
 1 / 29

COSC 420:
High Perf. Computing

Dr. Joe Anderson

 2 / 29

Course Policies

● See web page for most info: resources,
schedule, due dates, etc.

● Highlights of course structure

– Largely project/program based
– Two midterms, one final

● May not be standard exam format, TBD

 3 / 29

Strategies for success

● University policy: 1 credit = 4 hours work
outside lecture

● Keep documentation open and nearby
● Talk to friends, others in class. Hang out in

the lab
● Care for your physical being! Eat, sleep, and

rest appropriately.
● Spaced repetition is shown to be vastly

superior to “cramming”

 4 / 29

Bonus point opportunities

● You may receive up to 5% total bonus on your
final grade by participating in voluntary
professional development and community
service. Examples include:

– Gull Week (Sept 9 – 19)
– GullCode (MATH/COSC club)
– Game Jam (SU Indies club)
– Volunteer work
– See me for further approval...

 5 / 29

Course Goals
● Recap of the focus of COSC 320

– Design advanced algorithms and
structures

– Prove asymptotic complexity, ignore
“constant” and “small” overhead

● Contrast with this course

– Still working with advanced DS and
Algorithms

– Now, be concerned with reducing the extra
computational overhead, possibly with
specialized hardware

 6 / 29

Course structure

● Assignments will largely consist of 5-7 short
term projects

– … but there will still be some math to do
and turn in

– There will be some hardware components,
system configuration, etc.

● Minimal programming guidance given in
class, mostly theory and problem solving
techniques

● Presentations are likely, TBD

 7 / 29

Programming Tools

● With a focus on implementation, focus on
using specific software environment/toolchain

– C language (yay!) with some Python later
● Still working on a GNU/Linux environment

– Be familiar with command-line tools!
● Will eventually use multi-node setups to run

software

 8 / 29

High-Performance Tools

● Distributed memory

– Multiple independent processes on multiple
compute nodes (but which commonly
communicate or use shared memory storage)

– MPI Library – message passing interface
● Allows one to easily run programs in parallel

with communication constructs
– Not always free/cheap!

● Also has bindings for Fortran and Python (C+
+ bindings are deprecated)

 9 / 29

High-Performance Tools

● Shared memory

– Multiple programs that share the same memory
pool during execution

● No communication overhead!
● Need to manage race conditions (ouch)
● Executable can be run in a standard way

– OpenMP (multiprocessing) library
● Provided through compiler tools, not separate

library routines
– MPI can also support shared memory (later)

 10 / 29

Getting Started: Using MPI

● Install the “openmpi” and “openmpi-devel”
packages

● You may need to add the paths to mpicc and
mpiexec to your “PATH” environment variable

 11 / 29

SPMD

 12 / 29

“Hello, world!”

#include<stdio.h>

int main(){

 printf(“Hello, world!\n”);

 return 0;

}

Run program with: mpiexec -n 5 ./a.out

 13 / 29

What happened?

● Single Program Multiple Data (SPMD)

– One executable gets copied between
multiple nodes (-n 5)

– Each node runs the exact same program!
● This means, if you want different nodes

to behave differently, we will need some
tools for introspection

● We won’t worry about the analogous MPMD
structure

 14 / 29

Using MPI F’real

● Compile with MPI library

– #include<mpi.h>
– Use `mpicc` or `gcc -I/path/to/mpi.h`

● MUST CALL

– int MPI_Init(int *argc, int ***argv)
– int MPI_Finalize()

 15 / 29

Other Important Tools

● Type: MPI_Comm

– Represents the “MPI communicator”
● int MPI_Abort(MPI_Comm, int)

– Aborts and returns an error code
● Object: MPI_INFO_ENV

– key/value pairs for `mpiexec` options

 16 / 29

More tools

● int MPI_Get_processor_name(char *name,
int *resultlen)

– Places name in the provided buffer
– Length of name in second param
– “name” param must be length at least
MPI_MAX_PROCESSOR_NAME

 17 / 29

Managing Processes

● The group of processes is the
“communicator”

– MPI_COMM_WORLD is a predefined
communicator, but you can have more

● MPI_Comm_size() – total size of the comm
● MPI_Comm_rank() – the rank of the current

process within the communicator
● Both above take MPI_Comm and int*

– Result stored in the second param

 18 / 29

More MPI Interface

● MPI_Get_processor_name – retrieves the node
name

– Takes char* to store and int* for the length
– MPI_MAX_PROCESSOR_NAME is a constant

defining the largest name possible

 19 / 29

Using these tools for
parallelism

● We want to “distribute” the labor of a task
● But, according to the above, every process is

identical!
● … not really, they each know their own rank
● So we use the rank to determine who does

which work

 20 / 29

Lab Task 1

● (See posted instructions for more detail)
● Given a (probably large) number, N,

determine if it is prime or composite

– Brute force, for now
– How? Discuss!

● Once we know how many tasks must be
done, we can use MPI to distribute them
evenly across the nodes

 21 / 29

Hardware Parallelism

● Take into account various hardware
architectures

– CPU
– FPU

● Takes heavy advantage of “pipeline”
methodology

– GPU

 22 / 29

Pipelines

● Focus on floating point operations (FLOPS)
● Stages of a floating point operation

– Decode instruction, find data locations
– Fetch data into registers
– Align exponents
– Do the operation
– Normalize result
– Store

 23 / 29

Pipelines

● Supposing each stage has dedicated
hardware

● The second instruction can begin decoding
once the first one has begun fetching

● The third can be decoded while the second is
fetched and first is aligned

● Etc...

 24 / 29

Pipeline speedup

● Total time for n operations without pipeline is

– t(n) = n * l * t
– Number of instructions is n
– Number of stages is l
– Cycle time is t

● We say the “rate” is n/t(n)

– So without pipeline, 1/(l*t)
● With pipeline, t(n) = ?

 25 / 29

Pipeline speedup

● With pipeline, t(n) = (s + l + n-1)*t

– S is the “startup time” of the pipeline to
distribute data as necessary

– Written sometimes as t(n) = [n + n1/2]*t

● Consider limit of the rate for each as n goes
to infinity

– With pipeline, has a dependence on n
– Becomes “l times” faster!

● To get to this case, consider the rate with n1/2
instructions...

 26 / 29

Pipeline in action

● Consider vectors/arrays a, b, c and the two
following loops:

● For(i)
 a[i] = b[i] + c[i]

● For(i)
 a[i+1] = a[i]*b[i] + c[i]

● Can we speed up the second, despite
dependence?

 27 / 29

Other hardware parallelism

● Multiple-issue: independent instructions that
can happen at the same time

● Branch prediction: compiler can “guess”
which branch of a conditional will happen

● Out-of-order execution: instructions
rearranged by compiler

● Prefetching: speculatively request data
before it is explicitly used

 28 / 29

Memory Hierarchy

● Main considerations

– Location, distance from CPU/FPU/GPU
– Buses: wires that transfer data between

different memories
– Latency
– Bandwidth

 29 / 29

Memory Hierarchy

