SALISBURY UNIVERSITY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE SYLLABUS (Tentative) MATH 300 Introduction to Abstract Mathematics

Intended Audience: Students minoring in mathematics, particularly prospective teachers, will find this a good capstone to their undergraduate mathematical experience. Students majoring in mathematics who have not already completed a 400-level mathematics course will find this a valuable course to help them develop a better understanding of the connection between computational and theoretical mathematics.
Objective: To provide students with an opportunity to develop the foundations of abstract mathematics in a manner similar to that employed by professional mathematicians.
Prerequisite: MATH 210, completed with a grade of C or better.

Text: *Linear Point Set Theory, a Vehicle for Mathematical Metamorphosis*, by Charles C. Coppin-*Distributed by Dr. May.*

Chapter

	Weeks
1. Introduction	
2. Axiom 1 and Its Consequences	2
Axiom 1; models of Axiom 1; first and last points; betweenness; regions and end points.	3
3. Axiom 2, and Consequences of Axioms 1 and 2	
Axiom 2; models of Axioms 1 and 2; limit points; sequences and convergence; open and	
closed sets; connected and disconnected sets.	3
4. Consequences of Axioms 1, 2, and 3	
Axiom 3; models of Axioms 1 through 3; least upper and greatest lower bounds; compact,	
perfect, and dense sets.	3
5. Consequences of Axioms 1 through 4	
Axiom 4; models of Axioms 1 through 4; separable sets.	oms 1 through 4; separable sets.
	<u>3</u>

EVALUATION

30 - 70%
10 - 30%
0 - 15%
0 - 15%

**Graduate students will be given special assignments.

14