Numerical Concerns

• (Recall) computers have only finite representations of numbers
 – Easy consequence: not all real numbers can be stored
 – Do we “lose” any important ones? How do we decide which?
Correct Rounding

• A single numerical procedure should follow the following algorithm:
 – Compute the exact result
 – Round to the nearest computer number
• i.e. the final result is the exact result, rounded
• This obviously leads to problems when intermediate arithmetic would lose precision
 – Consider 1 – 1e10
 – What might happen?
Precision with Linear Alg.

- Recall during the Gauss-Jordan algorithm implementation:
 - NaN values were pretty easy to come by!
 - Why?
- Pivoting with 0’s in the diagonal causes bad problems
 - One way to avoid is to swap with another row (annoying in parallel, but it works)
Precision in Elimination

- Consider the system \(\begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 + \epsilon \\ 2 \end{pmatrix} \)
- Has solution \(x = (1,1) \) – check!
- What will the Gauss-Jordan algorithm do when \(\epsilon \) is less than the machine precision?
- After first round, we get \(\begin{pmatrix} \epsilon & 1 \\ 0 & 1 - \frac{1}{\epsilon} \end{pmatrix} x = \begin{pmatrix} 1 + \epsilon \\ 2 - \frac{1 + \epsilon}{\epsilon} \end{pmatrix} \).
- So if \(\epsilon \) is too small, we get \((0,1) \)
 - Very wrong!
Precision in Elimination

- Simplest way to avoid:
 - “Partial pivoting” - always pivot to put the largest remaining diagonal element in the pivot row
 - Do a row swap, then go about standard parallel algorithm
- Better way: “diagonal pivoting”
 - Exchange both row and column (equivalent to re-numbering the unknowns)
 - Makes algorithm more parallel!
Precision with Eigenvalues

- Consider matrix \(A = \begin{pmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{pmatrix} \)

- Where \(\varepsilon_{\text{mach}} < |\varepsilon| < \sqrt{\varepsilon_{\text{mach}}} \)

- Has eigenvalues \(1+\varepsilon \) and \(1-\varepsilon \)

- Also consider characteristic polynomial
 \[
 \begin{vmatrix}
 1 - \lambda & \varepsilon \\
 \varepsilon & 1 - \lambda
 \end{vmatrix} = \lambda^2 - 2\lambda + (1 - \varepsilon^2) = \lambda^2 - 2\lambda + 1.
 \]

- Using this, we would get both eigenvalues equal to 1. But the are both expressible!

- So we need a better algorithm!
Much worse example

- Consider:
 \[
 A = \begin{pmatrix}
 20 & 20 & & \\
 19 & 20 & & \\
 & & \ddots & \\
 & & & 2 & 20 \\
 & & & & 1
 \end{pmatrix}.
 \]

 By linear algebra, the eigenvalues should be exactly the diagonal elements, because it is upper-triangular.

- However, if we set the bottom-left to 1e-6, we see the following eigenvalues:

 \[
 \lambda = 20.6 \pm 1.9i, 20.0 \pm 3.8i, 21.2, 16.6 \pm 5.4i, \ldots
 \]
Approaching better algs

- Specifically if having to solve multiple linear systems, we can “save” some of the pivoting information for later
 - Recall: if the matrix is not square, inversion is not a good tool! (why?)
- Consider: can we write each single pivot step in a single, concise, matrix formula?
 - Yes!
LU Decomposition

• Consider the first pivot operation in the elimination algorithm:

 - Example: \(A = \begin{pmatrix} 6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3 \end{pmatrix} \)

 - First pivot phase is the same as multiplying \(A \) on the left by
 \[
 L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1/2 & 0 & 1 \end{pmatrix}
 \]

 - Notice the divisors in the first column!

 - Other entries are the identity matrix
LU Decomposition

- We can do the same with the second step!
 - The second pivot is a left-multiplication by the matrix
 \[L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \]
 - So now we have \(L_2 L_1 A x = L_2 L_1 b \)
 - Where \(L_1 \) and \(L_2 \) are triangular
- If we define \(U = L_2 L_1 A \)
- Then we get \(A = (L_1)^{-1} (L_2)^{-1} U \)
LU Decomposition

- Observe that we have:

\[
L_1 = \begin{pmatrix}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1/2 & 0 & 1
\end{pmatrix}
\quad L_1^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1/2 & 0 & 1
\end{pmatrix}
\]

\[
L_2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{pmatrix}
\quad L_2^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{pmatrix}
\]

- And, importantly:

\[
L_1^{-1}L_2^{-1} = \begin{pmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
1/2 & 3 & 1
\end{pmatrix}
\]
LU Decomposition

- Finally, if we let $L = (L_1)^{-1} (L_2)^{-1}$ then we have $A = LU$, where L and U are both triangular!
 - So what?
 - We can compute L and U in-place and over-write the values inside A, which saves a lot of space (if we don’t mind losing A)
- Going back to elimination...
 - How does this help?
LU Decomposition

• Given L and U, we can solve $Ax = LUx = b$ in two steps:
 - Solve $Ly = b$ for y (easy because L is triangular!)
 - (Again, easily) Solve $Ux = y$ for x

• Now, how to compute L and U?
 - Still not too bad, just use same G-J structure
LU Decomposition

• Compare with Gauss-Jordan:

\[
\langle LU \text{ factorization}\rangle:
\]
for \(k = 1, n - 1 \):
for \(i = k + 1 \) to \(n \):
\[
a_{ik} \leftarrow a_{ik} / a_{kk}
\]
for \(j = k + 1 \) to \(n \):
\[
a_{ij} \leftarrow a_{ij} - a_{ik} \ast a_{kj}
\]

• Leaves \(L \) and \(U \) in the off-diagonal entries of \(A \)
 - Leaves pivots in the diagonal
Next steps...

- Still need to worry about numerical concerns
 - That division is still dangerous!
- Is it possible that L and U are the same, but transposed?
 - Surprisingly, yes!
 - This would be twice as fast to compute!
Some definitions

- A matrix is *symmetric positive definite* (SPD) if it is symmetric ($A = A^T$) and if for all vectors x we have $x^T Ax > 0$
- This will make things easier because an SPD matrix always has positive diagonal entries
- Even better, for any A we have $B = A^T A$ is SPD!
Cholesky Factorization

- Aka “Cholesky Decomposition”
 - Given: A is symmetric
 - We want to write $A = LL^T$
- Has a “simple” recursive formulation

\[
\begin{bmatrix}
 a_{11} & A_{21}^T \\
 A_{21} & A_{22}
\end{bmatrix}
= \begin{bmatrix}
 l_{11} & 0 \\
 L_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
 l_{11} & L_{21}^T \\
 0 & L_{22}
\end{bmatrix}
\]

= \[
\begin{bmatrix}
 l_{11}^2 & l_{11}L_{21}^T \\
 l_{11}L_{21} & L_{21}L_{21}^T + L_{22}L_{22}^T
\end{bmatrix}
\]
Cholesky Factorization

To formulate the algorithm recursively:

1) Compute

\[l_{11} = \sqrt{a_{11}}, \quad L_{21} = \frac{1}{l_{11}} A_{21} \]

2) Recursively find \(L_{22} \) by factoring:

\[A_{22} - L_{21} L_{21}^T = L_{22} L_{22}^T \]
Properties

• An LU decomposition is not unique!
• Suppose $A = L_1 U_1 = L_2 U_2$ where the L’s and U’s are lower and upper-triangular, resp.
• Then $(L_2)^{-1} L_1 = U_2 (U_1)^{-1}$ where the left is lower-triangular and the right is upper-triangular
 – Contradiction? No!
 – They must be diagonal
• So, we may have different diagonal scaling in the factorization