1. Let \(L = \{ab, aa, baa\} \). Which of the following strings are in \(L^* \): \(abaabaaabaa, aaaaabaaa, baaaabaaaab, baaaabaa \)? Which strings are in \(L^4 \)?

2. Let \(\Sigma = \{a, b\} \) and \(L = \{aa, bb\} \). Use set notation to describe \(L \).

3. Are there languages for which \(L^* = (L^*)^* \)?

4. Give a simple description of the language generated by a grammar with the following productions:

\[
S \rightarrow aA,
A \rightarrow bS,
S \rightarrow \lambda.
\]

5. Let \(\Sigma = \{a, b\} \). Find a grammar to describe each of the following languages:

(a) \(L_1 = \{a^nb^m : n, m \geq 0\} \)
(b) \(L_2 = \{a^n b^{2n} : n \geq 0\} \)
(c) \(L_3 = \{a^n b^{n-3} : n \geq 3\} \)
(d) \(L_1 L_2 \)
(e) \(L_1 \cup L_2 \)
(f) \(L_1^* \)
(g) \(L_1^+ \)
(h) \(L_1 \setminus L_3 \).

6. Determine whether the grammar with production rule

\[
S \rightarrow aSb|ab|\lambda
\]

is equivalent to the grammar with production rules

\[
S \rightarrow aAb|ab,
A \rightarrow aAb|\lambda.
\]

7. For \(\Sigma = \{a, b\} \), construct DFA’s that accept strings consisting of

(a) all strings with exactly one \(a \)
(b) all strings with at least one \(a \)
(c) all strings with at most three a’s
(d) all strings with exactly two a’s and more than two b’s

8. Find DFA’s for the following languages on $\Sigma = \{a, b\}$,
 (a) $L = \{w : |w| \mod 3 = 0\}$
 (b) $L = \{w : n_a(w) \mod 3 > 1\}$
 (c) $L = \{w : |w| \mod 3 = 0, |w| \neq 6\}$