walter, Z.Dias and J. Meidanis, “Reversal

and Transposition Distance of Linear
Chromosomes”, Proceedings of SPIRE'98 -
String Processing and Information Retrieval: A
South American Symposium. September, 9-11,
1998, pp. 96-102.

[14] Q.P. Gu, S. Peng, “Approximation Algorithm for

Genome Rearrangements by Reversals and
Transpositions”, Theoretical Computer Science,
210(2), 1999, pp.327-339.

[15] G.H. Lin, G. Xue, “Signed Genome
Rearrangements by Reversals and
Transpositions: Models and Approximations”,
Theoretical Computer Science, 259(1-2), 2001,
pp.513--531.

[16] L.S. Heath, J.C. Vergara, “Sorting by Short
Swaps”, Journal of Computational Biology,
2003: 10(5), pp.75-89.

[17] X.Feng, Z. Meng, I.H.Sudborough, “Improved

Upper Bound for Sorting by Short Swaps”, IEEE
Symposium on Parallel Architectures,
Algorithms and Networks, 2004, pp. 98-103.

67

