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Dynamical systems and topology are fields that often interact. 
Topology often deals with the overall properties of a space, while the 
study of dynamical systems deals with the overall behavior of a 
system without necessarily being preoccupied with numerical details. 
Key in the study of global behavior is the analysis of bifurcations, 
which are quantifiable changes to the system’s behavior with respect 
to some set of parameters. We use tools from the growing field of 
persistent homology in order to develop a procedure to analyze 
dynamical systems by comparing the homologies of their trajectories, 
known as orbits, to those of circles approximating the orbit’s 
long-term behavior. We then implemented the procedure into Python 
principally using the giotto-tda module.

Abstract

We would like to reduce the noise in the parameter-vs-distance plots in 
order to better distinguish state change locations.  Also, we want to 
generalize the circle comparison to n-tori in order to analyze 
higher-dimensional systems without resorting to plane projection.

Future Work

A snippet of the Python code for generating the parameter-vs-Wasserstein 
distance plots:

Implementation in Python

We compare the orbit of the time series to that of an approximating circle 
using persistent homology.  If the two are close homologically, then the 
system likely has some periodicity.  Otherwise, the system may have other 
types of behavior.
1. Compute an orbit of the dynamical system.
2. Pick a sample set from this orbit to represent the end behavior.
3. Choose a midpoint of the sample set.
4. Choose a radius of a circle to approximate the orbit.
5. Compute persistence diagrams of the sample set and circle.
6. Find the distance between the persistence diagrams.

Outline of the Circle Comparison Method
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Application to Lorenz and Rössler Systems

Figure 1: The FitzHugh-Nagumo system, corresponding circles, and persistent diagrams at 
two different parameter values – one gives a fixed point attractor (left column) while another 
gives a limit cycle (right column).

Topological Data Analysis (TDA) Tools

● We calculate the simplicial complex for our time series and circle 
separately using the Vietoris-Rips complex and persistence:

We choose d(-, -) to be the standard Euclidean metric.
● Then, we use the Wasserstein Metric to give a distance between the 

persistent diagrams of the time series and the circle.

● We plot the distance of the system to its circle as one of the system’s 
parameters changes.

Application to FitzHugh-Nagumo System

Choosing the Circle Radius

Figure 2: The circle comparison method applied to the 
FitzHugh-Nagumo system using each radius function.

Figure 3: The circle comparison method applied to the Lorenz system (left) and the 
Rössler system (right).  The Rössler system, having few clear bifurcations between 
chaotic and periodic, rapidly switches between the two, generating noise in the graph.

def rho_to_PD(rho, pos, rad_func):
# calculate trajectory for each rho
t, ts = dynamical_system(rho) 

# take two coordinates, here choose (x,y)
chosen_coords = ts[:, 0:2] 

# Get samples from when ts has settled into its end behavior
ts_sampled, limit = get_limit_cycle_samples(chosen_coords) 

# center the time series
ts_centered, midpoint = get_midpoint_center(ts_sampled, limit)

# Get original radius of circle
radius, rad_func_name = get_radius(ts_centered, rad_func=rad_func)

if pos == 'Normalized':
    # Scale the data to fit unit circle
    ts_final, circle = centered_data_normalized(ts_centered, radius)

elif pos == 'Original':
    # don't do anything to the time series
    ts_final = ts_sampled
    circle = create_circle(midpoint, radius)

# calculate ts_final persistence
FH_diagram = VR.fit_transform(ts_final[None, :, :])

return ts_final, FH_diagram, circle, rad_func_name, att_type
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