
 1 / 16

Collectives

● Using combined information from
independent nodes

 2 / 16

Examples
● How would you realize the following

scenarios with MPI collectives?

– Let each process compute a random
number. You want to print the maximum of
these numbers to your screen.

– Each process computes a random number
again. Now you want to scale these
numbers by their maximum.

– Let each process compute a random
number. You want to print on what
processor the maximum value is
computed.

 3 / 16

Commands Used

● MPI_Bcast, MPI_Reduce, MPI_Gather,
MPI_Scatter

● MPI_All_... variants, MPI_....v variants
● MPI_Barrier, MPI_Alltoall, MPI_Scan

 4 / 16

Allreduce

● int MPI_Allreduce(const void* sendbuf,

 void* recvbuf, int count, MPI_Datatype datatype,

 MPI_Op op, MPI_Comm comm)

● Semantics:

– IN sendbuf: starting address of send buffer (choice)

– OUT recvbuf: starting address of receive buffer (choice)

– IN count: number of elements in send buffer (non-
negative integer)

– IN datatype: data type of elements of send buffer
(handle)

– IN op: operation (handle)

– IN comm: communicator (handle)

 5 / 16

Example 1

● Each node should generate a single random
number

● Use MPI_Allreduce to sum all the numbers
then calculate the average

– Divide by RAND_MAX to normalize between
0 and 1

– Should be approx 0.5
● The “operation” is MPI_SUM
● The “datatype” is MPI_FLOAT

 6 / 16

Example 2

● If one has two (large) vectors x and y, such
that each processor stores a “block” of each,
compute the inner product of the two vectors

● Recall, <x,y> (inner product) is:

–

● Method: Do the “local” inner product and
Allreduce with the MPI_SUM op

 7 / 16

Some necessities of C

● No more “new” command for arrays :(
● Instead, we call malloc directly!

– void* malloc(size_t)
– Returns an address
– Recall void ptrs can be cast to whatever

they need to be (but be careful!)
● Typical strategy: malloc(num * sizeof(type))
● Note: collectives are blocking!

– Have to wait if some processes aren’t there
yet

 8 / 16

Example 3

● All processes generate 500k random doubles
between 0 and 1

● Calculate the average, but use MPI_IN_PLACE,
which overwrites the input data with the
result

– Saves half the memory!
– Only need to calculate the average on one

node
– Can be cast and stored as a variable

 9 / 16

More MPI Operators

● Can also create your own!

– MPI_Op_create(MPI_User_function * func,
int commute, MPI_Op * op);

 10 / 16

Rooted Collectives

● We can designate one process with “root”
status, giving higher priority and extra
responsibility

● Usage example: instead of using Allreduce,
we can reduce to a single root node instead

– Fewer communications
– Less memory overhead

● Non-roots can use null receive buffer
– Need to broadcast results

 11 / 16

MPI_Reduce

● int MPI_Reduce(

const void* sendbuf, void* recvbuf, int
count, MPI_Datatype datatype,

MPI_Op op, int root, MPI_Comm comm)
● Note that root is designated by its rank

among the communicator
● Can also be done in place

 12 / 16

Example 4

● Each process generates its own random
number

● Reduce to a root, process 0, which reports the
max of all the numbers

● Include output from all processes to check
correctness

 13 / 16

Broadcasting

● MP_Bcast(void* buffer, int count,
MPI_Datatype t, int root, MPI_Comm c)

● Keep in mind buffer is an address

– So will be &value for an int, etc.
– But will be arrName for an array

● Result is that all non-roots get a copy of the
root node’s “buffer” variable

– Space must be pre-allocated (maybe need
a broadcast beforehand)!

 14 / 16

Example: Matrices

● Recall that for matrices A and B of sizes n-by-
k and k-by-m, respectively, their product, A*B
is defined as the n-by-m matrix C such that

That is, the (i,j) entry of C is the inner (or dot)
product of the ith row of A with the jth
column of B.

 15 / 16

Matrix Multiplication

● Question: how to distribute the matrix
product? Options? What collectives are
needed?

● Basic task: given a matrix A, find another
matrix, called A-1, so that A * A-1 is a square
matrix with 1’s on the main diagonal and 0’s
everywhere else (i.e. the identity matrix)

 16 / 16

Example from Numerical
Linear Algebra

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

