1. Given a list of n numbers, design an algorithm that determines whether this list contains any duplicates. What is the (asymptotic) running time of your algorithm in terms of n? (You may ignore the encoding length of numbers)

2. Given a list of n numbers, design an algorithm to find and print all numbers which are duplicates in the list. What is the asymptotic running time of your algorithm in terms of n? (You may ignore the encoding length of individual numbers) What makes this different from Problem 1? Does it necessarily affect the running time?

3. If $A \leq_{p} B$ and B is a regular language, does that imply that A is also a regular language? Prove why or give an example why not.

4. Let $T = \{ \langle M \rangle : M$ is a TM that accepts w whenever it accepts $w^R \}$. Show that T is undecidable.

5. Show that P is closed under union, concatenation, and complement.

6. Show that $CONNECTED = \{ \langle G \rangle : G$ is an undirected and connected graph} is in P.