COSC 362 - Exam 1 Review
Dr. Joe Anderson

1. List 3 different substrings of length at least 3 of \(wRwRw \) for \(w = aabba \).
2. For \(\Sigma = \{a, b\} \), find a grammar for \(L = \{w : |w| = 2 \mod 3\} \).
3. For \(\Sigma = \{a, b\} \), find a grammar for \(L = aa\{a^n b^m : n, m \geq 0\}^*bb \).
5. Construct a DFA for the language in 2.
6. Construct a DFA for the language in 3.
7. Construct an NFA for the language in 3.
8. Give a regular expression for the language in 3.
10. Prove or disprove: if language \(L \) is regular, then so is \(L^R \).
11. Write regular expressions for the following languages over alphabet \(\{0, 1\} \):
 (a) All strings ending in 10.
 (b) All strings not ending in 10.
 (c) All strings containing an odd number of 0’s
12. Recall that a string \(x \) is a prefix of \(w \) if \(w = xv \) for \(v \in \Sigma^* \). We say that \(x \) is a proper prefix if, in addition, \(x \neq w \). Given a language \(L \), define the language \(NOPREFIX(L) = \{w \in L : \text{no proper prefix of } w \text{ is a member of } L\} \).
 Show that the class of regular languages is closed under the operation \(NOPREFIX \), i.e., if \(L \) is regular, then so is \(NOPREFIX(L) \).
13. Consider the DFA \(M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_2, \{q_2\}) \) and
 \[
 \delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1 \\
 \delta(q_1, 0) = q_0 \quad \delta(q_1, 1) = q_2 \\
 \delta(q_2, 0) = q_1 \quad \delta(q_2, 1) = q_3 \\
 \delta(q_3, 0) = q_2 \quad \delta(q_3, 1) = q_4 \\
 \delta(q_4, 0) = q_3 \quad \delta(q_4, 1) = q_4
 \]
 (a) Draw the transition diagram for \(M \).
 (b) Use a regular expression to describe \(L(M) \).
14. Use procedure **reduce** on any of the DFA’s or NFA’s (after converting to a DFA) above.

15. Formal languages can be used to describe a variety of two-dimensional figures. Chain-code languages are defined on the alphabet $\Sigma = \{u, d, l, r\}$, where the symbols stand for one unit straight line in direction, **up**, **down**, **left**, or **right**, respectively. An example is $urdl$ which is a construction of a square with unit side length. Draw pictures of the figures denoted by the expressions $(rd)^*$, $(urddru)^*$, and $(ruldr)^*$.