
An Improved Parallel Iterative Algorithm for Stable Matching

Colin White, Undergraduate

Depts. of Math & Computer Science

Amherst College

Amherst, USA

colin.white2@gmail.com

Dr. Enyue Lu, Faculty Mentor

Dept. of Math. & Computer Science

Salisbury University

Salisbury, USA

ealu@salisbury.edu

Abstract— We propose a parallel algorithm for finding a stable

matching that converges in O(n log n) average time using n2

processors. The algorithm is based on the Parallel Iterative

Improvement (PII) algorithm, which finds a stable matching

with approximately a 90% success rate. Our algorithm, called

the PII-SC algorithm, uses a smart initiation method that

decreases the number of iterations to find a stable matching,

and also applies a cycle detection method to find a stable

matching based on patterns in the preference lists. Both

methods decrease the number of times it fails to find a stable

matching by three orders of magnitude, and when combined,

the chance of failure is less than 10-7.

Keywords—Stable Matching, Stable Marriage, Graph

Algorithms, Parallel Algorithms

I. INTRODUCTION

The stable matching (or stable marriage) problem was

first introduced by Gale and Shapley [1]. Given n men, n

women, and 2n preference lists in which each person ranks

all members of the opposite sex by preference, a matching is

an unordered set of n pairs of a man and woman in which

each person is in exactly one pair. A matching is unstable if

there exists a man and a woman who are not paired with

each other, but both prefer each other to their current

partner. Otherwise, a matching is stable. Gale and Shapley

presented an O(n
2
) algorithm to find a stable matching from

any preference lists, thus proving that a stable matching

must always exist. The stable matching problem has a wide

variety of applications, from assigning doctors to hospitals,

to real-time switch scheduling, to problems in economics

[2,6].

II. PII ALGORITHM

The original PII algorithm was designed for time-

sensitive switch scheduling network problems [4]. It

consists of two phases: the initiation phase and the iteration

phase. It starts by generating a random initial matching in

the initiation phase, and then iteratively picks the “most”

unstable pairs, collectively called the set NM1 of type-1 new

matching pairs (nm1-pairs), to replace current matching

pairs in the iteration phase. Since each nm1-pair contains a

man and a woman from two different current matching

pairs, often other pairs must be added until we have n pairs

again. Such pairs, which make up the set NM2 of type-2

new matching pairs (nm2-pairs), are sometimes difficult to

find because of long chains of nm1-pairs that overlap with

respect to the replaced pairs. The nm2-pairs, which may not

be favorable, can cause new unstable pairs in the new

matching, which in turn allows the possibility of cycling in

the iteration phase. The PII algorithm has a 90% chance of

finding a stable matching within n iterations (the vast

majority of failures are due to cycling), and runs in O(n log

n) average time with n
2
 processors [3,4].

III. NEW METHODS

In this paper, we give two major improvements that

increase the performance of the PII algorithm: smart

initiation and cycle detection.

A. Smart Initiation

The first major improvement is in the initiation phase:

we use a simple method to find an initial matching that

performs much better than a random matching. We

accomplish this in a way similar to the Gale-Shapley

algorithm: pair each man with their top-ranked woman,

breaking ties with the woman’s preference. Then each

unpaired man gets paired with their next best choice,

however, unlike in the Gale-Shapley algorithm, they cannot

propose to women that are currently already paired with

someone. We continue in this way until we have a

matching.

We claim that the smart initiation method can be done in

linear time with n
2
 processors as follows. There are at most

n steps before every person is provably paired up. During

each step, there are at most n proposals from the men.

Every woman can pick her most preferable proposal in

constant time using constant-time find-minimum algorithm,

which finds the minimum of k elements using k
2
 processors

[5]. This causes every step to take constant time, making the

whole method run in linear time.

The smart initiation method decreases the chance of the

algorithm failing to find a stable matching from 1 in 10 to 1

in 20. Furthermore, when the method is run in parallel with

the woman-optimal version of the same method (in which

the roles of men and women are switched), the chances of

failing are reduced to roughly 1 in 400.

This work is funded by NSF CCF-1156509 under Research Experiences

for Undergraduates Program. C. White did his work as a REU (Research

Experiences for Undergraduates) student at Salisbury University during

the summer of 2013.

B. Cycle Detection

The second major improvement is in the iteration phase:

an additional step that detects if the algorithm is cycling and

then outputs the stable matching. When the algorithm has

reached 3n iterations without finding a stable matching,

experimentation has shown that the matchings generated by

the iteration phase must be cycling. It then saves the current

matching and checks the matching generated in each

successive iteration to see if it is the same as the one in the

3n
th

 iteration. Meanwhile, the algorithm starts creating

chains of nm1-pairs: each nm1-pair either starts a new chain,

or is added to an existing chain if it shares the same man or

woman with the last pair that was added. After the 3n
th

matching is detected again, we check if any nm1 chains can

merge together into nm1-cycles. We then pick every other

nm1 pair in the cycles, which results in a stable matching

roughly 9,999 times out of 10,000. The cycle detection

phase can be done in constant time, which does not change

the runtime of the full algorithm.

IV. RESULTS AND DISCUSSION

We have implemented the PII algorithm with the two

major improvements (which we call the PII-SC algorithm),

along with the PII algorithm with smart initiation, the PII

algorithm with cycle detection, the original PII algorithm,

and the Gale-Shapley algorithm for comparison. For each

trial, we generate random preference lists and run each of the

different algorithms, outputting the success rate and the

number of iterations taken to reach a stable matching. In

table 1, we calculate the success rate for 5n iterations,

varying n from 10 to 100. We ran the PII-SC algorithm for

10 million trials in order to calculate an accurate probability,

but to save computing time, we deemed 100,000 trials each

was sufficient for the rest of the algorithms. Each of the two

major improvements decreases the probability of failure by

multiple orders of magnitude. In table 2, we calculate the

number of successes with n=100, varying the number of

iterations from 0.5n to 5n. The cycle detection algorithm and

PII-SC algorithm only start looking for cycles after 3n

iterations, so we see a major increase in the rate of success at

that time.

V. ONGOING WORK

We are working on classifying cases where the cycle

detection algorithm sometimes fails to find a stable

matching. We have identified different categories of “bad”

cases and why each of them fails to output a stable

matching. If we can generalize the cycle detection algorithm

to account for these cases, along with proving that an initial

matching must either become stable or cycle after 3n

iterations, and that the longest cycle length is 2n, then we

would have an O(n log n) algorithm for stable matching

with n
2
 processors. We are also working towards finding a

similar algorithm that uses n
3
 processors and runs in linear

time.

Table 1: Probability of finding a stable matching in 5n

iterations with various n values

N

Gale-

Shapley

Original

PII

Smart

Initiation

Cycle

Detection

PII-SC

Algorithm

10 0.9609 0.9809 0.9999 1.0000 1.0000000

20 0.8953 0.9513 0.9993 1.0000 1.0000000

30 0.8566 0.9226 0.9996 1.0000 0.9999998

40 0.8338 0.9007 0.9988 0.9999 0.9999996

50 0.8198 0.8801 0.9981 0.9999 0.9999994

60 0.8086 0.8719 0.9979 0.9998 0.9999994

70 0.8007 0.8650 0.9986 0.9998 0.9999992

80 0.7935 0.8553 0.9984 0.9998 0.9999989

90 0.7903 0.8642 0.9980 0.9997 0.9999992

100 0.7821 0.8579 0.9980 0.9998 0.9999985

Table 2: Number of successes for finding a stable matching

with n=100 for various iterations per 100,000 trials

Iterations
Gale-

Shapley
Original

PII
Smart

Initiation
Cycle

Detection
PII-SC

Algorithm

0.5n 93 81846 86166 81846 86166

n 5308 86363 95269 86363 95269

1.5n 19392 86425 99347 86425 99347

2n 35522 86427 99777 86427 99777

2.5n 50128 86427 99784 86427 99784

3n 61998 86427 99784 86427 99784

3.5n 71012 86427 99784 99981 100000

4n 78063 86427 99784 99982 100000

4.5n 83483 86427 99784 99982 100000

5n 87609 86427 99784 99982 100000

REFERENCES

[1] Gale, D. and Shapley, L.S.: “College admissions and the stability of

marriage”, American Mathematical Monthly, Vol. 69 (1962) 9–15

[2] Gusfield, D. and Irving, R.W.: The Stable Marriage Problem

Structure and Algorithms, MIT Press (1989)

[3] Korakakis, E.: Examining the Parallelization Limits of the Stable

Matching Problem, Master’s Thesis, University of Edinburgh

(2005)

[4] Lu E. and Zheng S. Q.: "A Parallel Iterative Improvement Stable

Matching Algorithm", High performance computing, Lecture Notes

in Computer Science, Springer-Verlag, Vol. 2913 (2003) 55-65

[5] Quinn, Michael J.: Parallel Computing: Theory and Practice, 2nd

ed., New York: McGraw-Hill, 1994

[6] The Prize in Economic Sciences 2012, “Stable matching: Theory,

evidence, and practical design”, http://www.nobelprize.org

/nobel_prizes/economic-sciences/laureates/2012/popular-

economicsciences2012.pdf

