
 1 / 9

Monte Carlo Methods

● We often need to approximate some realistic
model

● Getting exact data is too difficult, sometimes
essentially impossible

– Within realistic expectations
● E.g. write a program to compute pi

– :(

 2 / 9

Monte Carlo Methods

● But, we can approximate pi by:

– Sample uniformly from [0,1]2

– Count how many of those two-dimensional
points are more than length 1 away from
the origin

– The ratio of those points to the total should
approach pi/4

● Because a unit circle has pi/4 of its area
in the first quadrant

 3 / 9

Other Numerical Concerns

● Many models require integration

– Remember related rates, physical flow,
change in volume, etc. from calculus!

● Many integrals do not have a closed form
● We can approximate integrals similar to how

we approximated pi (which was really the
area under a curve!)

 4 / 9

Monte Carlo vs Riemann

● Looking closely at the above, this is similar to
classical Riemann sums

● Slight problem: in d dimensions, we would
need a huge number of points: Nd

– :(
● But we are saved by parallelism!

– Do many different simulations in parallel
– Take the average of all of them

 5 / 9

Monte Carlo Estimation

● If a single, sequential, estimator has a
standard deviation of s, then the mean of N
independent versions will have standard
deviation s/sqrt(N)

● So, more simulations = more accurate
● Requirement: having access to “good”

random number generation

 6 / 9

Pseudo-Random Numbers

● Recall that standard random numbers are
generated simply by “clock” arithmetic:

– Start at seed x0

– Return random number k by computing

xk = (a*xk-1 + b) mod m

– Where a, b, m are hard-coded
– The period is m, usually a large power of 2,

e.g. 231

 7 / 9

Lagged Fibonacci Numbers

● More general formulation, for any binary
operator:

● Where p and q are hard-coded with initial
values

– The randomness will be sensitive to this
– More choices = more chance that the

numbers don’t actually look that random

 8 / 9

Parallel Random Numbers

● How? With the previous recurrence, the
parallelism is not directly trivial

– Shared memory = big bottlenecks
– Split sequences, if starting points are close

together (e.g. adjacent seeds with big
step)

● But will be very strongly correlated (i.e.
not random-looking)

– Can use one process to generate “random”
start points for other workers (not too
shabby)

 9 / 9

Example: Ising Model

● Situation: modeling magnetism, where there
are some atoms arranged in a “lattice” and
they have spin, which dictates the magnetic
field

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

