S.U. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE SYLLABUS (Tentative)

HONR 212-042 Issues in the Natural Sciences: Statistics through Baseball

Objective: In general, to introduce students to the role of mathematics in culture. Specifically in

this offering, to introduce students to the concepts of probability and statistics by means

of playing with baseball statistics.

Intended for: Students whose major areas of study do not have specific requirements in mathematics,

who want to learn elementary probability and statistics, and who have an interest in

baseball.

Prerequisite: Three years of high-school mathematics, including geometry, or intermediate algebra at a

college or university.

Teaching Statistics Using Baseball, by Jim Albert; The Mathematical Association of Text:

America, 2003.

Reference: A book of statistical formulas. My preferred one is A First Course in Statistics (any

edition), by McClave and Sincich (Prentice Hall). Less valuable but acceptable is CliffsQuickReview Statistics, by Voelker, Orton, and Adams (Wiley Publishing, 2001).

1

2

2

14

Topic Weeks

An Introduction to Baseball Statistics

Mathematical preliminaries: sets and functions. Probabilistic preliminaries: frequency- and probabilitydistributions. Statistical preliminaries: populations and samples, physical and statistical. Baseball preliminaries: basic measures of performance, and their relation to common statistical measures.

Exploring a Single Batch of Baseball Data

2 Teams' offensive statistics: stem-and-leaf displays and the Five-Number Summary. A tribute to Cal Ripken: dotplots, time-series plots, and curve-fitting. A tribute to Roger Clemens: summary statistics and comparison of distributions. Analyzing baseball attendance: histograms. The use of sacrifice-bunts: more comparing of distributions.

Comparing Batches and Standardization

"Slugging percentages are normal": normal probability distributions. Great batting averages and standardized scores.

Introduction to Probability Using Tabletop Games

2 "What is Barry Bonds's home-run probability?": the relative-frequency interpretation of probability and the Law of Large Numbers. Big-league baseball: sample spaces, equiprobable outcomes. All-Star baseball: probability as area, multinomial experiments. Strat-O-Matic Baseball: theorems of probability; conditional probability.

Probability Distributions and Baseball

Binomial distributions and hits per game: binomial probabilities, independence, expected counts, and simulation. Modeling runs scored: Negative-binomial distributions and Pearson Residuals.

Introduction to Statistical Inference Ability and performance. Simulating a batter's performance: Bernoulli Trials, Bayes's Rule. Intervalestimates for ability: confidence-intervals; subjective probability. Comparing Wade Boggs and Tony Gwynn: confidence-interval estimates for proportions, time-series plots.

Topics in Statistical Inference

Observed situational effects for many players. Modeling batting averages for many players: Normal distributions.

Optional topics, as time permits

Relationships between sets of measurements. A new measure of offensive performance. Are batting slumps inevitable? Are seven-game playoff series fairer than five-game ones? Modeling baseball with Markov Chains.

"The Fourth Credit" (Enhancement)

Baseball, the award-winning Ken Burns documentary shown on the Public Broadcasting Service television network, will be viewed by the students and discussed in class.

EVALUATION

Homework and class-participation	30 - 70%
Midterm Examination	0 - 20%
Project	30 - 70%
Final Examination	0 - 20%

ELM 1/14