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Numerical Concerns

● (Recall) computers have only finite 
representations of numbers

– Easy consequence: not all real numbers 
can be stored

– Do we “lose” any important ones? How do 
we decide which?
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Correct Rounding

● A single numerical procedure should follow 
the following algorithm:

– Compute the exact result
– Round to the nearest computer number

● i.e. the final result is the exact result, 
rounded

● This obviously leads to problems when 
intermediate arithmetic would lose precision

– Consider 1 – 1e10
– What might happen?
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Precision with Linear Alg.

● Recall during the Gauss-Jordan algorithm 
implementation:

– NaN values were pretty easy to come by!
– Why?

● Pivoting with 0’s in the diagonal causes bad 
problems

– One way to avoid is to swap with another 
row (annoying in parallel, but it works)
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Precision in Elimination

● Consider the system
● Has solution x=(1,1) – check!
● What will the Gauss-Jordan algorithm do 

when є is less than the machine precision ?

● After first round, we get

● So if є is too small, we get (0,1)

– Very wrong!
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Precision in Elimination

● Simplest way to avoid:

– “Partial pivoting” - always pivot to put the 
largest remaining diagonal element in the 
pivot row

● Do a row swap, then go about standard 
parallel algorithm

● Better way: “diagonal pivoting”

– Exchange both row and column (equivalent 
to re-numbering the unknowns)

– Makes algorithm more parallel!
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Precision with Eigenvalues

● Consider matrix

– Where 
● Has eigenvalues 1+є and 1- є
● Also consider characteristic polynomial

–

– Using this, we would get both eigenvalues equal 
to 1. But the are both expressible!

– So we need a better algorithm!
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Much worse example

● Consider:

By linear algebra, the eigenvalues should be 
exactly the diagonal elements, because it is 
upper-triangular

● However, if we set the bottom-left to 1e-6, we 
see the following eigenvalues:
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Approaching better algs

● Specifically if having to solve multiple linear 
systems, we can “save” some of the pivoting 
information for later

– Recall: if the matrix is not square, inversion 
is not a good tool! (why?)

● Consider: can we write each single pivot step 
in a single, concise, matrix formula?

– Yes!
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LU Decomposition

● Consider the first pivot operation in the 
elimination algorithm:

– Example:

– First pivot phase is the same as multiplying 
A on the left by

– Notice the divisors in the first column!
– Other entries are the identity matrix 
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LU Decomposition

● We can do the same with the second step!

– The second pivot is a left-multiplication by 
the matrix

● So now we have L2 L1 A x =  L2 L1  b

– Where L1  and L2  are triangular

● If we define U = L2 L1  A

● Then we get A = (L1 ) -1 (L2 ) -1 U
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LU Decomposition

● Observe that we have:

● And, importantly:
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LU Decomposition

● Finally, if we let L = (L1) -1 (L2 ) -1 then we have A 
= LU, where L and U are both triangular!

– So what?
– We can compute L and U  in-place and 

over-write the values inside A, which saves 
a lot of space (if we don’t mind losing A)

● Going back to elimination…

– How does this help?
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LU Decomposition

● Given L and U, we can solve Ax = LUx = b in two 
steps:

– Solve Ly = b for y (easy because L is 
triangular!)

– (Again, easily) Solve Ux = y for x
● Now, how to compute L and U ?

– Still not too bad, just use same G-J 
structure
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LU Decomposition

● Compare with Gauss-Jordan:

● Leaves L and U in the off-diagonal entries of A
– Leaves pivots in the diagonal
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Next steps...

● Still need to worry about numerical concerns

– That division is still dangerous!
● Is it possible that L and U are the same, but 

transposed?

– Surprisingly, yes!
– This would be twice as fast to compute!
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Some definitions

● A matrix is symmetric positive definite (SPD) 
if it is symmetric (A = AT) and if for all vectors 
x we have xTAx > 0

● This will make things easier because an SPD 
matrix always has positive diagonal entries

● Even better, for any A we have B = ATA is 
SPD!
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Cholesky Factorization

● Aka “Cholesky Decomposition”

– Given: A is symmetric
– We want to write A = L LT 

● Has a “simple” recursive formulation
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Cholesky Factorization

● To formulate the algorithm recursively:

1) Compute

2) Recursively find L22 by factoring:
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Properties

● An LU decomposition is not unique!

● Suppose A = L1U1 = L2U2 where the L’s and 
U’s are lower and upper-trianguar, resp.

● Then (L2)
-1L1 = U2(U1)

-1 where the left is lower-
triangular and the right is upper-triangular

– Contradiction? No!
– They must be diagonal 

● So, we may have different diagonal scaling in 
the factorization
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