
 1 / 19

Numerical Concerns

● (Recall) computers have only finite
representations of numbers

– Easy consequence: not all real numbers
can be stored

– Do we “lose” any important ones? How do
we decide which?

 2 / 19

Correct Rounding

● A single numerical procedure should follow
the following algorithm:

– Compute the exact result
– Round to the nearest computer number

● i.e. the final result is the exact result,
rounded

● This obviously leads to problems when
intermediate arithmetic would lose precision

– Consider 1 – 1e10
– What might happen?

 3 / 19

Precision with Linear Alg.

● Recall during the Gauss-Jordan algorithm
implementation:

– NaN values were pretty easy to come by!
– Why?

● Pivoting with 0’s in the diagonal causes bad
problems

– One way to avoid is to swap with another
row (annoying in parallel, but it works)

 4 / 19

Precision in Elimination

● Consider the system
● Has solution x=(1,1) – check!
● What will the Gauss-Jordan algorithm do

when є is less than the machine precision ?

● After first round, we get

● So if є is too small, we get (0,1)

– Very wrong!

 5 / 19

Precision in Elimination

● Simplest way to avoid:

– “Partial pivoting” - always pivot to put the
largest remaining diagonal element in the
pivot row

● Do a row swap, then go about standard
parallel algorithm

● Better way: “diagonal pivoting”

– Exchange both row and column (equivalent
to re-numbering the unknowns)

– Makes algorithm more parallel!

 6 / 19

Precision with Eigenvalues

● Consider matrix

– Where
● Has eigenvalues 1+є and 1- є
● Also consider characteristic polynomial

–

– Using this, we would get both eigenvalues equal
to 1. But the are both expressible!

– So we need a better algorithm!

 7 / 19

Much worse example

● Consider:

By linear algebra, the eigenvalues should be
exactly the diagonal elements, because it is
upper-triangular

● However, if we set the bottom-left to 1e-6, we
see the following eigenvalues:

 8 / 19

Approaching better algs

● Specifically if having to solve multiple linear
systems, we can “save” some of the pivoting
information for later

– Recall: if the matrix is not square, inversion
is not a good tool! (why?)

● Consider: can we write each single pivot step
in a single, concise, matrix formula?

– Yes!

 9 / 19

LU Decomposition

● Consider the first pivot operation in the
elimination algorithm:

– Example:

– First pivot phase is the same as multiplying
A on the left by

– Notice the divisors in the first column!
– Other entries are the identity matrix

 10 / 19

LU Decomposition

● We can do the same with the second step!

– The second pivot is a left-multiplication by
the matrix

● So now we have L2 L1 A x = L2 L1 b

– Where L1 and L2 are triangular

● If we define U = L2 L1 A

● Then we get A = (L1) -1 (L2) -1 U

 11 / 19

LU Decomposition

● Observe that we have:

● And, importantly:

 12 / 19

LU Decomposition

● Finally, if we let L = (L1) -1 (L2) -1 then we have A
= LU, where L and U are both triangular!

– So what?
– We can compute L and U in-place and

over-write the values inside A, which saves
a lot of space (if we don’t mind losing A)

● Going back to elimination…

– How does this help?

 13 / 19

LU Decomposition

● Given L and U, we can solve Ax = LUx = b in two
steps:

– Solve Ly = b for y (easy because L is
triangular!)

– (Again, easily) Solve Ux = y for x
● Now, how to compute L and U ?

– Still not too bad, just use same G-J
structure

 14 / 19

LU Decomposition

● Compare with Gauss-Jordan:

● Leaves L and U in the off-diagonal entries of A
– Leaves pivots in the diagonal

 15 / 19

Next steps...

● Still need to worry about numerical concerns

– That division is still dangerous!
● Is it possible that L and U are the same, but

transposed?

– Surprisingly, yes!
– This would be twice as fast to compute!

 16 / 19

Some definitions

● A matrix is symmetric positive definite (SPD)
if it is symmetric (A = AT) and if for all vectors
x we have xTAx > 0

● This will make things easier because an SPD
matrix always has positive diagonal entries

● Even better, for any A we have B = ATA is
SPD!

 17 / 19

Cholesky Factorization

● Aka “Cholesky Decomposition”

– Given: A is symmetric
– We want to write A = L LT

● Has a “simple” recursive formulation

 18 / 19

Cholesky Factorization

● To formulate the algorithm recursively:

1) Compute

2) Recursively find L22 by factoring:

 19 / 19

Properties

● An LU decomposition is not unique!

● Suppose A = L1U1 = L2U2 where the L’s and
U’s are lower and upper-trianguar, resp.

● Then (L2)
-1L1 = U2(U1)

-1 where the left is lower-
triangular and the right is upper-triangular

– Contradiction? No!
– They must be diagonal

● So, we may have different diagonal scaling in
the factorization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

