Numerical Concerns

- (Recall) computers have only finite representations of numbers
- Easy consequence: not all real numbers can be stored
- Do we "lose" any important ones? How do we decide which?

Correct Rounding

- A single numerical procedure should follow the following algorithm:
- Compute the exact result
- Round to the nearest computer number
- i.e. the final result is the exact result, rounded
- This obviously leads to problems when intermediate arithmetic would lose precision
- Consider 1 - 1e10
- What might happen?

Precision with Linear Alg.

- Recall during the Gauss-Jordan algorithm implementation:
- NaN values were pretty easy to come by!
- Why?
- Pivoting with 0's in the diagonal causes bad problems
- One way to avoid is to swap with another row (annoying in parallel, but it works)

Precision in Elimination

- Consider the system $\left(\begin{array}{ll}\epsilon & 1 \\ 1 & 1\end{array}\right) x=\binom{1+\epsilon}{2}$
- Has solution $x=(1,1)$ - check!
- What will the Gauss-Jordan algorithm do when ϵ is less than the machine precision?
- After first round, we get $\quad\left(\begin{array}{cc}\epsilon & 1 \\ 0 & 1-\frac{1}{\epsilon}\end{array}\right) x=\binom{1+\epsilon}{2-\frac{1+\epsilon}{\epsilon}}$.
- So if ϵ is too small, we get $(0,1)$
- Very wrong!

Precision in Elimination

- Simplest way to avoid:
- "Partial pivoting" - always pivot to put the largest remaining diagonal element in the pivot row
- Do a row swap, then go about standard parallel algorithm
- Better way: "diagonal pivoting"
- Exchange both row and column (equivalent to re-numbering the unknowns)
- Makes algorithm more parallel!

Precision with Eigenvalues

- Consider matrix $A=\left(\begin{array}{ll}1 & \epsilon \\ \epsilon & 1\end{array}\right)$
- Where $\epsilon_{\text {mach }}<|\epsilon|<\sqrt{\epsilon_{\text {mach }}}$
- Has eigenvalues $1+\epsilon$ and $1-\epsilon$
- Also consider characteristic polynomial
$-\left|\begin{array}{cc}1-\lambda & \epsilon \\ \epsilon & 1-\lambda\end{array}\right|=\lambda^{2}-2 \lambda+\left(1-\epsilon^{2}\right)=\lambda^{2}-2 \lambda+1$.
- Using this, we would get both eigenvalues equal to 1. But the are both expressible!
- So we need a better algorithm!

Much worse example

- Consider:

$$
A=\left(\begin{array}{ccccc}
20 & 20 & & & \emptyset \\
& 19 & 20 & & \\
& & \ddots & \ddots & \\
& & & 2 & 20 \\
\emptyset & & & & 1
\end{array}\right)
$$

By linear algebra, the eigenvalues should be exactly the diagonal elements, because it is upper-triangular

- However, if we set the bottom-left to 1e-6, we see the following eigenvalues:

$$
\lambda=20.6 \pm 1.9 i, 20.0 \pm 3.8 i, 21.2,16.6 \pm 5.4 i, \ldots
$$

Approaching better algs

- Specifically if having to solve multiple linear systems, we can "save" some of the pivoting information for later
- Recall: if the matrix is not square, inversion is not a good tool! (why?)
- Consider: can we write each single pivot step in a single, concise, matrix formula?
- Yes!

LU Decomposition

- Consider the first pivot operation in the elimination algorithm:
- Example: $A=\left(\begin{array}{lll}6 & -2 & 2 \\ 12 & -8 & 6 \\ 3 & -13 & 3\end{array}\right)$
- First pivot phase is the same as multiplying A on the left by

$$
L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right)
$$

- Notice the divisors in the first column!
- Other entries are the identity matrix

LU Decomposition

- We can do the same with the second step!
- The second pivot is a left-multiplication by the matrix

$$
L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right)
$$

- So now we have $L_{2} L_{1} A x=L_{2} L_{1} b$
- Where L_{1} and L_{2} are triangular
- If we define $U=L_{2} L_{1} A$
- Then we get $A=\left(L_{1}\right)^{-1}\left(L_{2}\right)^{-1} U$

LU Decomposition

- Observe that we have:

$$
\begin{array}{rlrl}
L_{1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 / 2 & 0 & 1
\end{array}\right) & L_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 / 2 & 0 & 1
\end{array}\right) \\
L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right) & L_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)
\end{array}
$$

- And, importantly:

$$
L_{1}^{-1} L_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 / 2 & 3 & 1
\end{array}\right)
$$

LU Decomposition

- Finally, if we let $L=\left(L_{1}\right)^{-1}\left(L_{2}\right)^{-1}$ then we have A $=L U$, where L and U are both triangular!
- So what?
- We can compute L and U in-place and over-write the values inside A, which saves a lot of space (if we don't mind losing A)
- Going back to elimination...
- How does this help?

LU Decomposition

- Given L and U, we can solve $A x=L U x=b$ in two steps:
- Solve $L y=b$ for y (easy because L is triangular!)
- (Again, easily) Solve $U_{x}=y$ for x
- Now, how to compute L and U ?
- Still not too bad, just use same G-J structure

LU Decomposition

- Compare with Gauss-Jordan:

$$
\begin{aligned}
& \langle L U \text { factorization }\rangle: \\
& \text { for } k=1, n-1 \text { : } \\
& \text { for } i=k+1 \text { to } n: \\
& a_{i k} \leftarrow a_{i k} / a_{k k} \\
& \text { for } j=k+1 \text { to } n: \\
& \quad a_{i j} \leftarrow a_{i j}-a_{i k} * a_{k j}
\end{aligned}
$$

- Leaves L and U in the off-diagonal entries of A
- Leaves pivots in the diagonal

Next steps...

- Still need to worry about numerical concerns
- That division is still dangerous!
- Is it possible that L and U are the same, but transposed?
- Surprisingly, yes!
- This would be twice as fast to compute!

Some definitions

- A matrix is symmetric positive definite (SPD) if it is symmetric $\left(A=A^{T}\right)$ and if for all vectors x we have $x^{\top} A x>0$
- This will make things easier because an SPD matrix always has positive diagonal entries
- Even better, for any A we have $B=A^{\top} A$ is SPD!

Cholesky Factorization

- Aka "Cholesky Decomposition"
- Given: A is symmetric
- We want to write $A=L L^{\top}$
- Has a "simple" recursive formulation

$$
\begin{aligned}
{\left[\begin{array}{ll}
a_{11} & A_{21}^{T} \\
A_{21} & A_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
l_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & L_{21}^{T} \\
0 & L_{22}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
l_{11}^{2} & l_{11} L_{21}^{T} \\
l_{11} L_{21} & L_{21} L_{21}^{T}+L_{22} L_{22}^{T}
\end{array}\right]
\end{aligned}
$$

Cholesky Factorization

- To formulate the algorithm recursively:

1) Compute

$$
l_{11}=\sqrt{a_{11}}, \quad L_{21}=\frac{1}{l_{11}} A_{21}
$$

2) Recursively find L_{22} by factoring:

$$
A_{22}-L_{21} L_{21}^{T}=L_{22} L_{22}^{T}
$$

Properties

- An LU decomposition is not unique!
- Suppose $A=L_{1} U_{1}=L_{2} U_{2}$ where the L's and U's are lower and upper-trianguar, resp.
- Then $\left(L_{2}\right)^{-1} \mathrm{~L}_{1}=\mathrm{U}_{2}\left(\mathrm{U}_{1}\right)^{-1}$ where the left is lowertriangular and the right is upper-triangular
- Contradiction? No!
- They must be diagonal
- So, we may have different diagonal scaling in the factorization

