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Abstract

Neural networks (NN) are one of the most critically 

important up and coming methods for interpreting and 

predicting data. However, arguably the greatest weakness 

of these models is the time it takes to train them. At times, 

it can take immense computers full weeks to train one 

industry-ready neural network. Parallelization is made 

more difficult by sequential aspects such as back 

propagation, epochs, and batching. This project deals with 

taking a new approach to parallelization techniques for 

neural networks in order to decrease this training time.  

Previous Research

NN parallelism is largely divided into two categories: model 

parallelism & data parallelism. Data parallelism works by 

having the same NN on all sub-computers and division of 

the training data. Model parallelism on the other hand, 

involves a sort of splitting up of the NN structurally. It 

usually involves a pre-classification of the data, then 

feeding the data into the respective “model.” This project 

involves a different method of model parallelism: splitting 

the neural net structurally based on weights. 

Theory of Independence

The parallelization involves the following procedure: train 

entire NN on part of the data, split up into sub neural nets 

based on current weights, train each sub neural nets on 

remaining data, recombine at the end. The reasoning 

behind the anticipated success is as follows, observing the 

neural net below, the trend of the current training shows 

the left two nodes as being reasonably independent from 

each other. 

Procedure

Numpy & Pytorch libraries were used for all 

procedures including training, separation, and 

recombination. SU’s HPC lab was used for 

computationally intense data.  One difficulty is that 

in splitting by node, you initially lose ½ of the 

weights if separating by node. This was absolved by 

alternating which group you take from for two 

additional NNs. An example of this is shown below. 

.

Results

Splitting while prioritizing this independence never 

functioned as well as baseline, always decreasing in test 

accuracy after the recombination of split trained NNs. As 

such, a different approach was taken. Using the HPC lab, 

all combinations of splitting the neural network were 

iterated through. The results of this iteration can be seen 

below.
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Conclusion and Future Work

Variation was immense in test accuracy across 

combinations of splitting, suggesting the structure plays 

an important role.  However, no split resulted in 

significantly increased test accuracy, even for higher 

layer networks. This suggests that the approach of a 

structural split parallelization based on weights fails. 
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