
Parallelization Using Separation of Neural Networks
James Brandewie; Dr. Joseph Anderson

Department of Mathematics and Computer Science, Salisbury University

Abstract

Neural networks (NN) are one of the most critically

important up and coming methods for interpreting and

predicting data. However, arguably the greatest weakness

of these models is the time it takes to train them. At times,

it can take immense computers full weeks to train one

industry-ready neural network. Parallelization is made

more difficult by sequential aspects such as back

propagation, epochs, and batching. This project deals with

taking a new approach to parallelization techniques for

neural networks in order to decrease this training time.

Previous Research

NN parallelism is largely divided into two categories: model

parallelism & data parallelism. Data parallelism works by

having the same NN on all sub-computers and division of

the training data. Model parallelism on the other hand,

involves a sort of splitting up of the NN structurally. It

usually involves a pre-classification of the data, then

feeding the data into the respective “model.” This project

involves a different method of model parallelism: splitting

the neural net structurally based on weights.

Theory of Independence

The parallelization involves the following procedure: train

entire NN on part of the data, split up into sub neural nets

based on current weights, train each sub neural nets on

remaining data, recombine at the end. The reasoning

behind the anticipated success is as follows, observing the

neural net below, the trend of the current training shows

the left two nodes as being reasonably independent from

each other.

Procedure

Numpy & Pytorch libraries were used for all

procedures including training, separation, and

recombination. SU’s HPC lab was used for

computationally intense data. One difficulty is that

in splitting by node, you initially lose ½ of the

weights if separating by node. This was absolved by

alternating which group you take from for two

additional NNs. An example of this is shown below.

.

Results

Splitting while prioritizing this independence never

functioned as well as baseline, always decreasing in test

accuracy after the recombination of split trained NNs. As

such, a different approach was taken. Using the HPC lab,

all combinations of splitting the neural network were

iterated through. The results of this iteration can be seen

below.

Acknowledgements

"The work is funded by NSF CCF-1757017 under

Research Experiences for Undergraduates

Program."

.

Conclusion and Future Work

Variation was immense in test accuracy across

combinations of splitting, suggesting the structure plays

an important role. However, no split resulted in

significantly increased test accuracy, even for higher

layer networks. This suggests that the approach of a

structural split parallelization based on weights fails.

Based on a template created by:

at Salisbury University

Fig. 2 Alternating Group Choice for

Generating Neural Nets

Fig.1 Independence of Nodes

Fig. 3 Accuracy vs Combination

