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Abstract— We propose a parallel algorithm for finding a stable 

matching that converges in O(n log n) average time using n2 

processors.  The algorithm is based on the Parallel Iterative 

Improvement (PII) algorithm, which finds a stable matching 

with approximately a 90% success rate.  Our algorithm, called 

the PII-SC algorithm, uses a smart initiation method that 

decreases the number of iterations to find a stable matching, 

and also applies a cycle detection method to find a stable 

matching based on patterns in the preference lists.  Both 

methods decrease the number of times it fails to find a stable 

matching by three orders of magnitude, and when combined, 

the chance of failure is less than 10-7. 
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I. INTRODUCTION 

The stable matching (or stable marriage) problem was 

first introduced by Gale and Shapley [1].  Given n men, n 

women, and 2n preference lists in which each person ranks 

all members of the opposite sex by preference, a matching is 

an unordered set of n pairs of a man and woman in which 

each person is in exactly one pair.  A matching is unstable if 

there exists a man and a woman who are not paired with 

each other, but both prefer each other to their current 

partner.  Otherwise, a matching is stable.  Gale and Shapley 

presented an O(n
2
) algorithm to find a stable matching from 

any preference lists, thus proving that a stable matching 

must always exist.  The stable matching problem has a wide 

variety of applications, from assigning doctors to hospitals, 

to real-time switch scheduling, to problems in economics 

[2,6]. 

II. PII ALGORITHM 

The original PII algorithm was designed for time-

sensitive switch scheduling network problems [4]. It 

consists of two phases: the initiation phase and the iteration 

phase. It starts by generating a random initial matching in 

the initiation phase, and then iteratively picks the “most” 

unstable pairs, collectively called the set NM1 of type-1 new 

matching pairs (nm1-pairs), to replace current matching 

pairs in the iteration phase. Since each nm1-pair contains a 

man and a woman from two different current matching 

pairs, often other pairs must be added until we have n pairs 

again.  Such pairs, which make up the set NM2 of type-2 

new matching pairs (nm2-pairs), are sometimes difficult to 

find because of long chains of nm1-pairs that overlap with 

respect to the replaced pairs.  The nm2-pairs, which may not 

be favorable, can cause new unstable pairs in the new 

matching, which in turn allows the possibility of cycling in 

the iteration phase.  The PII algorithm has a 90% chance of 

finding a stable matching within n iterations (the vast 

majority of failures are due to cycling), and runs in O(n log 

n) average time with n
2
 processors [3,4]. 

III. NEW METHODS 

In this paper, we give two major improvements that 

increase the performance of the PII algorithm: smart 

initiation and cycle detection. 

A. Smart  Initiation  

The first major improvement is in the initiation phase: 

we use a simple method to find an initial matching that 

performs much better than a random matching.  We 

accomplish this in a way similar to the Gale-Shapley 

algorithm: pair each man with their top-ranked woman, 

breaking ties with the woman’s preference.  Then each 

unpaired man gets paired with their next best choice, 

however, unlike in the Gale-Shapley algorithm, they cannot 

propose to women that are currently already paired with 

someone.  We continue in this way until we have a 

matching.   

We claim that the smart initiation method can be done in 

linear time with n
2
 processors as follows.  There are at most 

n steps before every person is provably paired up. During 

each step, there are at most n proposals from the men.  

Every woman can pick her most preferable proposal in 

constant time using constant-time find-minimum algorithm, 

which finds the minimum of k elements using k
2
 processors 

[5]. This causes every step to take constant time, making the 

whole method run in linear time. 

The smart initiation method decreases the chance of the 

algorithm failing to find a stable matching from 1 in 10 to 1 

in 20.  Furthermore, when the method is run in parallel with 

the woman-optimal version of the same method (in which 

the roles of men and women are switched), the chances of 

failing are reduced to roughly 1 in 400.   
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B. Cycle Detection 

The second major improvement is in the iteration phase: 

an additional step that detects if the algorithm is cycling and 

then outputs the stable matching.  When the algorithm has 

reached 3n iterations without finding a stable matching, 

experimentation has shown that the matchings generated by 

the iteration phase must be cycling.  It then saves the current 

matching and checks the matching generated in each 

successive iteration to see if it is the same as the one in the 

3n
th

 iteration.  Meanwhile, the algorithm starts creating 

chains of nm1-pairs: each nm1-pair either starts a new chain, 

or is added to an existing chain if it shares the same man or 

woman with the last pair that was added.  After the 3n
th

 

matching is detected again, we check if any nm1 chains can 

merge together into nm1-cycles.  We then pick every other 

nm1 pair in the cycles, which results in a stable matching 

roughly 9,999 times out of 10,000.  The cycle detection 

phase can be done in  constant time, which does not change 

the runtime of the full algorithm.  

IV. RESULTS AND DISCUSSION 

We have implemented the PII algorithm with the two 

major improvements (which we call the PII-SC algorithm), 

along with the PII algorithm with smart initiation, the PII 

algorithm with cycle detection, the original PII algorithm, 

and the Gale-Shapley algorithm for comparison.  For each 

trial, we generate random preference lists and run each of the 

different algorithms, outputting the success rate and the 

number of iterations taken to reach a stable matching.  In 

table 1, we calculate the success rate for 5n iterations, 

varying n from 10 to 100.  We ran the PII-SC algorithm for 

10 million trials in order to calculate an accurate probability, 

but to save computing time, we deemed 100,000 trials each 

was sufficient for the rest of the algorithms.  Each of the two 

major improvements decreases the probability of failure by 

multiple orders of magnitude.  In table 2, we calculate the 

number of successes with n=100, varying the number of 

iterations from 0.5n to 5n.  The cycle detection algorithm and 

PII-SC algorithm only start looking for cycles after 3n 

iterations, so we see a major increase in the rate of success at 

that time. 

V. ONGOING WORK 

We are working on classifying cases where the cycle 

detection algorithm sometimes fails to find a stable 

matching.  We have identified different categories of “bad” 

cases and why each of them fails to output a stable 

matching. If we can generalize the cycle detection algorithm 

to account for these cases, along with proving that an initial 

matching must either become stable or cycle after 3n 

iterations, and that the longest cycle length is 2n, then we 

would have an O(n log n) algorithm for stable matching 

with n
2
 processors.  We are also working towards finding a 

similar algorithm that uses n
3
 processors and runs in linear 

time. 

 

Table 1: Probability of finding a stable matching in 5n 

iterations with various n values 

N 

Gale-

Shapley 

Original 

PII 

Smart 

Initiation 

Cycle 

Detection 

PII-SC 

Algorithm 

10 0.9609 0.9809 0.9999 1.0000 1.0000000 

20 0.8953 0.9513 0.9993 1.0000 1.0000000 

30 0.8566 0.9226 0.9996 1.0000 0.9999998 

40 0.8338 0.9007 0.9988 0.9999 0.9999996 

50 0.8198 0.8801 0.9981 0.9999 0.9999994 

60 0.8086 0.8719 0.9979 0.9998 0.9999994 

70 0.8007 0.8650 0.9986 0.9998 0.9999992 

80 0.7935 0.8553 0.9984 0.9998 0.9999989 

90 0.7903 0.8642 0.9980 0.9997 0.9999992 

100 0.7821 0.8579 0.9980 0.9998 0.9999985 

 

Table 2: Number of successes for finding a stable matching 

with n=100 for various iterations per 100,000 trials 

Iterations 
Gale-

Shapley 
Original 

PII 
Smart  

Initiation 
Cycle 

Detection 
PII-SC 

Algorithm 

0.5n 93 81846 86166 81846 86166 

n 5308 86363 95269 86363 95269 

1.5n 19392 86425 99347 86425 99347 

2n 35522 86427 99777 86427 99777 

2.5n 50128 86427 99784 86427 99784 

3n 61998 86427 99784 86427 99784 

3.5n 71012 86427 99784 99981 100000 

4n 78063 86427 99784 99982 100000 

4.5n 83483 86427 99784 99982 100000 

5n 87609 86427 99784 99982 100000 
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