COSC 311 - Lab 3

Dr. Joe Anderson

Due: 29 October

1 Objectives

1. Practice efficiently manipulating data with Python
2. Use the matplotlib, pandas libraries
3. Gain familiarity with statistical tools

2 Tasks

1. You may submit this lab in groups of one or two.
2. Download the "Adult" data set from the UCI Machine Learning data repository: https://archive. ics.uci.edu/ml/datasets/Adult. This dataset is record of adults, along with various occupational and lifestyle attributes. Each adult is "labeled" as to whether or not they make more or less than $\$ 50 \mathrm{k}$ per year. Using this as a driving label, one would typically want to design a process to determine what combinations of factors enable a person to make more than $\$ 50 \mathrm{k}$ per year.
(a) Read the data into a pandas DataFrame object.
(b) Use the data and the numpy library to compute the following:
i. What are the 25 th, 50 th, and 75 th pecentiles of the "education-num" field?
ii. What is the probability that an adult makes more than $\$ 50 \mathrm{k}$ given that their education-num is within the ranges defined by the above quantiles (from 0 to the 25 th percentile, from the 25 th to the 50 th etc)?
iii. Plot the change in probability that a person makes more and less than $\$ 50 \mathrm{k}$ given their years of education.
iv. What is the covariance between the number of hours worked per week and education-num?
v. Use the pandas.DataFrame. boxplot functionality to create a box-and-whisker plot which illustrates the spread of hours worked among adults who make both more and less than $\$ 50 \mathrm{k}$.
vi. Use the pandas.DataFrame.boxplot functionality to create a box-and-whisker plot which illustrates the spread of hours worked among adults from each native country and who make more and less than $\$ 50 \mathrm{k}$.
vii. Create a table where entry (x, y) contains the conditional probability

$$
P(\text { A random adult has level of education } x \mid \text { their education-num is } y) .
$$

viii. Create a table where entry (x, y) contains the conditional probability of having marital status x given that they have occupation y.
ix. What is the conditional probability of making more or less than $\$ 50 \mathrm{k}$ given that a person works in each different occupation?
x. Plot the change in probability that a person makes more and less than $\$ 50 \mathrm{k}$ given the amount that they work per week.
3. Answer the following questions using the fundamentals of probability.
(a) If A and B are independent, show that \bar{A} and B, \bar{A} and B, \bar{A} and \bar{B} are independent.
(b) Suppose we send 30% of our products to company A and 70% of our products to company B. Company A reports that 5% of our products are defective and company B reports that 4% of our products are defective. For each probability below, compute the precise value by hand, and also write a short Python script to simulate the above scenario and estimate each probability by empirically examining the rates of each event.
i. Find the probability that a product is sent to company A and it is defective.
ii. Find the probability that a product is sent to company A and it is not defective.
iii. Find the probability that a product is sent to company B and it is defective.
iv. Find the probability that a product is sent to company B and it is not defective.
(c) Show that for events A and B that $P(A \mid B)>P(A)$ implies $P(B \mid A)>P(B)$.

3 Submission

Zip your source files and upload them to the assignment page on MyClasses. Be sure to include all source files, properly documented, a README file to describe the program and how it works, along with answers to any above discussion questions.

