
Using Circles to Detect Bifurcations in Dynamical
Systems with Persistent Homology

Dr. Junyi Tu
Salisbury University Department of Computer Science

Dynamical systems and topology are fields that often interact.
Topology often deals with the overall properties of a space, while the
study of dynamical systems deals with the overall behavior of a
system without necessarily being preoccupied with numerical details.
Key in the study of global behavior is the analysis of bifurcations,
which are quantifiable changes to the system’s behavior with respect
to some set of parameters. We use tools from the growing field of
persistent homology in order to develop a procedure to analyze
dynamical systems by comparing the homologies of their trajectories,
known as orbits, to those of circles approximating the orbit’s
long-term behavior. We then implemented the procedure into Python
principally using the giotto-tda module.

Abstract

We would like to reduce the noise in the parameter-vs-distance plots in
order to better distinguish state change locations. Also, we want to
generalize the circle comparison to n-tori in order to analyze
higher-dimensional systems without resorting to plane projection.

Future Work

A snippet of the Python code for generating the parameter-vs-Wasserstein
distance plots:

Implementation in Python

We compare the orbit of the time series to that of an approximating circle
using persistent homology. If the two are close homologically, then the
system likely has some periodicity. Otherwise, the system may have other
types of behavior.
1. Compute an orbit of the dynamical system.
2. Pick a sample set from this orbit to represent the end behavior.
3. Choose a midpoint of the sample set.
4. Choose a radius of a circle to approximate the orbit.
5. Compute persistence diagrams of the sample set and circle.
6. Find the distance between the persistence diagrams.

Outline of the Circle Comparison Method

● Ghrist, R. (2008). Barcodes: The persistent topology of data. Bulletin of the American
Mathematical Society, 45 (1), 61–75.

● Myers, A., Munch, E., & Khasawneh, F. A. (2019). Persistent homology of complex networks for
dynamic state detection. Phys. Rev. E, 100, 022314.
https://doi.org/10.1103/PhysRevE.100.022314

This project was a part of the EXERCISE REU at Salisbury University, MD, NSF grant #2149591.
Special thanks to P.I. Dr. Enyue Lu.

References

Application to Lorenz and Rössler Systems

Figure 1: The FitzHugh-Nagumo system, corresponding circles, and persistent diagrams at
two different parameter values – one gives a fixed point attractor (left column) while another
gives a limit cycle (right column).

Topological Data Analysis (TDA) Tools

● We calculate the simplicial complex for our time series and circle
separately using the Vietoris-Rips complex and persistence:

We choose d(-, -) to be the standard Euclidean metric.
● Then, we use the Wasserstein Metric to give a distance between the

persistent diagrams of the time series and the circle.

● We plot the distance of the system to its circle as one of the system’s
parameters changes.

Application to FitzHugh-Nagumo System

Choosing the Circle Radius

Figure 2: The circle comparison method applied to the
FitzHugh-Nagumo system using each radius function.

Figure 3: The circle comparison method applied to the Lorenz system (left) and the
Rössler system (right). The Rössler system, having few clear bifurcations between
chaotic and periodic, rapidly switches between the two, generating noise in the graph.

def rho_to_PD(rho, pos, rad_func):
calculate trajectory for each rho
t, ts = dynamical_system(rho)

take two coordinates, here choose (x,y)
chosen_coords = ts[:, 0:2]

Get samples from when ts has settled into its end behavior
ts_sampled, limit = get_limit_cycle_samples(chosen_coords)

center the time series
ts_centered, midpoint = get_midpoint_center(ts_sampled, limit)

Get original radius of circle
radius, rad_func_name = get_radius(ts_centered, rad_func=rad_func)

if pos == 'Normalized':
 # Scale the data to fit unit circle
 ts_final, circle = centered_data_normalized(ts_centered, radius)

elif pos == 'Original':
 # don't do anything to the time series
 ts_final = ts_sampled
 circle = create_circle(midpoint, radius)

calculate ts_final persistence
FH_diagram = VR.fit_transform(ts_final[None, :, :])

return ts_final, FH_diagram, circle, rad_func_name, att_type

Chase Demick
Skidmore College Department of Mathematics

https://doi.org/10.1103/PhysRevE.100.022314

