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Decision Making with Uncertain Judgments: A Stochastic
Formulation of the Analytic Hierarchy Process

ABSTRACT

In the Analytic Hierarchy Process (AHP), priorities are derived via a deterministic method,

the eigenvalue decomposition. However, judgments may be subject to error.  A stochastic

characterization of the pairwise comparison judgment task is provided and statistical models

are introduced for deriving the underlying priorities.  Specifically, a weighted hierarchical

multinomial logit model is used to obtain the priorities.  Inference is then conducted from the

Bayesian viewpoint using Markov chain Monte Carlo methods.  The stochastic methods are

found to give results that are congruent with those of the eigenvector method in matrices of

different sizes and different levels of inconsistency.  Moreover, inferential statements can be

made about the priorities when the stochastic approach is adopted, and these statements may

be of considerable value to a decision maker.  The methods described are fully compatible

with judgments from the standard version of AHP and can be used to construct a stochastic

formulation of it.

Subject Areas: Analytic Hierarchy Process, Bayesian Inference, Multi-criteria Decision

Making (MCDM), Logit Modeling, Markov Chains, and Simulation.

INTRODUCTION

Multi-criteria decision making methods are an important set of tools for addressing challenging

business decisions as they allow the manager to better proceed in the face of uncertainty,

complexity and conflicting objectives.  These decision methods are typically predicated on a
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small set of assumptions or axioms.  One particularly essential axiom is that the manager can

quantify his or her preferences regarding the situation at hand (e.g., Axiom 3, Keeney, 1982;

Assumptions 2a-b, Pratt, Raiffa & Schlaifer, 1964).  In practice this is generally taken to mean

that relative preferences can be characterized by a single scalar number or point value.  For

example, if the manager can indicate that one outcome is “twice” or “five times” as preferable as

another, this axiom is considered to hold.  When this axiom holds, we can take the manager’s

numeric judgments and apply a series of mathematical operations to them to obtain a solution.

As an example, consider a multi-criteria decision method such as the Analytic Hierarchy Process

(AHP).  In this method, the eigenvalue decomposition is applied to a matrix of numeric

judgments that have been provided by the decision maker with regard to a set of alternatives.

This operation yields a set of priorities which indicate the decision maker’s underlying

preferences for the alternatives.

A consequence of the quantification axiom is that error in judgments is typically considered to be

non-existent or negligible in multi-criteria decision making methods.  Phrased differently,

judgments are typically taken to be certain and thus can be represented by scalar values.  Figure

1 provides a typology of multi-criteria decision making methods with regard to the quantification

axiom.  Figure 1 shows that Type A methods, such as AHP and multi-attribute utility theory, are

ones in which point-valued judgments are processed by mathematical procedures that are

predicated on judgmental certainty.  A set of point values is output as the solution.  Such

procedures are wholly deterministic in that judgments are taken to be certain and deterministic

operations are performed on the judgments.  Nonetheless, the dynamic nature of business

environments is an important source of what may be called “external uncertainty”.  For example,
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a manager might be uncertain as to whether a particular competitor will enter the market, or

whether a particular product will be highly desired by consumers.  Here, there is some

uncertainty about a possible external event or scenario.  Still, one might wish to continue as

before by requesting point-valued certain judgments from our decision maker and making use of

a deterministic procedure.  Some information can be gained by asking a set of “what if”

questions and determining whether the solution changes.  For example, we might wonder

whether a particular course of action is still the best if a certain judgment were changed by a

small amount.   Techniques which incorporate this approach appear as Type B in Figure 1.  The

approach is typically known as sensitivity analysis, and is broadly applicable to many decision

methodologies (e.g., Triantaphyllou & Sánchez, 1997).  In using sensitivity analysis, we can

determine the range of inputs for which a particular solution will hold.  As such, we can get a

sense of the decision’s robustness.

In Type A and Type B approaches to multi-criteria decision making, error in judgments is

assumed to be non-existent, or perhaps negligible.  In some cases, it may well be true that error

in the judgments of experts is at best negligible.  However, in some cases considerable

uncertainty may be associated with one or more judgments, and it is thus conceivable that these

judgments may be made with some degree of error.  Alternatively, slightly different attributes of

mental constructs may come into focus across a set of comparisons, yielding inconsistent

judgments (e.g., Genest & Rivest, 1994).  Hence, there very well may be “judgment uncertainty”

present.  Because we may have uncertain judgments, it is of interest to examine stochastic

approaches to multi-criteria decision making.  One possible approach is to assess an interval-

valued judgment as opposed to a scalar judgment.  For example, we may elicit a probability
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distribution from the decision maker instead of a single number.  Then, the deterministic

procedure of interest can be used.  Techniques which incorporate this concept appear as Type C

techniques in Figure 1.  We can see that this approach is a relatively straightforward extension of

the Type B approach.   In particular, a set of deterministic transformations is applied to the

interval-valued judgments.  Using this type of approach it is possible in principle to make

inferential statements regarding the alternatives.  This is an important advance, as will be

discussed momentarily.  Finally, we may also consider techniques in which a scalar judgment is

assumed to be a realization of a stochastic phenomenon.  This approach is perhaps most in

keeping with the notion that a certain amount of uncertainty may simply be inherent in the

judgment process.  More importantly, a set of powerful conclusions can be made with the use of

these approaches.  Here, we can make inferential statements regarding the alternatives under
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Figure 1 – A Typology of Multi-criteria Decision Making Methods

Judgmental Inputs
Interval-valued;

Distributions around
point value

Solution Outputs
Stochastic-Determin-

istic; Inference may be
possible

Mathematical Procedures

DeterministicC.

Judgmental Inputs
Scalar; Arises

from stochastic
mechanism

Solution Outputs
Stochastic;

Inferential conclus-
ions available

Mathematical Procedures

StochasticD.



6

consideration.  For example, we will be able to determine whether we can be 95% confident that

two alternatives have unequal priorities.  This represents a substantial advance as the decision

maker can determine probabilistically what the chances are of alternative states of affairs1.

Moreover, we can clearly see that deterministic multi-criteria decision methods are a special case

of their stochastic counterparts.  That is, deterministic multi-criteria methods can be obtained

from stochastic methods in the limit as uncertainty in judgments tends to zero.

Below we first review a widely used method for multi-criteria decision making, the AHP.  We

then describe a stochastic conceptualization of the AHP (c.f. Moskowitz, Tam & Lang, 2000, for

an example of a stochastic approach to multi-attribute utility theory).  The method we describe is

designed to facilitate decision making with uncertain judgments.  We examine the performance

of the method with four example matrices and then provide a more thorough examination by

means of a Monte Carlo study.  We then discuss techniques for interval estimation and conclude

with an example in which the inference process is described in detail.

                                               

1 We note that error may arise as a result of systematic distortions and biases which lead to judgments that are

consistently faulty.  Errors of this type may well be quite pernicious and undermine decision making substantially;

however, methods for remediating these cognitive and psychological sources of error will not be discussed in this

paper (see instead Arkes, 1991).  In the absence of systematic error or bias, we may find that non-systematic error,

random perturbations around a central “true” value, may exist. Errors of this type can be addressed through

stochastic approaches, and it is this type of error that will be examined here.
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ELEMENTS OF AHP

In the AHP, it is of interest to evaluate a set of alternatives with respect to various criteria or

objectives.  The priorities of the different alternatives are computed from a matrix of pairwise

comparisons via the eigenvalue decomposition (e.g., Saaty, 1977; Saaty & Vargas, 1991).  One

can motivate the use of the eigenvalue decomposition as follows.  Consider a set of objects, O1,

…, OK that have known weights w1, …, wK.  We can construct a square matrix, C, of pairwise

comparison ratios, wi/wj, where all of the elements on the main diagonal, Cii, are equal to one.

Then, the task is to find the scalars λ and the vectors w that satisfy the relation Cw = λw, or

equivalently (C – λI)w = 0.  If we take the largest value of λ, then the corresponding eigenvector

w will contain the original weights (w1, …, wK)T up to a scaling constant.  Often it is convenient

to normalize the weights as this preserves the relative magnitudes of the weights and provides a

common scale for comparative purposes.  These normalized weights are called priorities.

Moving beyond the realm of physical weights, if one has pairwise comparisons on a set of

alternatives along a dimension such as “preference” or “importance”, the eigenvalue

decomposition can again be applied.  The resulting priorities indicate the relative preference or

importance of the alternatives.

The eigenvalue decomposition is a deterministic mathematical approach to deriving priorities.  In

adopting it, error is assumed to be non-existent or negligible.  However, a number of researchers

have applied statistical methodologies to the AHP.  In a review of the literature we discern that,

despite some degree of overlap, there are at least three areas of methodological commonality.  In

one methodological area, authors have obtained stochastic judgments by eliciting interval
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judgments from decision makers as opposed to single-valued judgments (e.g., Arbel, 1989;

Haines, 1998; Saaty & Vargas, 1987; see Stam & Silva, 1997, for a review).  The methods

associated with this methodological area typically correspond with the Type C approach

described in Figure 1.  Advantages of this approach include the ability to calculate the

probabilities of rank reversal and in principle the ability to make inferential statements regarding

the priorities.  However, each judgment may require additional cognitive effort and time of the

decision maker.  For larger problems, the additional burden may become considerable.  Another

active area of inquiry is the use of least squares or maximum likelihood techniques to obtain

estimates of the priority vector (e.g., de Jong, 1984; Genest & Rivest, 1994; Jensen, 1984).

Frequently the focus in this area tends to be on the production of priority vector estimates which

are better by some criterion than those produced by the eigenvector method.  For example, if we

assume a multiplicative error term is associated with pairwise comparison ratios, then a linear

model formulation can be achieved by taking the natural logarithms of the parameters.  This

gives rise to estimates of the priority vector based on a normalized vector of geometric means.

Crawford and Williams (1985) showed that such a procedure leads to estimates which produce

smaller sums of squared error terms than does the eigenvector method.

In a third (and somewhat more specialized) area, stochastic judgments are obtained by

considering group decision making and the concomitant variability in judgments associated with

the opinions of a committee.  Here, the aggregation of group judgments provides a natural

linkage to the use of stochastic approaches.  As such, methods for group multi-criteria decision

making are somewhat more likely to have Type D characteristics.  For example, Ramanathan

(1997) employed the fact that normality of errors may be safely assumed when the number of
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judges is large (i.e., greater than 30).  Basak (1991) proposed a technique in which Gamma-

distributed errors were assumed and pairwise comparisons were elicited both above and below

the diagonal of the judgment matrix.  This technique was shown to have desirable properties

when the number of judges was as small as 3.  Methods for group multi-criteria decision making

in which judgments are not aggregated but are kept separate comprise an interesting special case

of the field, but because they are less broadly applicable they will not be discussed at length here.

The Type D approach in the current paper diverges somewhat from these three main areas of

inquiry found in the literature.  For example, it is important to note that neither interval

judgments nor multiple judges are required to use the method to be described herein.  In other

words, the method proposed here is fully compatible with the standard AHP in that no

modifications of the original Saaty procedure are needed.  Moreover, statistical models are used

in the method presented here, but the estimation technique is Bayesian as opposed to maximum

likelihood or least squares.  Nonetheless, work by two sets of authors can be seen to be more

related to the method proposed here.  Lipovetsky and Tishler (1999) describe a more general

method that corresponds with the Type D category described in Figure 1.  They noted that the

ratio of two normal variates has a Cauchy distribution and applied this observation to pairwise

comparison ratios.  Their method allows for inferential statements to be made about the priority

vector, a topic to be considered in this paper, and they also specified a sampling distribution for

pairwise comparison ratios.  However, their method requires the use of a reciprocally

nonsymmetric judgment matrix in which the elements in the upper triangle have a greater impact

on the final priority vector than do the elements in the lower triangle.  Additionally, their method

does not address the dependence of observations in the judgment matrix, and so the results of the
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inferential procedure may be inaccurate.  Basak (1998) provides a method for making inference

on the priority vector using a Bayesian framework.  In particular, the article extends a framework

originally due to Gelfand, Mallick and Dey (1995) and makes it suitable for use with the AHP.

The method requires several steps and two distinct parties.  The first party is known as the

decision maker.  From him or her, it is necessary to elicit a matrix of probabilities, each element

of which is the prior probability that a particular pairwise comparison will fall in a certain

interval of the Saaty scale (e.g., the interval 4 to 6).  There is also a second party which

corresponds to a panel of experts.  Each one of these experts must also supply a matrix of

probabilities such as the one required of the decision maker.  We can then return to the decision

maker and elicit information about his or her confidence in the judgments of the experts.  This is

achieved by eliciting a shape parameter for a Beta distribution for each expert where larger

values of this parameter correspond to smaller probability variances and therefore higher

confidence levels on the part of the decision maker.  The priority vector is then obtained by

Bayesian Monte Carlo methods; subsequent inference on the priority vector is conducted with

frequentist significance tests.  In summary, the paper presents several advances but the technique

described is rather involved and additionally requires both a decision maker and a separate panel

of experts.  Moreover, dependence between judgments is not addressed.  It is worth stressing that

the last of these issues is important to handle because dependency in the judgments is a

fundamental characteristic of pairwise comparison matrices in the AHP.  For example, in the

case of perfectly consistent judgments, knowing the pairwise comparison ratios Cij and Cjk

allows us to obtain the pairwise comparison ratio Cik exactly from the product Cij × Cjk.  In the

case of modest amounts of inconsistency, we still may obtain a degree of information about Cik
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from Cij × Cjk.  Techniques for addressing these fundamental dependencies in pairwise

comparison matrices will be discussed in the next section.

A STOCHASTIC METHOD FOR OBTAINING PRIORITIES

The Sampling Model for the Priorities

A probabilistic characterization of the process of making pairwise comparisons that can be

applied to the AHP is now developed (see also Bemmaor & Wagner, 2000, for a related

approach).  Consider the pairwise comparison ratio Cij, where i ≠ j, that has resulted from the

pairwise comparison of two and only two alternatives Oi and Oj with weights wi and wj.  For the

moment, take wi ≥ wj, such that Cij = {1, 2, …, 9}.  Then Cij expresses the amount by which Oi is

preferred to Oj.  Specifically, for every outcome of preference for Oj, there are Cij outcomes of

preference for Oi.  We can conceptualize this as the ratio of success outcomes and failure

outcomes in a binomial process.  As such, the pairwise comparison ratios can be used to obtain

the components of a binomial process in which wi successes have been observed in (wi + wj)

trials subject to an unobserved preference parameter, pi.  With no loss of generality, we can

divide the numerator and the denominator of Cij by the sum of the weights to obtain
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Here, pi/(1 – pi) is the ratio of preferences and we see that pi will be the stochastically derived

priority.  The priority pi is such that 0 < pi < 1 in the present context since by definition the act of

pairwise comparison requires the presence of non-zero weights wi and wj associated with Oi and

Oj respectively.  Again, we can conceptualize that wi has a binomial distribution with parameters

wi + wj and pi, which we write as wi ~ Binomial(wi + wj, pi).  Note that in the cases where wi < wj,

it remains true that wi ~ Binomial(wi + wj, pi).

Many times a decision maker will be faced with more than two alternatives.  In this case, the

underlying process is multinomial by extension.  If there are K alternatives O1, O2, …, OK with

weights w1, w2, …, wK, then the ith row of the pairwise comparison matrix has a multinomial

distribution.  That is,

(wi1, wi2, …, wiK) ~ Multinomial(wi1 + wi2 + … + wiK, pi),

where pi is a vector of preference parameter or priorities such that ∑
=

K

k
ikp

1

= 1.  Again, since all K

alternatives are present by definition, it must be true that 0 < pik < 1.  With K alternatives, the

matrix of pairwise comparisons will contain K multinomial trials.  Thus, the matrix of pairwise

comparisons is square with K columns, each one corresponding to an alternative, and K rows,

each one corresponding to a different trial.  Having supplied a probabilistic characterization of

the pairwise comparison process and the resulting matrix of pairwise comparisons, it is possible

to specify statistical models for the prediction of outcomes.  Of primary interest is p, the vector

of marginal priorities for the alternatives.  A natural model for the problem of interest is the

multinomial logit model (e.g., McFadden, 1973).  Using this general model, a Bayesian
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perspective will be adopted for inference on p, and estimation will be conducted using Markov

chain Monte Carlo (MCMC) methods (for an introduction to MCMC methods in Bayesian

inference, see Casella and George, 1992, Chib and Greenberg, 1995, or Gamerman, 1997).

The Multinomial Logit Model

We now specify the form of the multinomial models to be considered in greater detail.  The logit

link is used in all of the models considered, and the following relations hold in all of the

multinomial models to be examined:

∑
=

K

k
ikikik pwlMultinomiaw
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∑
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ikp

1
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φ
, (2)

)exp( ikkik βαφ += . (3)

Expression (1), which was discussed in the previous section, indicates that the weights have a

multinomial distribution given the underlying priorities.  Expression (2) shows that the priorities

result from the normalization of the log-linear predictors, φik.  The log-linear predictors are

specified as φik = exp(αk + βik), as can be seen in Expression (3).  Note that a set of coefficients,

α2, …, αK, is associated with the alternatives.  The coefficient α1 is constrained to be zero to

ensure identifiability (Agresti, 1990, p. 313).  A second set of coefficients, β22, …, β2K, β32 …,

βKK, is associated with the trials.  Again, it is necessary to constrain the coefficients β11, …, βK1

and β12, …, β1K to zero for the purposes of identifiability.  Obtaining the final priority for each
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alternative involves averaging the relevant values of pik over the trials. Specifically, the final

priority of the kth alternative is ∑
=

I

i
ikp

I 1

1
 and the vector of priorities, p, is the collection of these

final alternative-specific priorities.

In many applications of statistical modeling, the α and β coefficients are of primary interest and

other estimation tasks have limited relevance.  For example, in regression the value of β in

particular may shed light on an experimental hypothesis, whereas analyses regarding the

predicted values, ŷ , may provide little value-add.  By contrast, we can imagine some situations

where the reverse is true.  For example, a manager may be keenly interested in the prediction

estimates and prediction intervals for her sales teams in order to determine whether her firm will

be profitable.  Here, ŷ  would have the focus whereas α and β would not.  It is worth pausing to

emphasize that in the current method the primary interest lies in obtaining p.  This is akin to the

manager’s situation above where there is a focus on outcomes as opposed to predictors.

Furthermore, the α and β coefficients do not have especially relevant interpretations in the

current context.  The β coefficients will tend to zero as C tends toward perfect consistency, and

will diverge from zero as inconsistency increases.  However, there already exists an easily

interpreted and commonly used measure of inconsistency for AHP, the inconsistency ratio.  So

the β coefficients seem to add little of managerial import.  The α coefficients will tend to zero as

the first baseline or reference alternative is similar to the remaining alternatives.  However, they

do not take the inconsistency fully into consideration. Hence, these coefficients also have limited

relevance, and instead interest centers almost exclusively on p.
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Two formulations of the multinomial logit model are considered here.  Model 1 is a marginal

multinomial model.  Specifically, in a marginal model all of the coefficients are estimated

independently of one another.  As such, all of the αs and βs are estimated independently in

Model 1.  Of course, there will be dependence across trials for several reasons.  First, the AHP in

its original formulation makes use of a fully specified matrix of pairwise comparisons.

Therefore a certain, usually high, degree of redundancy will be present in such matrices.  Indeed,

information about the extent of this redundancy is used in the AHP to calculate a measure of

consistency in the judgments.  Second, the multinomial logit model requires the wiks, which we

must obtain from C.  It is necessary to use the wiks implied by previous values of C to ensure that

there is no missing data on any of the trials (this topic that will be addressed in the section

entitled ‘Obtaining w from C’).  Thus, Model 1 admittedly ignores a feature of the data, but is

nonetheless estimated for comparative purposes.  A better model would account for the

dependencies among the wiks.  Hence, Model 2 is a hierarchical model that allows for

dependency in the weights across the different trials.  In it, the βs are drawn from a common

normal distribution with a mean of zero and precision parameter τ.  The relationship can be

expressed as follows:

),0(~,...,,,..., 32222 τββββ NormalKKK .

Note that the current parameterization is one in which τ is a precision parameter as opposed to a

variance parameter.  The precision is the reciprocal of the variance (i.e., τ = 1/σ 2) and is

commonly used in Bayesian inference for computational reasons (see, e.g., Gill, 2002, pp. 90-

92).
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To summarize, Model 1 is a marginal multinomial model, whereas Model 2 is a hierarchical

model.  The βs are assumed to have a common normal distribution in the hierarchical models,

whereas they are assumed to be independent in the marginal model.   In Model 2, the common

normal distribution for the βs is specified to have a mean of zero, and we then estimate the

unknown precision parameter τ.

Priors and MCMC Implementation

Bayesian analysis requires the specification of prior distributions for the parameters to be

estimated (see for example Berger, 1985, ch. 3).  Here, vague but proper priors are used for all of

the parameters (excepting those which have been set to zero to ensure identifiability).  Such

priors are minimally informative.  In Model 1, all of the αs and βs are given vague but proper

independent normal priors.  In Model 2, τ is given a vague but proper gamma prior, and the αs

are again given vague independent normal priors.  The posterior distributions of the quantities of

interest were obtained via the MCMC method of Gibbs sampling.  From an MCMC

computational perspective, the models considered here were well behaved.  Convergence to the

posterior was rapid, and the chains did not exhibit substantial autocorrelation.

Obtaining w from C

The eigenvalue decomposition makes use of a matrix of pairwise comparisons, C, to obtain p,

whereas the multinomial logit model employs the weights, wik, from which C is composed.
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Unfortunately, the wiks will typically not be known in the course of using the AHP.  This is

because the decision maker supplies the elements of C, not the wiks, as input to the AHP.  Thus,

we employ the following process in every multinomial trial in order to provide a unique solution

for the set of all weights, w.  The least preferred alternative in a particular trial is given a weight

of 1.  The remaining alternatives are integer multiples of the least preferred alternative in

accordance with the appropriate values of C.  For example, if the pairwise comparison of A to B

is 2:1 in the first trial, and the pairwise comparison of A to C is 4:1 in the first trial, then (w11,

w12, w13) = {4, 2, 1} in this particular trial.  From an operational perspective, another way of

describing this procedure is as follows.  For each row of the matrix, take the reciprocal of the

weights.  Then multiply all the weights by a constant such that the smallest weight equals one.

As an example, consider the matrix

















12/14/1

212/1

421

.

Using the procedure described above, we obtain

















124

124

124

which we use as data for the multinomial logit model.

STOCHASTIC MODELS FOR OBTAINING PRIORITIES – EMPIRICAL EXAMPLES
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Two stochastic models have been proposed for obtaining priorities.  Model 1 was a marginal

multinomial model.  Model 2 was a hierarchical model in which the dependency among the βs

(and, by extension, the wiks) was addressed by modeling them as being drawn from a common

normal distribution with a mean of zero and unknown precision τ.  We now compare the

priorities from these approaches with the priorities from AHP.  We employ the mean absolute

deviation (MAD) of the model priorities from the AHP priorities as our measure of a model’s

discrepancy.  We use this measure for the following two reasons.  First, the numeric value of the

MAD lends itself to straightforward interpretation.  A MAD of 0.001 indicates that the model’s

agreement with AHP extends well through the second decimal place to slight deviations at the

third decimal place of accuracy, whereas a MAD of 0.01 indicates a tendency for slight

deviations at the second decimal place.  It turns out that other measures (such as the mean

squared error) possess interpretations which may be less immediately useful.  Second, linear

regression will be used in a subsequent Monte Carlo study of the method’s performance.  The

MSE criterion increases quadratically with increasing deviations and as such would

unnecessarily complicate a linear regression analysis by introducing a non-linear relationship.

Priorities for Models with Three Alternatives

As a point of departure, we first examine a perfectly consistent matrix with three alternatives.

Here, Matrix 1 is constructed such that C12 is 2:1, C13 is 4:1, and C23 is 2:1.  The point estimates

of the priorities obtained via the different methods appear in Table 1.  These estimates were
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based on the results from an MCMC run of 50,000 iterations after a burn-in of 10,000 iterations.

Table 1 reveals that priorities are all the same, regardless of which model is used.  In general, the

weights will be identical across trials for a consistent matrix, and so the multinomial models will

produce the same priorities as the eigenvalue decomposition.

Table 1 – Priorities for Consistent Matrix with Three Alternatives

Alternative 1 Alternative 2 Alternative 3
Principal 
Eigenvector 0.571 0.286 0.143
Model 1 0.571 0.286 0.143
Model 2 0.571 0.286 0.143

The second matrix to be considered is one in which an introduced error produces a relatively

small amount of inconsistency.  The elements of Matrix 2 are such that C12 is 2:1, C13 is 8:1, and

C23 is 2:1.  In words, this means that Alternative 1 is again judged to be twice as preferable as

Alternative 2.  However, now Alternative 1 is judged to be 8 times as preferable as Alternative 3.

Alternative 2 is again twice as preferable as Alternative 3.  Hence, Matrix 2 is the same as Matrix

1 except that C13 is twice as large in Matrix 2 as it was in Matrix 1.  The AHP does not require

perfect consistency among judgments in order for the calculation of priorities to proceed.  If the

judgments in a matrix are not perfectly consistent, information about the extent of inconsistency

in the matrix can be obtained and a measure of inconsistency can be calculated (Saaty, 1977).  In

particular, a measure called the inconsistency ratio is often used.  Heuristically, when the value

of the inconsistency ratio exceeds 0.10, the inconsistency level is said to be such that the decision

maker may wish to re-examine his or her judgments.  The inconsistency ratio for Matrix 2 is 0.05

and so reconsideration of the judgments is not necessary.
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Table 2 contains the priorities obtained via the different methods for Matrix 2.  With the

eigenvector method, Alternative 1 has a higher priority and Alternatives 2 and 3 have lower

priorities when compared to Table 1.  All of the methods again produce results that are close to

the eigenvector solution.  Here, Model 2 most resembled the eigenvector method (MAD =

0.0029).  While both stochastic models were able to approximately replicate the priorities of the

eigenvector solution, Model 1’s priorities for Alternatives 1 and 3 tended to be pulled toward the

central value of 0.5.  

Table 2 – Priorities for Three-Alternative Matrix with Inconsistency

Alternative 1 Alternative 2 Alternative 3 MAD
Principal 
Eigenvector 0.643 0.255 0.101
Model 1 0.638 0.258 0.104 0.0035
Model 2 0.645 0.258 0.097 0.0029

Priorities for Models with Four Alternatives

The case of matrices with four alternatives is also considered.  For the purposes of comparison,

we construct a four-alternative matrix that is related to Matrix 1.  The new matrix, Matrix 3, is

designed such that C12 is 2:1, C13 is 4:1, C14 is 4:1, C23 is 2:1, C24 is 2:1, and C34 is 1:1.  Thus, the

new matrix is similar to Matrix 1, except a fourth alternative identical to the third is added.  As

was the case with Matrix 1, the different methods produce identical results when the matrix is

perfectly consistent.  In terms of this example, all of the methods recovered the priorities

accurately as 0.5, 0.25, 0.125, and 0.125, excluding some trivial Monte Carlo error.  Hence, we



21

do not report further on this matrix.  Instead, we introduce some inconsistency to it to obtain

Matrix 4.  In Matrix 4, C12 is 2:1, C13 is 8:1, C14 is 4:1, C23 is 1:1, C24 is 2:1, and C34 is 1:1.  The

inconsistency ratio of this matrix is 0.07.  Table 3 contains the priorities obtained via the

different methods for Matrix 4.  Model 2’s MAD is again the smaller of the two (MAD =

0.0072).

Table 3 – Priorities for Four-Alternative Matrix with Inconsistency

Alternative 1 Alternative 2 Alternative 3 Alternative 4 MAD
Principal 

Eigenvector 0.568 0.198 0.12 0.113
Model 1 0.551 0.208 0.126 0.115 0.0086
Model 2 0.557 0.210 0.117 0.116 0.0072

Examples of Stochastic Models for Obtaining Priorities – Summary

The models examined here replicated the eigenvector solution in the case of a perfectly

consistent matrix.  However, small differences in priority estimates appeared in the presence of

inconsistency.  These differences in priority estimates may additionally be a function of the

number of alternatives under consideration.  It is therefore of interest to more systematically

examine the relationships between matrix inconsistency, the number of alternatives, and model

performance.  With this goal in mind, a Monte Carlo study was conducted to examine these

possible relationships. We describe this study in the following section.
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STOCHASTIC MODELS FOR OBTAINING PRIORITIES – A MONTE CARLO STUDY

To examine the performance of the models more extensively, we conducted a Monte Carlo study

using an experimental design and randomly generated matrices.  This approach allowed us to

examine the models’ performance under a variety of conditions.  The main experimental factor

was the Number of Alternatives.  In particular, we considered matrices with 3, 4, 5, 6, 7, and 8

decision alternatives, and so this factor had 6 levels.  We generated 20 matrices of pairwise

comparisons within each level of this factor.  These matrices were randomly generated to possess

a Consistency Index of less than 0.10 (recall that a Consistency Index value of 0.10 is commonly

used as the cutoff value for the maximum acceptable level of inconsistency). Matrices which had

a greater amount of inconsistency were discarded.  Thus, we obtained a randomly generated

sample of matrices having differing amounts of consistency.  As such, the 20 matrices allowed

us to examine the performance of the models with respect to the continuous factor, or dimension,

of Matrix Inconsistency.  In total we generated 6 × 20 matrices for the Monte Carlo study.

Estimates of the priorities under both Models 1 and 2 were calculated for each matrix.  Hence,

there were two levels of the factor Model Type, with the levels being Model 1 and Model 2.  In

summary, a total of 6 × 20 × 2 sets of priority estimates were calculated.   Because of the

massive computational demands of the Monte Carlo study, each set of estimates was produced

from 50,000 MCMC iterations after a 5,000-iteration burn-in period had transpired.
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Figure 2 – Discrepancy from AHP Priorities: Model 1
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Table 4 – Summary Measures: Model 1

Intercept Slope Slope S.E. Slope/S.E.
Expected 

MAD at 0.10
3 Alts. 0.000848 0.0523 0.0052 10.08 0.0061
4 Alts. -0.000788 0.1085 0.0141 7.72 0.0101
5 Alts. 0.001536 0.0528 0.0249 2.12 0.0068
6 Alts. 0.000717 0.0571 0.0162 3.53 0.0064
7 Alts. 0.000295 0.0571 0.0120 4.74 0.0060
8 Alts. -0.000090 0.0671 0.0174 3.85 0.0066

Results – Model 1

The scatter plots of the relationships between matrix inconsistency and MAD under Model 1

with respect to the differing Number of Alternatives appear in Figure 2.  The respective

regression lines are also plotted in Figure 2.  The scatter plots show that the relationship between

the two variables is strongly positive.  This remains true for all of the values of Number of

Alternatives considered.  Hence, the plots show that when inconsistency in the judgments is low,

the MAD is similarly decreased.  For example, in the case of 8 alternatives and an inconsistency

of 0.016, the expected MAD (as indicated by the regression line) is approximately 0.001.  This

means that there is about a 0.1% discrepancy between the AHP priorities and the priorities from

Model 1 on average when there are 8 alternatives under consideration.

The intercepts and slopes associated with the Model 1 regression lines in Figure 2 appear in the

first and second columns of Table 4.  Also, the third column in Table 4 gives the standard errors

of these slopes.  We can divide the slope by its standard error to obtain a t statistic, which we

display for reference in the fourth column of the table.  We may compare this statistic to critical
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values taken from a t distribution with 18 degrees of freedom.  The latter information allows us

to conclude that each particular slope is not equal to zero at the 99% probability level or better

(as the Bayesian approach with flat priors yields the same results as the classical approach in

simple linear regression).  The final column of Table 4 displays the values of the different

regression lines at an inconsistency level of 0.10.  This corresponds to the expected value of the

MAD at the highest level of inconsistency deemed generally acceptable.  Graphically, these also

correspond to the right-most points on the regression lines in Figure 2.  We see that, with the

exception of the case of four alternatives, the expected maximum MAD ranges from 0.006 to

0.0068.  Hence, even in the case of a relatively high (yet acceptable) level of inconsistency in the

judgment matrix, we would expect there to be little difference between the priorities generated

by Model 1 and those generated by AHP.
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Figure 3 – Discrepancy from AHP Priorities: Model 2
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Table 5 – Summary Measures: Model 2

Intercept Slope Slope S.E. Slope/S.E.
Expected 

MAD at 0.10
3 Alts. 0.000324 0.0335 0.0028 11.98 0.0037
4 Alts. 0.001465 0.0490 0.0186 2.64 0.0064
5 Alts. 0.002972 0.0293 0.0187 1.57 0.0059
6 Alts. 0.001855 0.0494 0.0182 2.71 0.0068
7 Alts. 0.001395 0.0463 0.0146 3.17 0.0060
8 Alts. 0.000011 0.0649 0.0132 4.90 0.0065

Results – Model 2

The scatter plots of the relationships between matrix inconsistency and MAD under Model 2

with respect to the differing Number of Alternatives appear in Figure 3.  It is immediately

apparent that the slopes of the Model 2 regression lines in the cases of 3 and 4 alternatives are

considerably less steep than their Model 1 counterparts.  In the cases of 5 and greater

alternatives, the differences between the Model 1 and Model 2 regression lines are considerably

harder to distinguish.  This is especially true in the case of 7 and 8 alternatives.  One

interpretation of this observation is that the impact of accounting for dependence becomes less

important as the number of alternatives increases.

The intercepts and slopes associated with the Model 2 regression lines are similarly shown in

Table 5.  The third column in Table 5 gives the standard errors of these slopes, and we can

conclude from the information in the fourth column that each particular slope is not equal to zero

at the 98% probability level or beyond, excepting the case of 5 alternatives.  In the case of 5

alternatives, we may only conclude that the slope is different from zero at the 86% probability

level.  Table 5 also contains the values of the regression lines at an inconsistency level of 0.10
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under Model 2.  In the case of three alternatives, the expected MAD at an inconsistency level of

0.10 under Model 2 is about 40% less than it is under Model 1.  Hence, in the case of three

alternatives, Model 2 seems to provide superior performance over Model 1 when there are higher

levels of inconsistency.  Model 2 also seems to be considerably superior in the case of 4

alternatives and higher levels of inconsistency.  Model 2 remains superior, albeit at a much more

modest level, with 5 alternatives.  With 6 to 8 alternatives, the models tend to converge toward

one another in terms of performance.  Hence, in situations where the number of alternatives is

from 5 to 6 or greater, there seems to be little to be gained from selecting one model over the

other.  However, Model 2 seems to be clearly preferable when the number of alternatives is 3 or

4.  Looking at the overall performance of Model 2, we see the expected maximum MAD tends to

range from 0.0037 to 0.0068.  So, in the case of a high yet acceptable level of inconsistency in

the judgment matrix, we would not expect there to be too great of a difference between the

priorities generated by Model 2 and those generated by AHP.

Monte Carlo Study of Stochastic Models for Obtaining Priorities – Summary

The Monte Carlo study provides supporting evidence for three conclusions.  First, we see that

Models 1 and 2 generally approximate AHP priorities well irrespective of the number of decision

alternatives under consideration.  Given the similarity of the results under 6, 7, and 8

alternatives, it may be that there is some very preliminary evidence of a plateau where the

models handle increasing numbers of alternatives at a particular performance level.  Future

research with larger numbers of alternatives is needed to establish results for those cases.

Second, we find that the MAD increases with the amount of inconsistency, at least for the range
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of inconsistency values explored here.  If a smaller MAD is felt to be desirable, it may be

possible to ask the decision maker to reflect on or re-examine his or her judgments.  Lastly, we

see that Model 2 seems to be clearly superior to Model 1 in the case of either 3 or 4 decision

alternatives.  By the MAD criterion, Models 1 and 2 seem to converge for larger number of

alternatives; however, recall that Model 2 is the one that addresses dependence in judgments so

its use may be preferred on that criterion.

METHODS FOR INTERVAL ESTIMATION AND INFERENCE ON THE PRIORITIES

In the empirical analyses described above, different models were compared with respect to their

ability to produce point estimates of the priorities that were comparable to those yielded by the

eigenvector method.  However, because the models examined here belong to the Type D

category of multi-criteria decision methods, they also provide information about the variability

associated with these estimates.  This is an important advance, as this information allows us to

construct confidence intervals around the estimates and thereby empirically determine whether

two alternatives have different priority levels.  In this section, we examine the characteristics of

judgment matrices in order to determine how we may appropriately construct confidence

intervals.  In particular, we are concerned with determining the quantity of information in a

judgment matrix.  We begin by noting that some of the entries in the judgment matrix are

inherently redundant, and that this artificially increases the sample size of the matrix.  We then

propose a method of weighting which effectively decreases the sample size of the matrix back to

its appropriate size.
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The existence of multiple rows in C which are generally consistent with one another of course

leads to increased precision of the estimates.  This increased precision is reflected in decreased

values for measures of dispersion such as parameter standard deviations.  However, it may be

that in a given row that some of the wiks are redundant with previously supplied wiks.  While it is

necessary to have repetition of the wiks in order to complete C, it is inappropriate for parameter

standard deviations to be made unnecessarily smaller because of this repetition.  One remedy for

this is to use a row weight or an “information sample size” multiplier.  This can be used to

weight the rows downward such that the multiplicity of rows is effectively eliminated.  A simple

way to implement this is to weight each of the I rows by 1/I so that the sum of the row weights,

R, is 1.  This has the effect of decreasing the number of observations associated with any wik to

be wik/I.  This method of weighting is unduly conservative, and other methods of weighting are

of course possible.  We now describe one such method that has better properties.

Note that in the first row of C none of the wiks is redundant, whereas all of them are in the last

row.  In the middle rows of matrices having size I > 2, some proportion of the information will

be non-redundant.  Based on the quantity of non-redundant wiks, we can see that a more accurate

weighting scheme would arise from weighting by the proportion of non-redundant information

present in each row.  Denote the sum of these proportions of non-redundant row information as

RK. Then, RK is ∑
−

=


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

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i
 when I > 2, and is 1 when I = 2.  After obtaining RK, we then

redistribute the weight to the rows equally such that each row receives the row weight RK/I.  Note

that RK functions as the “downweighted” or corrected number of rows for the judgment matrix.

So, by extension we can also think of RK/I as sample size deflator, or alternatively as the overall
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proportion of non-redundant information in the matrix.  We present the following theorem about

RK.

Theorem

For a square judgment matrix having I rows and columns,

2

1
lim =

∞→ I

RK

I
.

Moreover,

 
2

lim
I

RK
I

=
∞→

provided that I is finite.

Proof

A proof of the theorem appears in the Appendix.  The proof also shows that we may more

readily obtain RK/I by using the simpler expression 
2

2

2

2

I

II −+
.

The theorem tells us that 50% of the information in a judgment matrix is non-redundant in the

limit where the number of alternatives grows very large.  Alternatively, we could say that the

deflated sample sizes will be one half of the uncorrected sample sizes in the limit.  This accords

with our intuition that the half of the judgments below the diagonal (and on the entire last row)

are redundant and so should not “count” toward the overall sample size.  Similarly, the corrected

number of rows is I/2 in the limit as long as I still remains finite.  In conclusion, for occasions

where inference on the priorities is of interest, a weighted multinomial model is appropriate.

Thus, the likelihood of the models should take the form



32

∑
=

K

k
ikikik pwQlMultinomiaw

1

),(~

where Q is some constant such as RK/I.

Interval Estimation and Inference on the Priorities – Example

Consider an organizational decision regarding which of three technology products should be

prototyped and eventually brought to market.  The three alternatives are Product 1 (p1 – a wrist-

based personal computing device), Product 2 (p2 – a high bandwidth cell phone), and Product 3

(p3 – a voice-recognition personal digital assistant).  It is of interest to use multi-criteria decision

making methods regarding the future success of these products, but there is a non-trivial degree

of uncertainty in the judgments.  As such, we use the methods described in the current paper to

address this problem.  In particular, we concern ourselves with inference regarding these three

alternatives.  A weighted version of Model 2 is estimated in which the row weights are RK/I.  The

decision maker is asked to make judgments, and her judgments are as follows.  The wrist-based

personal computing device is considered to be moderately to strongly superior to the high

bandwidth cell phone from the standpoint of future success in the marketplace.  The wrist-based

personal computing device is judged to be extremely superior vis-à-vis the voice-recognition

personal digital assistant from the standpoint of future success in the marketplace.  Finally, the

high bandwidth cell phone is considered to be moderately superior to the voice-recognition

personal digital assistant with respect to future success in the marketplace.  These judgments are
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translated into a 3:1 preference for Product 1 versus Product 2, a 9:1 preference for Product 1

versus Product 3, and a 2:1 preference for Product 2 versus Product 3.  Hence, we have

C12 = 3:1, C13 = 9:1, and C23 = 2:1.  Via the mathematics of AHP, the priorities for Products 1

through 3 respectively are 0.705, 0.205, and 0.090.  The inconsistency ratio is 0.02.

One of the benefits of an MCMC approach to Bayesian estimation is that it is straightforward to

obtain the posterior distributions for arbitrary functions of the parameters once the model has

been specified.  Then, inference can be performed using the posterior distributions of these

functions.  Functions that would be of interest for inferential purposes would include the

pairwise differences among the priorities.  Specifically, we would like to examine the differences

p1 – p2, p1 – p3, and p2 – p3.  The output of the MCMC run allows us to construct credible

intervals, which are Bayesian analogues of confidence intervals, for these differences.  Here, we

construct 95% credible intervals by identifying the values at the 2.5% and 97.5% quantiles of the

posterior distribution.  We may then determine whether the value of zero is included in a

particular interval.  If the interval does not include zero, then we may conclude that we are 95%

confident that the two priorities are different from one another.



34

Table 6 – Summary Statistics for Posterior Distributions of Priorities and

Differences in Priorities

Parameter  Mean
Standard 
Deviation

2.5% 
Quantile Median

97.5% 
Quantile

p 1 0.706 0.102 0.491 0.713 0.884

p 2 0.206 0.090 0.061 0.195 0.407

p 3 0.088 0.064 0.008 0.074 0.248

p 1  - p 2 0.501 0.182 0.109 0.517 0.807

p 1  - p 3 0.618 0.144 0.298 0.633 0.855

p 2  - p 3 0.117 0.118 -0.114 0.114 0.357

For the analyses reported here, the values of 50,000 iterations were used for posterior estimation

after a 5,000 iteration burn-in had been conducted.  Table 6 displays summary statistics for the

posteriors of the priorities, as well as for the differences in priorities.  Additionally, Figure 4

contains plots of the posteriors for the three difference scores.  The fourth row of Table 6 reveals

that there is evidence to indicate that p1 is significantly different from p2.  Additionally, there is

evidence to indicate that p1 is different from p3.  However, the 95% credible interval for the

difference between p2 and p3 ranges from -0.114 to 0.357.  Thus, the decision maker should be

indifferent between Products 2 and 3 at the 95% probability level.  In summary, despite

uncertainty in the judgments of the decision maker, she can be at least 95% confident that the

wrist-based personal computing device has a higher priority than does either of the two

remaining alternatives.  Furthermore, she cannot be 95% confident that the two remaining

alternatives have unequal priorities.
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Figure 4 – Posterior Distributions of Differences in Priorities
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Many times a decision maker will be concerned with determining which one of several

alternatives is the most attractive.  In these instances, attention will center on the highest ranked

alternative.  Hence, some decision makers may find it preferable to make judgments using

inferential information about ranks as opposed to inferential information about differences in

priority.  It is also possible to obtain the posterior distribution of the ranks through the use of

MCMC methods.  A step function is calculated in the MCMC run that computes the rank order

of an alternative based on its priority.  Then, the posterior distribution of this function is

available for subsequent examination.  Table 7 contains summary statistics for the posterior

distribution of the ranks of the three products under Model 2.  Figure 5 displays the posterior

distributions of the ranks.
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Table 7 – Summary Statistics for Posterior Distributions of Ranks

Parameter  Mean
Standard 
Deviation

2.5% 
Quantile Median

97.5% 
Quantile

p 1 1.008 0.090 1 1 1

p 2 2.142 0.371 2 2 3

p 3 2.850 0.359 2 3 3

First it is worth remarking that rank is a discrete variable, and so here Figure 5 contains a

posterior probability mass function.  This contrasts with the difference scores examined

previously which have a continuous probability density function.  The credible interval for

Product 1 in Table 7 reveals that the posterior probability that Product 1 is ranked first is greater

than 95%.  We may see in Figure 5 that the exact probability it is ranked first is 99.16%.

However, there is a small, non-zero probability that Product 1 is ranked other than first, and

Figure 5 shows this probability to be 0.84%.  More uncertainty exists with regard to the ranks of

Products 2 and 3.  While the mean rank of Product 3 is greater than that of Product 2, the 95%

credible interval for both extends from a rank of second to a rank of third.  That is, using Figure

5 we can see there is only an 84.22% probability that Product 2 is the second most attractive

alternative.  In general, the conclusions reached by examining the posterior probabilities of the

ranks are operationally equivalent to those reached by examining the posterior distributions of

the difference scores.  However, an applied decision maker may find these results are easier to

comprehend and to communicate, and hence they may be perceived as being more actionable.

For example, based on the results in Table 7 a decision maker could indicate that she is at least

95% confident that Product 1 is the “best” or most preferred alternative.
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Figure 5 – Posterior Distributions of Product Ranks
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DISCUSSION

The stochastic methods developed for obtaining priorities produced results that were generally

very similar to the priorities obtained via the eigenvalue decomposition.  The models’ abilities to

recover AHP priorities were established for varying numbers of alternatives and varying degrees

of inconsistency.  To the extent that judgments are more consistent, the estimates produced by

the methods described here and those of AHP become more similar.  Addressing dependence in

the judgments seemed to be decidedly more effective when the number of alternatives is 4 or

less.  Thus, Model 2 should be used when the number of alternatives is 4 or less.  When the

number of alternatives is 5 or greater, the benefits of Model 2 become less tangible and so either

model may be used.  The key advantage of the stochastic approaches developed here is that they
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permit inferential statements about the priorities to be evaluated, which is not possible using the

deterministic approach.  A decision maker can now examine posterior distributions of difference

scores to see if they do or do not include certain values such as zero.  Alternatively, he or she can

obtain the posterior probability of the rank of an alternative.  For example, if a decision maker

finds that a particular alternative is the best with high probability, then he or she may have more

reason to feel confident that it is indeed the best alternative.  Conversely, if there is considerable

uncertainty about which alternative is best, the decision maker is again in possession of valuable

information bearing on the ultimate decision.

The typology of multi-criteria decision making methods clearly shows that re-examining the

quantification axiom has led to significant advances.  Basic multi-criteria decision making

methods (Type A), which capitalize on the fact that decision makers can systematically render

quantitative judgments, constitute a major improvement over informal, non-systematic, and ad

hoc approaches to decision making.  Sensitivity analysis (Type B) provides a simple way of

examining a decision’s robustness in the case where judgments are assumed to be certain but yet

uncertainty still exists.  Despite its simplicity, sensitivity analysis is nonetheless a useful starting

point and often a considerable improvement over no follow-up analyses at all.  Yet the decision

maker is left with a largely qualitative impression of the decision’s robustness.  By inspecting the

results of the sensitivity analysis, the decision maker may be able to say that it “seems like” the

decision is robust (or is not robust), but he or she may be able to say little more than this.

Further, it may be difficult to compare the results of sensitivity analyses in different problems, so

it may be more challenging to indicate that one decision was “more robust” than was another

decision (or less robust as the case may be).  With Type C methods, it becomes possible to make
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inferential statements regarding the decision outcomes.  This is a critical advance as it now

becomes possible to quantitatively evaluate the decision’s robustness.  Moreover, a common

metric and language, that of probability, becomes available which makes it possible to compare

decisions across time and space.  For example, a decision in which a decision alternative was

most preferred at a 95% level of probability can be compared to an entirely unrelated decision in

which a decision alternative was most preferred at a 75% level of probability.  The downside of

this type of method is that intervals or distributions must be elicited from the decision maker.

Such a task can become quite time-consuming and mentally demanding.  Type D methods, by

contrast, are stochastic by design.  As such, decision makers can return to the much easier task of

providing scalar judgments while still benefiting from the ability to quantitatively examine a

decision’s robustness.  Type D methods for multi-criteria decision making, therefore, have much

to offer decision makers.
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APPENDIX

We present here a proof of the theorem regarding RK.  Recall that

∑
−

=






 −

−+=
1

2

1
11

I

i
K I

i
R .

So,

.
2

2

2

2
1

1
11

2

2

2

1

2

I

II

I
I

II

I

I

i

I

R

I

iK

−+
=

−−
+

=







 −

−+
=

∑
−

=



43

Clearly,

2

1

2

2
lim

2

2

=
−+

∞→ I

II
I

and so

22

2
lim

2

2 I

I

II
I

I
=







 −+
×

∞→

provided that I is finite. n

Author Biography

Dr. Eugene D. Hahn is an Assistant Professor in the Department of Information and Decision

Sciences at Salisbury University.  He received his Ph.D. in Information and Decision Systems

from George Washington University.  He also holds a masters from the University of Texas at

Austin and a bachelors in the honors program at Boston College.  His research interests include

Bayesian methods, multi-criteria decision making, and marketing science.  He has published in

such journals as Organizational Behavior and Human Decision Processes and ASEAN Economic

Bulletin, has published book chapters, and has presented at conferences domestically as well as

in such places as Thailand, the Canary Islands, and Japan.  Dr. Hahn has consulted for

organizations such as the U.S. Bureau of the Census, Booz-Allen & Hamilton, and the

Corporation for Public Broadcasting.


