

Abstract

- ▶ Let G be a graph and $n \leq |V(G)|$ a positive integer. The *n-tuple graph of G*, denoted by $U_n(G)$, has all *n*-element subsets of $V(G)$ as its vertices, and two vertices are adjacent if and only if they have exactly $n - 1$ elements in common and the remaining ones are adjacent in G.
- \blacktriangleright We determine formulas for the connectivity of $U_n(C_m)$ and $U_n(K_{s,t})$, and define criteria for the connectivity of $U_n(\mathcal{T})$.

Connectivity of n-Tuple Graphs

Erin Hopper, Deven Platt, and Ian Wilson

University of Maryland, Grinnell College, and University of Illinois Urbana-Champaign Under the direction of Dr. Alexander Halperin (Salisbury University)

Theorem 1.5: Lower Bound of $\kappa(U_n(G))$ Given a simple finite graph G with minimum degree δ , the *n*-tuple graph $U_n(G)$ is $max{\delta, (n-1)(\delta - n + 1) + 1}$ -connected. [\[1\]](#page-0-0) \blacktriangleright This bound is not the connectivity of $U_n(G)$; counterexample below, where max $\{\delta,(n-1)(\delta-n+1)+1\}=3$ but connectivity is 8.

Figure: K_6 and $U_2(K_6)$

N-Tuple Graph Definition

The *n-tuple graph of G*, denoted $U_n(G)$, has \blacktriangleright All *n*-element subsets of $V(G)$ as vertices

- ▶ An edge between two vertices if and only if
- **▷ The vertices have exactly** $n 1$ **elements in common.**
- \triangleright The remaining two elements are adjacent in G.

Figure: C_5 and $U_2(C_5)$

Lemma 2.2: Condition for $\kappa(U_n(G))$ The existence of k internally disjoint paths between arbitrary pseudo-adjacent

- $X, Y \in V(U_n(G))$ implies k-connectedness of $U_n(G)$. [\[1\]](#page-0-0)
- ▶ Connectivity is determined by finding equality between an upper and lower bound.
- A common upper bound is minimum degree.
- A common lower bound is internally disjoint paths between pseudo-adjacent vertices, which is sufficient by Lemma 2.2.

Connectivity of $U_n(K_p)$

Theorem: $\kappa(U_n(K_p)) = n(p-n)$

Prior Results

Proof Preliminaries

We suspect this conjecture is true, and it would be more than enough to complete the forwards direction of the Big Leaf Conjecture.

Connectivity of $U_n(K_{s,t})$

• This claim was proven analogously to the case of cycles, in which the desired value for $\kappa(U_n(K_{s,t}))$ is shown to be an upper bound as this value is the minimum degree of the

It is then shown to be a lower bound by proving that between all pseudo adjacent $X, Y \in V(U_n(K_{s,t}))$, there exist no fewer than that value of internally disjoint $X-Y$ paths. It is worth noting that for $n, m \in \{1, ..., \lfloor \frac{s+t}{2} \rfloor\}$ 2 \rfloor }, $n > m$ implies $\kappa(U_n(K_{s,t})) > \kappa(U_m(K_{s,t}))$

▶ This was proven by Wright [\[2\]](#page-0-1) using a counting argument. ▶ We proved it again by finding that the minimum degree enumerating paths between pseudo-adjacent vertices.

Figure: K_4 and $U_2(K_4)$

Connectivity of $U_n(C_m)$

Theorem: $\kappa(U_n(C_p))=2$ \blacktriangleright $\kappa(U_2(\mathcal{C}_5)) \leq \delta(U_2(\mathcal{C}_5)) = 2$

N-Tuple Graphs of Trees

Theorem: For a tree T of order p , and positive integer *n* such that $1 \le n \le p-1$, we have $\delta(U_n(T)) \leq n.$ (1)

Define a "big leaf" of a tree T to be a subtree $R \subseteq T$ such that $T \setminus R$ is not disconnected.

-
-
-

Connectivity of $U_n(T)$

n-tuple vertex graphs. Master's thesis, Emory University, 1992.

The Big Leaf Conjecture

Conjecture (Big Leaf): Given a tree T, $\kappa(U_n(T)) = 1$ if and only if T has a big leaf of order n.

Figure: A big leaf of order 3

The backwards direction of the Big Leaf Conjecture has been shown.

▶ Assume T has a big leaf $R \subset T$ of order n. There will always be exactly one edge $rt \in E(T)$ such that $r \in R$ and $t \in T \setminus R$.

 \blacktriangleright R is a vertex in $V(U_n(T))$, and is always adjacent to $\{t\} \cup T \setminus \{r\}.$

 \blacktriangleright The existence of any other neighbor of R contradicts T being acyclic, so R has degree 1 in $U_n(T)$. Thus $\kappa(U_n(T))=1.$

It can also be shown that any vertex in $U_n(T)$ that has degree 1 is a big leaf in T .

Conjecture: $U_n(T)$ is maximally connected.

Theorem: Let
$$
N = \min\{n, s + t - n\}
$$

\n
$$
\kappa(U_n(K_{s,t})) = \begin{cases} \lceil \frac{(t+s)}{2}n - \frac{n^2}{2} - \frac{(t-s)^2}{8} \rceil, & N \ge \frac{|s-t|}{2} \\ N(\min\{s,t\}), & N < \frac{|s-t|}{2} \end{cases}
$$

- graph.
-
-

Visualization Software

All graphics on this poster were created with n-Tuple Grapper, a visualization software for n-tuple graphs developed in Java for this research project. The program provides a user interface to dynamically create and view graphs and their n -tuple graphs. It can be found here: <https://github.com/deplatt/n-tuple-grapper>

References

[1] R. Goodnow, A. Halperin, H. Wang, and B. Wu. Proof of a conjecture on the connectivity of

- n-tuple graphs. 2024.
- [2] V. Wright.

