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ABSTRACT 
A short swap is an operation that switches two elements 
that have at most one element in between. In this paper, 
we consider the problem of sorting an arbitrary 
permutation by short swaps. We give an algorithm which 
sorts any permutation of length n within (3/16)n2 +O(n 
log n) steps, improving the previous (5/24)n2 +O(n log n) 
upper bound.  
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1.  Introduction 
 

Analysis of genome rearrangements is a 
fundamental task in computational biology. Any genome 
rearrangement study involves solving a combinatorial 
puzzle of transforming one genome into another [1]. The 
shortest, also called the most parsimonious rearrangement 
scenarios represent the most likely molecular evolution 
path. Scientific studies show that for uni-chromosomal 
genomes, inversions (reversals) are the dominant 
rearrangement event, and for multi-chromosomal 
genomes, reversals, transpositions and translocations are 
common rearrangement events. 

 Research comparing human and mouse genomes 
shows that a large number of micro-rearrangements, e.g, 
intra-chromosomal rearrangement with a span < 1Mb, 
happen during the draft of human and mouse genomic 
sequence [2].  If we think of a genome as a particular 
ordering of genes, then the problem of analysis of 
rearrangement events, where one species has evolved into 
another, can be viewed as a problem of transforming one 
permutation into another by reversals. And if we take the 
micro-rearrangement scenario into account, the problem 
can be viewed as transforming one permutation into 
another by bounded length reversals. 

 So far, the majority of research has focused on 
calculating the unbounded reversal distance. Using the 
notion of breakpoint, Kececioglu and Sankoff [3] were 
the first to give a 2-approximation algorithm for sorting 
by unbounded length reversals. Pevzner [4], Christie [5] 
improved the approximation ratio, currently the best is a 
1.375 approximation algorithm due to Berman [6]. Capara 
[7] proved this problem is NP hard. One also consider the 

case where each element of the permutation has either a 
“+” or “-” sign and when reversed, the sign changes from 
“+” to “-” or from “-” to “+”. This is the case of signed 
permutations. Hanehalli and Pevzner [8] showed that 
sorting signed permutations in the minimum number of 
steps by unbounded length reversals is polynomial 
solvable. Kaplan, Shamir and Tarjan [9] gave a faster and 
simpler algorithm for this problem. For the unsigned 
permutation, if each reversal must start from the first 
element, the sorting problem is known as the pancake 
problem [10]. Gates and Papadimitriou showed an upper 
bound of  (5/3)n+5/3 and a lower bound of  (17/16)n. 
Heydari and Sudborough [11] tightened the lower bound 
to (15/14)n and showed that the conjectured hardest 
signed permutation, namely In = -1, -2, … , -n, can be 
sorted in (3/2)n+1/2 steps. Chen and Skiena [12] gave 
big-Oh asymptotic upper and lower bounds for sorting 
with fixed length reversals. Walter, Dias and Meidanis 
[13] discuss the problem of sorting by reversals and 
simultaneous transpositions. Gu, Peng and Sudborough 
gave an approximation algorithm for this problem [14]. 
Lin and Xue [15] discuss the signed version of sorting by 
both reversal and transposition. 

 The problem of sorting an arbitrary permutation 
by switching two adjacent elements or two elements with 
one element in between is called sorting by short swap 
[16]. We can view a short swap operation as a substring 
reversal of length 2 or 3. Heath and Vegera [16] showed a 
(1/4)n2 upper bound and a  (1/6)n2 lower bound for this 
problem. In [17] we gave an algorithm with an improved 
upper bound of (5/24)n2 +O(n log n). In this paper, we 
further improve the upper bound and show a (3/16)n2 
+O(n log n) upper bound. 
 In section 2, we give the proof of the new upper 
bound, in section 3, we discuss some open questions.  
 
2.  A (3/16)n2 +O(n log n) Upper Bound 
 

Let L = {1, 2, 3, , n}. A permutation π = 
π1π2π3…πn of L is an ordered arrangement of the 
elements in L. The element at position i is denoted by 
π(i), where 1� i � n. We will use integers 1, 2, …, n to 
indicate both positions and elements. Without loss of 
generality, assume n ≡  1(mod 4), let n = 4k+1 and let k 
be even. First we use a linear number of steps to put 
element 2k+1 in the middle, i.e. at position 2k+1. This 
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divides the permutation into a left and right part, where 
each part has 2k numbers. Assume there are p numbers 
(0 ≤  p ≤  2k) which are in the range [1, 2k] but are 
positioned in the right part, there must also have p  
numbers which are in the range [2k+2, 4k+1] but are 
positioned in the left part. Based on p’s value, we 
consider the following two cases and for each case, we 
use a different algorithm to sort. 

 
2.1 Case 1: 0 ≤  p ≤  k 
 

 For this case, independently for the left and right 
part, we do the following. For the left part, without 
sorting we move the p numbers in the range [2k+2, 4k+1] 
to the middle, occupying positions from 2k-p+1 to 2k. 
Similarly for the right part, without sorting we move the p 
numbers in the range [1, 2k] to the middle, occupying 
positions from 2k+2 to 2k+p+1. During above procedure, 
we use length 3 reversals as much as possible. Use the 
following permutation as one example: 

 
Position i : 1  2  3  4   5   6  7   8    9  10  11 12  13   
π:  9  5  4  1  13  3  7  11  10  6   12   8   2 
 
here n = 13, k = 3 and p = 2, since number 9, 13 which are 
in the range [2k+2, 4k+1] but are positioned in the left 
part on position 1 and 5.  There must also have two 
numbers, in above case, 6 and 2, which are in the range 
[1, 2k] but are positioned in the right part. Consider the 
left part only, by a length 2 reversal, we switch 13 with 3 
and get the following permutation: 
 
Position i : 1  2  3  4   5   6  7   8    9  10  11 12  13   
π1:  9  5  4  1   3  13 7  11  10  6   12   8   2 
 
Next, by two length 3 reversals, number 9 first switches 
with number 4, then switch with number 3, we get the 
following permutation: 
 
Position i : 1  2  3  4   5   6  7   8    9  10  11 12  13   
π2:  4  5  3  1   9  13 7  11  10  6   12   8   2 
 
We do similar thing on right part and move number 6 and 
2 to position 8 and 9 respectively and get the following 
permutation: 
 
Position i : 1  2  3  4   5   6  7  8  9  10  11 12  13   
π3:  4  5  3  1   9  13 7  6  2  11  10  8   12 
 
Next, first we switch number 13 with 2 by a length 3 
reversal, followed by a length 2 reversal. We switch 9 
with 6 first by a length 2 reversal, followed by a length 3 
reversal, and the permutation now is: 
 
Position i : 1  2  3  4   5   6  7  8   9  10 11 12  13   
π4:  4  5  3  1   6   2  7  9  13 11 10  8   12 
 

We do similar operations on an arbitrary 
permutation satisfying the condition stated in case 1, 

namely, 0 ≤  p ≤  2k. For a general case, the worst case 
happens when the 2p numbers are at the two ends. That 
means for the left part, the p numbers which are in the 
range [2k+2, 4k+1] occupy positions from 1 to p, and 
similarly for the right part, the p numbers in the range [1, 
2k] occupy positions from 4k-p+2 to 4k+1. In this case, it 
takes at most 2* p* [( n/2- p)/2] steps to move them to the 
middle. Once these 2p numbers are put into the middle, 
we swap the left p numbers with the right p numbers. 
Similarly as we show in above example, this is done in p 
phases, at phase i (1 ≤ i ≤  p), using length 2 or 3 reversal, 
we put the number at position 2k+i+1 into position 2k-
p+i. During this procedure, we use length 3 reversals as 
much as possible and only use length 2 at the beginning 
or at the end when necessary. Note that the p numbers 
originally occupying positions from 2k-p+1 to 2k are 
pushed to the right and will then occupy positions from 
2k+2 to 2k+p+1. It takes p*( p/2) steps to do the swaps. 
Combining the above two steps, the total number of 
exchanges needed is: 

 
2* p* [( n/2- p)/2] +  p*( p/2) 
= (1/2)np-p2+ (1/2) p2  
= (1/2)np-(1/2)p2    (1) 
 

Then all the numbers in the range [1, 2k] are in the left 
part and all the numbers in the range [2k+2, 4k+1] are in 
the right part. Once this is done, we treat the left and right 
part as two separate permutations each of size (n-1)/2, and 
we will apply our algorithm separately to sort the left and 
right part permutation. Notice function in (1) is an 
increasing function of p in the range of [1, k]. When p = k 
(k = (n-1)/4), the function has the maximum value which 
is (3/32)n2. Let T(n) denote the total steps needed to sort a 
permutation π, if every time case (1) happens, we have 
the following recursive formula: 
 

T(n) = 2*T(n/2) + (3/32)n2+O(n) 
 

The solution to above recurrence is T(n) = (3/16)n2+O(n 
log n) 
 
2.2 Case 2: k < p ≤  2k 

 
For this case, our algorithm will include 3 stages.  
 

Stage 1: Normalization  
For this stage, we use a similar algorithm as 

described in [17]. To make the analysis simple, we 
consider an even integer n, suppose that the elements of 
the set {1,2, …, n} are partitioned into two subsets A and 
B, each with n/2 elements.  For an arbitrary permutation π 
of L, where L = {1, 2, 3…n}, say π = π1π2π3…πn, we 
consider the problem of moving all of the elements in A 
to the odd positions, namely position 1, 3, 5, …, n-1 and 
all of the elements of B to the even positions, namely 
position 2, 4, 6, …, n.  Neither the elements of A nor the 
elements of B need to be sorted.  We call a procedure to 
do this normalization.  For example, the set A could be 
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the largest n/2 elements and the set B could be the 
smallest n/2 elements and, for n = 12, one could have the 
permutation π = (1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7).  
Then, every element of A ={7,8,9,10,11,12} is in an even 
position and every element of B = {1,2,3,4,5,6} is in an 
odd position, so all are out of place.  In this case, simply 
exchanging each element in an odd position with its 
neighboring even position element, resulting in the 
permutation (12, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6) 
accomplishes the goals of normalization. 
 We now establish, for any choice of a partition 
of {1,2, …, n} into two sets A and B, each with n/2 
elements, and any permutation π of {1,2, …, n} the worst 
case number of short swaps to do the task of 
normalization.  That is, we describe an optimum 
normalization procedure and analyze the number of steps 
the procedure takes.  The procedure begins with a left-to-
right scan of the given permutation π.  Call the elements 
in A that are in even positions and the elements of B that 
are in odd positions out of place elements.  Then, during 
this initial scan of the input, the procedure exchanges any 
out of place elements that are adjacent.  Clearly, in 
general, out of place elements will still exist, but they will 
not be adjacent.   
 The remaining set of out of place elements can 
be put into positions of the correct parity by moving them 
to the positions of out of place elements of the other set 
through positions of elements that are not out of place by 
exchanges between elements at distance two.  Note that 
the number of elements in A that are out of place is equal 
to the number of elements in B that are out of place, so if 
there is an out of place element from one set there must be 
a one in the other set.  Now, consider a situation where we 
move the leftmost out of place A element, say x, in an 
even position, to the position of the leftmost out of place 
B element, say y, in an odd position, where y is to the left 
of x.  As x and y are not adjacent, x will be swapped with 
other even position elements by length 3 reversals until it 
becomes adjacent with y, and then x and y will be 
exchanged.  The elements in even positions that x is 
swapped with are not out of place, as x is the leftmost out 
of place element of A, so moving them to a different even 
position does not make them out of place.  So, in this 
movement of the leftmost out of place A element to the 
position of the leftmost out of place B element, we 
eliminate both the leftmost out of place A element and the 
leftmost B element.  The situation is entirely symmetric 
when x is to the left of y.  In that case, one moves y to the 
left through other odd positions by length 3 reversals until 
y becomes adjacent to x.   
 The worst case is when n is a multiple of 4 and 
there are n/4 out of place B elements in positions 1,3,5, 
…, (n/2)-1 and there are n/4 out of place A elements in 
positions (n/2)+2, (n/2)+4, …, n.  In this case, each of the 
n/4 iterations takes the leftmost out of place A elements to 
the leftmost out of place B element, by the process 
already described, and takes (n/4)+1 exchanges.  That is, 
at each iteration the leftmost out of place element of A is 
at a distance of (n/2)+1 from the leftmost out of place 

element of B, and as all but the last exchange is a reversal 
of length 3, the total number of reversals is (n/4)+1. 
Consequently, the total number of steps in the worst case 
is (n/4)*(n/4+1) = (n/4)2 + O(n) = n2/16 + O(n). 

Now consider the case 2, where k < p ≤  2k and 
k = (n-1)/4. Independently for the left part, for all those p 
numbers in the range [2k+2, 4k+1], using the 
normalization procedure described above, we place the 
biggest k of them on the left even positions. Similarly for 
the right part, of all the p numbers in the range [1, 2k], we 
place the smallest k of them on the right even positions. 
This takes 2*(1/16)(2k)2 = (1/2)k2 + O(k) = (1/32)n2 
+O(n), since k = (n-1)/4 steps. Notice that after the above 
steps, there are p-k numbers, which are in the range 
[2k+2, 4k+1], which have been put in the left odd 
positions, and there are p- k numbers, which are in the 
range [1, 2k], which have been put in the right odd 
positions. 

 
Stage 2: Swap 

Now consider the biggest k numbers, which are 
3k+2, 3k+3, 3k+4, …, 4k+1 since we assume n = 4k+1 
and k is even. After Stage 1 normalization procedure, 
some of these k numbers are put on the left even 
positions. The remaining are put on right odd positions. 
Similarly, for the smallest k numbers, after stage 1, some 
are put on right even positions. The remaining are put on 
left odd positions. We swap the numbers on left even 
positions with those on right even positions. 

This is done in k phases, at phase i (1 ≤ i ≤  k), if 
the element at position 2k-2i+2 belongs to the range 
[3k+2, 4k+1], we use length 3 reversal to move it right to 
the position 4k-2i+2. We do this by swapping it with 
elements at position 2k-2i+4, 2k-2i+6, …, 4k-2i+2. This 
takes k steps. If an element at position 2k-2i+2 does not 
belong to the range [3k+2, 4k+1], let’s denote it by “a”. 
We shall swap “a” with elements at position 2k-2i+4, 2k-
2i+6, …, etc. Suppose at some point we found it is at 
distance � 2 from some element “b” which is in a right 
odd position and belongs to the range [3k+2, 4k+1]. In 
that case, we use an exchange to swap “a” with “b”. Now 
“b” is on even position and we continue swapping “b” 
with elements on subsequent even positions until “b” is 
put into position 4k-2i+2. In this case, it takes k+1 step to 
move an element from position 2k-2i+2 to position 4k-
2i+2. If  “a” does not pass any element which is on right 
odd position and belongs to the range [3k+2, 4k+1], we 
simply move “a”, until “a” is put in position 4k-2i+2. This 
takes k steps. 

As above movements take place, i.e. after each 
phrase i (1 ≤ i ≤  k), elements on the right even positions 
are moved 2 positions left. Symmetrically if the element 
originally on position 2k+2i belongs to the range [1, k], 
after k phases it will be put on position 2i. If it does not 
belong to the range [1, k], we denote it as “c”. Suppose at 
phase i, it passes an element “d” which is on left odd 
position and belongs to the range [1, k]. Then we use an 
exchange to swap “c” with “d”. Then “d” is in an even 
position and it will be shifted left 2 positions with each 
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phase until it is put on position 2i after k phases. If the 
element originally on position 2k+2i does not belong to 
the range [1, k] and during those k phases it does not pass 
over any elements which are on left odd positions and 
belong to the range [1, k], it will simply be put into 
position 2i.  For stage 2, it takes k * k = (1/16)n2+O(n) 
steps of short swaps, since k = (n-1)/4.  

 
Stage 3: Locally sort 

We will use the same algorithm as used to sort 
the basic class permutation in [17] Stage 3. In brief, this is 
done in 2 steps: 
 Step 1: For the left part of the permutation, 
starting from element 1, and in increasing order, using 
reversals of length 2 or 3 and through odd positions, put 
1, 2, 3, 4,…, k/2 into their correct positions. Similarly for 
the right part, starting from element 4k+1, in decreasing 
order, using reversals of length 2 or 3 through the odd 
positions, put 4k+1, 4k, 4k-1,…, 4k-k/2+2 into their 
correct position. As a result of the above, elements in the 
range [(k/2)+1, k] will be put together and will occupy 
positions from (k/2)+1 to k in random order. Similarly for 
the elements in the range [3k+2, 4k-(k/2)+1], they will be 
put together and  will occupy positions from 3k+2 to 4k-
(k/2)+1, but in random order.  
 Step 2: Now, independently for the left and right 
part, using the earlier swap sorting algorithm described in 
[17], sort the elements that occupying position from 
(k/2)+1 to k and from 3k+2 to 4k-(k/2)+1. As described in 
[17], the above procedure needs a total of (3/64)n2+O(n) 
steps. As a result, the elements in the range [1, k] and 
[3k+2, 4k+1] are sorted. Note, in [17], for the basic class 
permutation, after Stage 2, numbers in the range [1, k] are 
all on left even positions and numbers in the range [3k+2, 
4k+1] are all on right even positions. But for an arbitrary 
permutation π of length 4k+1 which satisfy k < p ≤  2k, 
after stage 2, all the elements in the range [1, k] are in the 
left part of the permutation, but might not all be on even 
positions, some may be on the left odd positions; similarly 
for the right part, all the elements in the range [3k+2, 
4k+1] are in the right part of the permutation but might 
not all be on the even positions, some may be on the right 
odd positions. Below we show that for an arbitrary 
permutation π which satisfy k < p ≤  2k, using the above 
algorithm, it takes equal or less than (3/64)n2+O(n) steps 
to get the numbers in the range [1, k] and  [3k+2, 4k+1] 
into sorted order. 
 Let us use πr and πl to denote the left part and 
right part of the permutation after Stage 2. As the left part 
and right part are symmetric, we shall just consider the 
right part first. For the right part of the permutation, from 
left to right, let us use a1, a2, a3,…,  aj (0 ≤ j ≤  k) to denote 
those elements that are on the right even positions but do 
not belong to the range [3k+2, 4k+1]. Among them aj is 
the rightmost. There must be j elements which are in the 
range [3k+2, 4k+1] but are on right odd positions, let use 
b1, b2, b3, …, bj (0 ≤ j ≤  k) to denote them, where b1 is the 
leftmost. We claim that b1’s position must be to the right 
of aj’s position. This is the result of Stage 2. According to 

our algorithm in Stage 2, if b1’s position were to the left 
of aj’s position, then aj would pass through b1 and the two 
would get exchanged. Below Figure 1 describe the right 
part of the permutation after stage 2. We use     to denote 
the odd position and “_” to denote the even position. 
 
…      1�     …     2�     …      3�     …    j�     … 

 

__ 1b  __… __ 2b __ … __ 3b  __ … __ jb __… 

 
Figure 1. Permutation ππππr 

 
We construct a basic class permutation �r 

relevant to the permutation πr, we switch a1 with b1, a2 
with b2, …, and aj with bj  and all the other elements 
remain unchanged. See Figure 2 for the resulting 
permutation �r.   
 
…      1b     …     2b     …     3b     …    jb     … 

 

__ 1a __…__ 2a __… __ 3a __…__ ja __… 

 
Figure 2. Permutation �r 

 
 For permutation �r, all the numbers in the range 
[3k+2, 4k+1] are on even positions. Now compare 
permutation πr with �r, notice that in πr, b1 through bj are 
more close to the right end than they are in �r, as b1 

through bj belong to the range [3k+2, 4k+1], that means it 
takes less steps to put them into their correct positions in 
πr than in �r. Similar analysis applies to the left part of the 
permutation, suppose we get �l from πl, it will take less 
steps in πl than in �l to put the numbers in the range [1, k] 
into their correct positions. We know that �l and �r can be 
sorted within (3/64)n2 +O(n) steps by using the algorithm 
described in [17] stage 3, so πl together with πr will use 
equal or less than (3/64)n2+O(n) steps to get the numbers 
in the range [1,k] and [3k+2, 4k+1] sorted.  
 After the above 3 stages, numbers in the range 
[1, k] and [3k+2, 4k+1] are sorted and the middle is a 
permutation of length 2k+1, which we will sort it 
recursively by apply the algorithm describe above. Since 
in normalization stage, it takes at most (1/32)n2+O(n) 
steps, in swap stage, it takes at most (1/16)n2+O(n) steps, 
and in locally sort stage, it takes at most (3/64)n2+O(n) 
steps. Let T(n) denote the total steps needed to sort a 
permutation � in the above case 2. If we assume that 
every time case (2) is true, we have the following 
recursive formula: 
 
T(n) = T(n/2) + (1/32)n2+ (1/16)n2+ (3/64)n2+ O(n) 
        = T(n/2) + (9/64)n2+ O(n) 
 
The solution to above recurrence is  
 
T(n) = (3/16)n2+O(n log n) 
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Combine the recursion we get for case 1 and case 
2, we have the following: 

 

T(n) =
��

�
�
�

≤<++

≤≤++

)2()()64/9()2/(

)0()()32/3()2/(2
2

2

kpknOnnT
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And using induction on n and on case 1 and case 2, we 
conclude that: 

T(n) ≤  (3/16) 2n + O(n log n) 
 
This yields our improved upper bound for sorting by short 
swap. 
 
3.  Conclusion and Open Questions 
 

We have given a recursive algorithm that sorts 
any permutation by short swaps within (3/16)n2 +O(n log 
n) steps. Some questions remain. Can one improve the 
(3/16)n2 +O(n log n) general upper bound? What is the 
worst case permutation for sorting by short swaps? Can 
one get a better approximation algorithm for sorting by 
short swaps? 

For the first question, the answer is positive. 
Recall that in Section 2, for Case 2, we obtained the 
following recursive formula: T(n) = T(n/2) + (9/64)n2+ 
O(n). In this recurrence, out of (9/64) n2, (3/64) n2 

represents the number of steps used for Stage 3 and Step 
2, which was described in detailed  in [17]. In order to 
sort the elements in the range [(k/2)+1, k] and [3k+2, 4k-
(k/2)+1], we use the algorithm in [16]. The algorithm in 
[16] has an upper bound of (1/4)n2+ O(n). If we use the 
improved (5/24)n2+ O(n log n) upper bound in [17], and 
do not differentiate between Case 1 and Case 2. That is, 
use the algorithm described for Case 2 in Section 2 for 
every permutation �, even if 0 � p � k. If 0 � p � k, simply 
spread the p numbers on left/right even positions and 
swap them. By doing this, we are able to get an upper 
bound which is better than (3/16) n2 +O(n log n).  
However, it is a very small improvement and hence is not 
included in the results given here. 

For the second question, the backwards order 
permutation seems like a good candidate for a worst case 
permutation, since it has the maximum number of 
inversions, namely n(n-1)/2. But we have shown in [17] 
that we can sort it in optimum time, namely in (1/6)n2 

+O(n log n) steps. Let B be the set of permutation that all 
elements in the left half are bigger than all elements in its 
right half. In [17], we call set B the basic class 
permutations. All permutation in B has the maximum 
vector sum of (n2)/2, we have shown that this class of 
permutations can be sorted in (3/16)n2 + O(n log n) steps.  
Is the class B permutations hardest to sort?  If so, we need 
to know how to prove it. 

For the third question, currently, there is a 2-
approximation algorithm due to Heath and Vergara [16]. 
We have shown a 3/2-approximation algorithm for all 
permutations in the basic class B in [17].  
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