I Numerical Concerns

* (Recall) computers have only finite
representations of numbers

- Easy consequence: not all real numbers
can be stored

- Do we “lose” any important ones? How do
we decide which?

1/19

I Correct Rounding

* A single numerical procedure should follow
the following algorithm:

- Compute the exact result
- Round to the nearest computer number

* |.e. the final result is the exact result,
rounded

* This obviously leads to problems when
iIntermediate arithmetic would lose precision

- Consider 1 - 1e10
- What might happen? 2/19

I Precision with Linear Alg.

» Recall during the Gauss-Jordan algorithm
iImplementation:

- NaN values were pretty easy to come by!
- Why?

* Pivoting with O’'s in the diagonal causes bad
problems

- One way to avoid is to swap with another
row (annoying in parallel, but it works)

3/19

I Precision in Elimination

1 1
Consider the system G 1) T = (;E)
Has solution x=(1,1) - check!

What will the Gauss-Jordan algorithm do
when € is less than the machine precision?

* After first round, we get (‘f 1)m — (21 e) .

1 _ l+e
F do—= .

* So if € is too small, we get (0,1)
- Very wrong!

4/19

I Precision in Elimination

* Simplest way to avoid:

- “Partial pivoting” - always pivot to put the
largest remaining diagonal element in the
pivot row

Do a row swap, then go about standard
parallel algorithm

» Better way: “diagonal pivoting”

- Exchange both row and column (equivalent
to re-numbering the unknowns)

- Makes algorithm more parallel!

5/19

I Precision with Eigenvalues

- Consider matrix A= (i ;)

- Where €Emach < |f| < A/€mach
 Has eigenvalues 1+€ and 1-¢€

* Also consider characteristic polynomial

1— X €
€ 1—A

- Using this, we would get both eigenvalues equal
to 1. But the are both expressible!

=0 DAL (I &) = — 2L I

- So we need a better algorithm! 6/19

I Much worse example

| /20 20
 Consider: 19 20

\ 0

By linear algebra, the eigenvalues should be
exactly the diagonal elements, because it is

upper-triangular

2

A

20
iy

« However, If we set the bottom-left to 1e-6, we
see the following eigenvalues:

A =20.6+1.94,20.0+3.8i,21.2,16.6 & 5.4i, . ..

71719

I Approaching better algs

» Specifically if having to solve multiple linear
systems, we can “save” some of the pivoting
iInformation for later

- Recall: if the matrix is not square, inversion
IS not a good tool! (why?)

» Consider: can we write each single pivot step
In a single, concise, matrix formula?

- Yes!

8/19

I LU Decomposition

» Consider the first pivot operation in the
elimination algorithm:

6 -2 2
- Example: 4a=[12 -8 6
3 —13 3

- First pivot phase is the same as multiplying
A on the left by (0 0)

Li=| -2 10
~1/2 0 1

- Notice the divisors in the first column!
— Other entries are the identity matrix

9/19

I LU Decomposition

We can do the same with the second step!
- The second pivot is a left-multiplication by

the matrix
1 0 O
Lo=10 1 O
0 —3 1

So now we have L, L Ax= L,L b

- Where L and L, are triangular
If we define U=L,L A

Thenweget A=)" (L,)"U

10/19

I LU Decomposition

* Observe that we have:

1 00 1 00
Li=| -2 1 0 Li'=12 10
~-1/2 0 1 1/2 0 1

* And, importantly:

1 0 0
EEre=l 8 1 0
1/2 3 1

11/19

I LU Decomposition

- Finally, if weletL=()"(,)”"then we have A
= LU, where L and U are both triangular!
- So what?

- We can compute L and U in-place and
over-write the values inside A, which saves
a lot of space (if we don’t mind losing A)

* Going back to elimination...
- How does this help?

12 /19

I LU Decomposition

* Given L and U we can solve Ax=LUx =5/ 1n two
steps:

- Solve Ly = b for y (easy because L s
triangular!)

- (Again, easily) Solve Ux =y for x
* Now, how to compute L and U?

— Still not too bad, just use same G-
structure

13/19

I LU Decomposition

 Compare with Gauss-jordan:

(LU factorization):
fork=1,n— 1:
fori = k4 1ton:

Qi < Qik [Ok
for) =k +1ton:
Ajj < Qi5 — Qik * A

* Leaves L and Uin the off-diagonal entries of A
- Leaves pivots in the diagonal

14 /19

I Next steps...

» Still need to worry about numerical concerns

- That division is still dangerous!

* |s it possible that L and U are the same, but
transposed?

- Surprisingly, yes!
- This would be twice as fast to compute!

15/19

I Some definitions

* A matrix is symmetric positive definite (SPD)
If it iIs symmetric (A = A") and if for all vectors

X we have X’/ Ax > 0

» This will make things easier because an SPD
matrix always has positive diagonal entries

* Even better, for any A we have B = ATA is
SPD!

16 /19

I Cholesky Factorization

» Aka “Cholesky Decomposition”
- Given: A is symmetric
- We wantto write A= L LT
 Has a “simple” recursive formulation

{@11 A%}}: {511 0}{511 L%}}
Agr Ao Loy Loo 0 Li,

[1T l11L3]
l11L91 Lot Li, + LooLd,

17 /19

I Cholesky Factorization

» To formulate the algorithm recursively:
1) Compute

1
l11 = Va1, Loy = — Ao

[11

2) Recursively find L, by factoring:

Agg — L21L§1 = Lzngz

18 /19

I Properties

* An LU decomposition is not unique!

» Suppose A =L U, = LU, where the L's and
U’s are lower and upper-trianguar, resp.

- Then (L))'L, = U,(U,)* where the left is lower-
triangular and the right is upper-triangular
- Contradiction? No!
- They must be diagonal

* S0, we may have different diagonal scaling in
the factorization

19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

