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Abstract
PERT is a widely utilized framework for project management. However, as a result

of underlying assumptions about the activity times, the PERT formulas prescribe a
light-tailed distribution with a constant variance conditional on the range. Given
the pervasiveness of heavy-tailed phenomena in business contexts as well as inherently
differing levels of uncertainty about different activities, there is a need for a more flexible
distribution which allows for varying amounts of dispersion and greater likelihoods of
more extreme tail-area events. In particular, we argue that the tail-area decay of
an activity time distribution is a key factor which has been insufficiently considered
previously. We provide a distribution which permits varying amounts of dispersion
and greater likelihoods of more extreme tail-area events that is straightforward to
implement with expert judgments. Moreover, the distribution can be integrated into
the PERT framework such that the classic PERT results represent an important special
case of the method presented here.
Keywords: Applied probability; Finite mixture; Beta rectangular distribution; Ro-
bust project management; Activity times

1 Introduction

The management of large-scale projects poses numerous challenges. These challenges have

led to widespread use of project management techniques such as PERT (Program Evalua-

tion and Review Technique). These project management techniques provide managers with

a systematic quantitative framework for scheduling, planning and coordinating the many ac-

tivities associated with the successful on-time completion of large complex projects. Hence,

the goal of PERT and related techniques is to facilitate the management, coordination and

control of the various activities involved in a project so that the project itself may be com-

pleted successfully. This is accomplished by structuring the activities into a network and

examining the time requirements and precedence relationships associated with the activities.

One defining feature of PERT is that the activity times are taken to be stochastic.

Thus, in order to facilitate a project’s management, it is necessary to elicit activity time
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distributions for the activities comprising the project. As such, PERT (Malcolm et al.,

1959) provides straightforward methods for eliciting activity times and for computing key

quantities from the elicited judgments. In particular, four assumptions are made regarding

activity time distributions in the context of PERT (Littlefield and Randolph, 1987) that lead

to a particular form of beta distribution being utilized for the distribution of activity times.

This particular beta distribution can be termed the PERT beta distribution. While visually

the PERT beta distribution can take on several shapes, the dispersion of these distributions

as measured by the variance is nonetheless taken to be a constant function of the range as

a result of the PERT assumptions. This is a limiting characteristic because, in assessing

real-world activity times, we need distributions that are capable of handling the potentially

differing and substantial amount of uncertainty that may be present. In particular, there is

a need to represent varying amounts of expert uncertainty through the dispersion measure.

It is also desirable to have a mechanism for allowing for heavy tails (i.e., greater likeli-

hoods of outlying or extreme events) in activity time distributions given the prevalence of

heavy-tailed phenomena in real-world applications. In finance it has long been appreciated

that many seemingly anomalous results and incorrect inferences can be traced back to the

use of light-tailed distributions such as the normal to model heavy-tailed financial returns

(Mandelbrot, 1963; Fama, 1965). These leptokurtic or heavy-tailed returns are known as

‘excess returns’ and they may instead be t-distributed or follow other non-normal forms.

Similar phenomena also occur in economics, thus leading to robust families of models for

these situations (e.g., Engle, 1982). We also find these phenomena occurring in project

management. For example, Grant et al. (2006) documented the appearance of outliers in

project management and suggests that the probabilities of work proceeding more slowly

than planned may be underestimated. Mitchell and Zmud (1999) documented an outlier

project which experienced a four-year delay due to IT-related issues and a 5-year slippage in

scheduled completion (see also Banker and Kauffman, 1991; Raffo and Kellner, 2000). Mor-

genshtern et al. (2006) empirically found that greater project uncertainty is associated with

greater project durations and increasingly erroneous project duration estimations, implying

again that project managers tend to give too little weight to the possibility of more extreme

delays. This notion is corroborated by Atkinson et al. (2006) who indicate that uncertainty

in project management is often played down and insufficiently considered in industry. It is

interesting to note that while robust methods are used in many disciplines such as those

mentioned above, their application to project management appears to have been almost

completely overlooked. To date, no systematic treatment of the need for robust methods in

project management has appeared save that of Steele and Huber (2004). Steele and Huber

(2004) noted that many project management tools assume certain common distributional
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forms such as the normal. When the data do not happen to follow these forms, statisti-

cal techniques can perform poorly. Steele and Huber (2004) then focus on incorporating

methodological robustness into project management using Tukey’s methods of exploratory

data analysis (EDA). We note here however that Steele and Huber (2004) did not make a

direct connection to PERT.

In the statistical literature (e.g., McCullagh and Nelder, 1989), it is recognized that

commonly utilized distributions may be unable to adequately represent real-world excess

variability and over-occurrence of tail-area events. For example, in conducting Poisson re-

gression it is common to encounter count data that are overdispersed relative to the Poisson.

In these cases, continuing to use the typical Poisson formulation leads to problems: test

statistics can become greatly inflated, causing large increases in Type I error rates such that

incorrect inferences are likely. Here, more flexible distributions such as the negative bino-

mial distribution are often used to correct these problems and represent overdispersed and

outlying observations more accurately.

In the above cases, we see that we can often improve upon commonly used light-tailed

distributions such as the normal and the Poisson by using more flexible distributions which

nest the original distribution as a special limiting case1. Interestingly, the more flexible dis-

tributions mentioned above both can be conceptualized as mixture distributions. Both the

t-distribution and the negative binomial result from specifying that an underlying parame-

ter is itself uncertain and varies probabilistically2. Mixture distributions permit increased

robustness for inferences as well as more flexible and accurate data fitting (Gelman et al.,

2003). In this paper we derive a heavy-tailed alternative to the PERT beta using a mixture

distribution. The use of this mixture assigns more weight to extremal tail-area events, and in

using the mixture the project manager may assign more probability to the occurrence of out-

liers and extremal events, thus obtaining inferences that should be better protected against

outlying events. In deriving this distribution, the elicitation of the distribution should be

straightforward so that experts are able to provide the best possible judgments based on

their experience. This is because more straightforward probabilistic judgment tasks are

more likely to be performed accurately (Hogarth, 1975). The mixture distribution used here

allows for both straightforward elicitation and the incorporation of robustness in PERT.

The contributions of this paper are as follows. We have first examined the need for robust

methods in the context of PERT. We then provide a new distribution engineered specifically

1As the t-distribution’s degrees-of-freedom parameter and the reciprocal of the negative binomial’s overdis-
persion parameter go to infinity, the normal and the Poisson are recovered.

2Here coincidentally by using the gamma distribution for the underlying parameter.
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for the context of project management and PERT. It permits more robust inferences with

increased likelihood of extremal events and a flexible representation of uncertainty while

accommodating PERT’s classic beta distribution as a special case. Thus, it is useful in

mitigating against overly optimistic conclusions regarding project outcomes which may be

unwarranted if extreme outcomes are more probable. Finally, we also extend the literature by

adopting the perspective that the engineering of distributions to have particular properties

(here robustness properties) is relevant for the real-world project management context. This

can be contrasted with the use of standard off-the-shelf distributions which may or may not

have been specifically designed for a given context and accordingly may or may not possess

all the properties desired. The outline of the paper is as follows. Section 2 reviews the use

of the PERT beta distribution for project activity time estimates. In Section 3, we derive a

heavy-tailed distribution for activity times. In Section 4, we examine the distribution in the

context of the classic PERT formulas. In Section 5, we review elicitation for the distribution

while in Section 6 we present an empirical application. We draw conclusions in Section 7.

2 Literature Review

The general characterization of the beta distribution having parameters α > 0 and β > 0 is

p(y|α, β, a, b) =





Γ(α + β)

Γ(α)Γ(β)

(y − a)α−1(b− y)β−1

(b− a)α+β−1
if a ≤ y ≤ b,

0 otherwise.

(1)

The distribution in (1) exists on the interval a to b and so is suitable for activities with

arbitrary ranges b−a. Define k = α+β. Then, its expectation, variance and mode are α/k,

αβ/(k3 + k2) and (α− 1)/(k − 2) respectively.

The use of the beta distribution in the context of PERT can be traced back to the

method’s origin in Malcolm et al. (1959). Here the modal time m together with a and b can

be combined to yield the standard PERT formulas for the expectation and variance of the

activity time distribution, namely

E(y) =
a + 4m + b

6
, (2)

Var(y) =
(b− a)2

36
. (3)

Littlefield and Randolph (1987) noted that the expressions in (2) and (3) depend on the fol-

lowing four assumptions: the activity time distribution is beta; experts can estimate a, b and

4



m well; the standard deviation is one-sixth that of the range; and a linear approximation-

based result for the mean is acceptable. As for the third assumption, Clark (1962, p. 406),

indicated that the derivation of this relationship was as follows: the standard “normal distri-

bution truncated at ±2.66 has its standard deviation equal to 1/6 the range”3. The question

of what specific type of beta distributions is implied by (2) and (3) was examined by Sasieni

(1986). In the case where α 6= β, (2) implies a particular subfamily of beta distributions

such that k = α+β = 6. However, when k = 6 the relationship in (3) is no longer necessarily

exact but becomes generally approximate. Littlefield and Randolph (1987) indicated that if

(3) is instead taken to be exact, then the implied values of α and β are found by utilizing the

one valid root associated with the solution of a cubic equation. However, then (2) necessarily

becomes approximate. So in using the classic PERT formulas, researchers have indicated

one can take the expression for the mean to be exact and the expression for the variance to

be approximate, or vice versa (Gallagher, 1987; Littlefield and Randolph, 1987). It is then

natural to wonder if (2) and (3) may hold simultaneously. Grubbs (1962) originally identified

the conditions under which this occurs: these are when α = β = 4; α = 3+
√

2, β = 3−√2;

and α = 3−√2, β = 3+
√

2. The latter two special cases satisfy the k = 6 constraint, while

the former requires lifting the α 6= β restriction. The PERT formulas have been defended

by authors such as Clark (1962), Littlefield and Randolph (1987), Kamburowski (1997), and

Pleguezuelo et al. (2003) typically by appealing to the normal distribution.

Thus, the beta distributions with k = 6 may be called the Type I PERT beta distributions

because for these distributions the expectation is exactly described by (2). By extension, the

beta distributions with α = β = 4; α = 3+
√

2, β = 3−√2; and α = 3−√2, β = 3+
√

2 can

be termed the Type II PERT beta distributions as the expectation and variance are exactly

described by (2) and (3). We will return to these distributions below.

One of the more notable limitations of PERT beta involves the variance, the most typ-

ically encountered measure of uncertainty. By the third assumption of Littlefield and Ran-

dolph (1987) above, the variance in (3) is constant conditional on the range. This may be in

direct conflict with reality. For example, consider two activities with the same range. While

the expert is free to specify m which will change the expected value of the two activity times,

both activities are constrained to have identical variances. This is in spite of the fact that

considerable differences in uncertainty may exist. For example, one activity may be assigned

to a new contractor or workgroup whose abilities may be unknown and untested. Alterna-

tively, the completion of one activity may be advanced or delayed by a complex function of

3As pointed out by an anonymous reviewer, it is the standard normal distribution truncated at ±2.96
that has a standard deviation equal to one sixth of the range.

5



other contingent factors such that uncertainty is again increased relative to the other better-

understood activity. This variance inflexibility of PERT is important because the overall

critical path time distribution is a function of the distribution of the path activity times.

However, if the variances of the critical path activities are consistently underestimated, then

it follows that the variance of the critical path time will be as well. This will lead to falsely

precise conclusions regarding the critical path time that are too narrowly centered around

the expected value. As a results, errors of the kind described by Atkinson et al. (2006), Grant

et al. (2006) and Morgenshtern et al. (2006) would be expected to occur. Additionally, Kam-

burowski (1997) has indicated that when k = 6 and the variance is as in (3) the kurtosis

measure is 3 (mesokurtotic). So, as in the case of light-tailed modeling of financial data,

utilizing the PERT beta may unknowingly expose the project manager to increased real-

world upside and downside risks and extreme events relative to what the method suggests.

Project managers may therefore prefer a method that permits both an increased likelihood

of tail-area events as well as greater flexibility in the variance specification. In the following

section, we provide such a distribution.

3 A Heavy-Tailed Distribution for Activity Times

We employ a finite mixture distribution for the distribution of activity times (Tittering-

ton et al., 1985; McLachlan and Basford, 1988). The finite mixture distribution having I

components can be written as

g(y|Ψ) =
I∑

i=1

πifi(y|ψi) (4)

where f and g are densities, ψi is the parameter vector for the ith component of the mixture,

Ψ =
⋃
i

ψi is the parameter vector resulting from the union of the I ψi vectors, and πi is a set

of non-negative weights which sum to one. Given that more activity-time uncertainty than is

allowed for by the PERT beta may exist, the mixture distribution should be able to represent

expert beliefs ranging from those specified under the PERT beta conditions to the conditions

of maximum uncertainty. The rectangular distribution is the distribution which expresses

maximum uncertainty subject to the basic constraint that we have a normalized density. If

we consider (1) and the rectangular distribution, then by adding a mixing parameter θ such

that 0 ≤ θ ≤ 1 we may write the beta rectangular mixture distribution as

p(y|α, β, θ, a, b) =
θ Γ(α + β)

Γ(α)Γ(β)

(y − a)α−1(b− y)β−1

(b− a)α+β−1
+

1− θ

b− a
(5)
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Figure 1: Examples of Beta Rectangular Distributions

0.2 0.4 0.6 0.8 1
Time

0.5

1

1.5

2

Density

α = 2, β = 4.

0.2 0.4 0.6 0.8 1
Time

0.25

0.5

0.75

1

1.25

1.5

1.75

Density

α = 3, β = 3.
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Clearly the beta distribution is recovered when θ = 1 and the rectangular distribution is

recovered when θ = 0. Thus, as the uncertainty weight 1 − θ increases, overall uncertainty

increases. Figure 1 displays the densities of two members of the beta rectangular family

under the Type I PERT condition. The special θ = 1 case corresponding to the original

non-mixture PERT beta distribution is also shown in the figure via densities with solid lines.

In the general case, the expectation and the variance of (5) are

E(y) = a + (b− a)

(
θ α

k
+

1− θ

2

)
, (6)

Var(y) = (b− a)2

(
θ α(α + 1)

k(k + 1)
+

1− θ

3
−

(
k + θ(α− β)

)2

4k2

)
. (7)

When θ > 0 the mode is

m = a + (b− a)
α− 1

k − 2
(8)

which clearly is the same mode as that of the underlying beta distribution. There is no

unique mode when θ = 0. However, this case poses no special difficulties below as the mode

is no longer a quantity of interest when θ = 0.

4 The Beta Rectangular Distribution: Application to

PERT

We now consider the beta rectangular distribution in the PERT context. Since the expec-

tation of the mixture is a weighted sum of the expectations of the rectangular and beta
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components, we may abbreviate the PERT expectation in (2) as E(yp) and use it to find

the PERT-based expectation of the mixture. We denote the mixture expectation by a sub-

scripted pm to indicate it extends a classic PERT formula, here (2), to the mixture case. If

yr has the rectangular distribution on the interval a to b, the PERT mixture expectation

E(ypm) = θ E(yp) + (1− θ)E (yr)

= θ
a + 4m + b

6
+ (1− θ)

a + b

2

=
θ(a + 4m + b) + 3(1− θ)(a + b)

6
. (9)

The result indicates that the mean in (9) is shrunk back toward the center of the interval

away from the classic PERT mean in (2) as uncertainty increases with declining θ. We

may also insert (8) into (9) and then equate the result to (6) and solve to determine what

parameter values are implied. Doing so verifies the k = 6 condition is again needed for (6)

to equal (9) given α 6= β.

For the variance, we again utilize the finite mixture formulation in (4). To simplify

notation, we write the PERT beta and rectangular components as yp and yr. Then we have

the following theorem.

Theorem 1. The PERT mixture variance is

Var(ypm) =
1

36

[
θ
(
(a+4m+b)2+(b−a)2

)
+12(1−θ)(a2+ab+b2)−(

θ(a+4m+b)+3(1−θ)(a+b)
)2

]
.

(10)

Proof. Note that

Var(ypm) = E(y2
pm)− [E(ypm)]2 (11)

= θ E[(yp)
2] + (1− θ)E[(yr)

2]− [
E(ypm)

]2
(12)

where the first term in (11) becomes the first two terms in (12) by linearity and independence.

The last term in (12) is given by squaring the result in (9). In the middle term of (12) we

can show E[(yr)
2] = (a2 + ab+ b2)/3 by using the rectangular distribution. The first term in

(12) is the beta component. We now find an expression for this quantity. Again using the
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variance formula and inserting the PERT beta expressions we find that

Var(yp) = E[(yp)
2]− [E(yp)]

2

(b− a)2

36
= E[(yp)

2]−
(

a + 4m + b

6

)2

E[(yp)
2] =

(b− a)2

36
+

(
a + 4m + b

6

)2

. (13)

By putting (13) into (12) we find (10) is obtained.

If we re-examine the Type II PERT beta conditions, some simplification of (10) is possible.

When α = β = 4, Var(ypm) = (b−a)2(3−2θ)/36. Alternatively when α = 3±√2, β = 3∓√2,

Var(ypm) =
(b− a)2(3− 2θ2)

36
. (14)

The variance in (14) is greater than that obtained in (3) except for θ = 1 where they are

equal. Hence, it represents a more conservative value that is amenable to computation as

is (3) and that is also consistent with both (2) and (3) and the k = 6 condition. For

increased precision, however, the expression in (10) would be recommended over (14) in the

PERT context. We see from (10) that under the mixture the variance is no longer constant

conditional on the range as it was in the original PERT case in (3). We may plot (10) as a

function of θ and m to display the flexibility of the variance afforded by the mixture. At right

in Figure 2 we see the variance has a minimum of 1/36 when θ = 1 and thereafter increases

as a function of θ and m. Figure 2 also shows that the mean becomes more moderated as

uncertainty grows and θ declines. As θ tends to 0, the mean tends toward 1/2 given the lack

of certainty. Plots for the exact expressions in Equations (6) and (7) for k = 6 are extremely

similar and are hence omitted.

We now expand our focus from the PERT beta special cases and their associated moment

approximations to the general beta distribution in (1) and exact treatments of activity time

distributions. In doing so, we compare (1) to the beta rectangular in (5) with a view toward

their usage as distributions for activity times. Use of the beta distribution corresponds

to a set of assumptions about a representation of expert belief. While the implications of

these assumptions regarding the mean and variance of the distributions have been studied

in the literature (as described above), the implications of the use of the beta distribution

to accurately represent tail-area beliefs do not appear to have been examined, even though

tail-area behavior may substantially impact the mean and variance (Berger, 1985).
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Figure 2: Mean and Variance of ypm
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Beta distributions that are unimodal at an interior point (α > 1, β > 1) vanish in the

tails (i.e., their densities converge to zero at the extrema). By construction, the unimodal

beta rectangular mixture with θ < 1 apportions more weight to the extremal tail-area regions

than does the beta distribution. The density of the unimodal beta rectangular never vanishes

at the extrema as the density there can be shown to be (1− θ)/(b− a). As for the tail-area

regions bordering the extrema, beta distributions generally decay rapidly in the tails, and

do so increasingly with increasing α and β. The skewed unimodal beta distributions decay

especially rapidly in the longer tail even with α and β relatively small. For example, the

plot on the left of Figure 1 shows that there is little appreciable density in the top decile

region 0.9 ≤ y ≤ 1 for the beta distribution (θ = 1) with α = 2, β = 4. The symmetric

beta distribution (α = 3, β = 3, θ = 1) on the right of Figure 1 fares better but still an

observance of an activity time in the top decile would be rather unlikely. Given that α and

β may sometimes be taken to be rather large (e.g., up to 60 in Keefer and Verdini, 1993),

the total probability in these areas may become quite small. If the expert’s belief regarding

the decay of the activity time distribution toward the extrema truly follows that of the beta

distribution, then the use of the beta distribution is well-supported. However, this may

be challenging to verify. The beta rectangular provides a more gradual decay toward the

extrema, and thus may be preferable as a more conservative alternative to the beta4. Thus,

the beta rectangular may be of more general interest in the context of activity time modeling

whether or not the PERT conditions are adopted.

4For completeness, we mention that the more conservative nature of the beta rectangular extends directly
to the J-shaped distributions and will also moderate the U-shaped distributions should they be put into
practice (however, the U-shaped beta distribution seems little used in the literature, perhaps in part because
of challenges associated with incorporating the elicitation of distributions with bimodality at the extrema).
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5 Elicitation

Direct elicitation of the beta distribution’s parameters α and β is difficult although they can

be solved for by a method-of-moments approach. However, direct estimation of the variance

of a distribution can also be challenging (Clark, 1962; Perry and Greig, 1975), leading the

creators of PERT to ask the expert to instead provide a, m and b (Clark, 1962). With

regard to distributional elicitation, we note that alternative distributions besides the beta

have been used for activity times, such as the triangular (MacCrimmon and Ryavec, 1964),

the gamma, the chi-square and the lognormal (Perry and Greig, 1975), the truncated normal

(Kotiah and Wallace, 1973), the Weibull (Abdelkader, 2004), the exponential (Kulkarni

and Adlakha, 1986), the Erlang (Bendell et al., 1995; Azaron et al., 2006), and piecewise

polynomial functions (Schmidt and Grossmann, 2000)5. Of these alternatives, it appears that

the triangular distribution has been used with the greatest regularity (Megill, 1984; Williams,

1992; Johnson, 1997), the triangular attracting some adherents because of distributional

tractability and ease of elicitation. In particular, the triangular distribution shares with the

beta the straightforward task of eliciting only a, m and b. The attractiveness of the ease

of elicitation property is consistent with the literature on judgment elicitation which points

out the importance of straightforward elicitation tasks (Hogarth, 1975).

For the beta rectangular distribution discussed here, we also need the expert to provide

θ in addition to a, m and b and we now describe how he/she can provide this. Since m

is the likeliest, most frequently-occurring activity time, it is the quantity that the expert

should be able to assess with the greatest certainty. The location of the mode also has a

major impact on the shape of the overall distribution. As such, the less certainty there is

about the mode, the less certainty there is likely to be about the shape of the distribution.

Thus, lack of certainty about the mode is a clear indication that expert opinion is at least

somewhat vague and diffuse, especially relative to the fairly specific assumptions underlying

the PERT beta. As uncertainty about the mode gets particularly pronounced, the density

of the distribution should become relatively flat to reflect the fact that other nearby parts of

the distribution have almost the same relative likelihood as the mode. The beta rectangular

distribution possesses this property.

Elicitation of θ is therefore relatively direct and can be accomplished by one of the

following two methods or their conjunction. The expert can be asked to recall m. Then,

using a scale from zero to 10 (or zero to 100), he/she is asked to indicate how certain

he/she is that the mode is truly m, where the highest value on the scale indicates he/she

5An anonymous reviewer has also pointed out the uniform has been considered by Heller (1981).

11



is completely certain and the lowest that he/she is completely uncertain. We obtain θ by

taking the number given and dividing it by the highest value on the scale (10 or 100),

yielding 0 ≤ θ ≤ 1. Alternatively, it is easy to elicit θ using a computer-mediated interactive

graphical method where the distributions associated with different values of θ are displayed

and key quantities calculated such as in Kadane et al. (2006). A third approach that may be

useful to the practitioner is as follows. The practitioner provides a, m, and b. They are then

told that these estimates in the context of the PERT beta can be thought of as the opinion

of Expert 1. Then, they are told to imagine that there is another expert, Expert 2, who

agrees with a and b but is otherwise uncertain about the time and so gives equal weight to

all times between a and b. The practitioner now has two ‘opinions’ about the distribution of

the activity time (represented by the standard PERT beta and the rectangular respectively).

For this particular activity, the practitioner is asked to consider the two experts’ opinions

and think of which is the more likely to best correspond to the true state of affairs regarding

the distribution of times. He or she is then asked to give his/her personal odds as to which

of these two opinions will likely be the more correct. θ and its complement can then be

immediately obtained from the odds, such that if the odds ratio provided is Obeta/Orectangular,

then θ = Obeta/(Obeta + Orectangular). For example, if the odds are 2/1 that Expert 1 is the

more correct, then we have θ = 2/3. If the odds formulation is not desired, the question can

be recast to ask the practitioner to indicate how much personal percentage weight he/she

would give to these two opinions based on how likely each is to be the more correct. The

percentage weight for Experts 1 and 2 respectively correspond to θ and 1− θ.

6 Empirical Application

We now provide an example of the practical implications of the use of the method in an

real-world example for the purpose of illustrating the outcomes and the inferential impli-

cations of the method in a real-world context. We examine the performance of the beta

rectangular mixture vis-à-vis the beta formulation in the context of a real-world electronic

module development project appearing in Moder et al. (1983, p. 294). The project consisted

of 29 activities in a project development network having multiple paths. One key area of

interest associated with managing such a project involves the obtaining the distribution of

the total time required for the entire project to be completed, which is also known as the

critical path time. In obtaining this distribution a manager is a position to forecast the

likely time-to-completion of the project and may obtain other quantities of interest such as

the probability the project will be completed by a particular date. The distribution of total

project time, T , in stochastic project management techniques is often obtained by Monte
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Carlo simulation because simulation allows the exact distribution to be arbitrarily closely

approximated by using a large number of simulated realizations from the distribution of

interest (Bowman, 1995).

We turn now to the distribution of T for the full electronic module development project.

Plots of the distributions of T under the Type I condition appear in Figure 3. We see that as

θ declines, the variance increases and weight shifts toward the tails, particularly the upper

one. The mean project completion times are 47.8, 49.6, 51.3 and 53.0 days for the respective

cases of the standard beta and the mixture given θ = 0.75, θ = 0.5, and θ = 0.25. The

respective standard deviations are 3.4, 4.6, 5.2 and 5.6, while the respective 95% probability

intervals are 42.2 to 55.3 days, 42.5 to 60.1 days, 43.0 to 62.3 days, and 43.6 to 63.9 days.

Under the standard beta distribution, the probability of T exceeding 60 is rather small at

less than 0.05%. When θ = 0.75 however, this probability rises to 2.6%. For θ = 0.5 and

θ = 0.25, the respective probabilities are 7% and 13%. Again, more conservative project

completion time estimates are obtained even with modest increases in the amount of expert

uncertainty. Assuming that the standard beta is insufficient to describe the true uncertainty

about activity times, these more conservative estimates of the total project length will help

to reduce the probability of a failure to complete the project on time.

7 Conclusions

The beta rectangular mixture distribution allows for the representation of judgments ranging

from those corresponding exactly to an arbitrary beta distribution to those in which the

conditions are of maximum uncertainty. The distribution permits flexibility in the variance

specification as well as the existence of heavier tails. The results of Section 4 allow the PERT

beta conditions to be incorporated by using the PERT parameters a, m and b as well as θ.

More generally, the beta distribution in (1) is often characterized as being a flexible

distribution. The distribution can take on several shapes; however, its tail-area behavior is

actually rather limited. By construction, beta distributions tend to vanish rapidly in the tails.

In particular, it is impossible to have appreciable density at both endpoints simultaneously

unless the particular beta distribution that corresponds to the rectangular (α = 1, β = 1)

or one of its close neighbors is used (i.e., a beta(α = 1 ± δ, β = 1 ± ε) distribution, with

δ, ε small). Thus, the beta distribution in general is not particularly flexible on this key

consideration of tail areas. However, the beta rectangular mixture is more flexible in this

regard. Further, the beta distribution, by vanishing in the tails, heavily downweights the

probability of extremal events according to the restrictions of its functional form. The beta
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Figure 3: Distributions of T : Electronic Module Development Project
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rectangular mixture, by contrast, addresses this problem by allowing the expert to provide

additional information that influences the likelihood of extremal events.

Since the pioneering development of PERT, the literature to date has often proceeded

along one of two lines. In the first, various well-known distributions have been used in PERT

and the focus has been on deepening understanding of how these distributions’ characteristics

are related to properties of the estimates (Perry and Greig, 1975; Sasieni, 1986; Littlefield and

Randolph, 1987; Gallagher, 1987; Kamburowski, 1997). In the second, the focus has been on

refining the capability to make more accurate estimates of distributional estimands (Keefer

and Bodily, 1983; Farnum and Stanton, 1987; Golenko-Ginzburg, 1988; Keefer and Verdini,

1993; Premachandra, 2001). The current work departs from these streams and instead

argues that a key issue that has been overlooked is that experts may have considerably more

uncertainty than is allowed for by the use of well-known but thin-tailed distributions. We

then examine the characteristics of the situation to formulate a distribution that is more

tailored to the situation and utilize a mixture distribution to do so.
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This paper has implications for the following audiences. First, the general framework

of mixture distributions and the associated newly-developed project time distributions pre-

sented here provide a new and richer framework for specification of underlying models for

stochastic project management phenomena. Second, researchers may use the current work

in the context of existing research streams such as in formulating more accurate estimates

of distributional estimands to further extend these literatures. Finally, project management

practitioners may readily apply these methods for improved description of project duration

times. Moreover, the methods can be easily combined with Monte Carlo simulation tech-

niques to provide more exact results regarding other key quantities such as the distribution

of critical path times.

8 Appendix

As the CDF of the newly-described beta-rectangular distribution does not appear in the liter-

ature and as the CDF is useful for Monte Carlo simulation common in project management,

it is included here. It is

F (y|α, β, θ, a, b) =





1 if y > b,

θ Γ(α + β)

Γ(α)Γ(β)

∫ (y−a)/(b−a)

0

tα−1(1− t)β−1 dt +
(1− θ)(y − a)

b− a
if a ≤ y ≤ b,

0 otherwise.
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