
 1 / 15

Recall Memory Hierarchy

 2 / 15

Hardware Concerns

● For truly HPC, we need to consider the
hardware and architecture on which our code
is going to operate

– How much of each type of memory is
available?

– Use this information to modify loops and
data flow operations

– Massive gainz!

 3 / 15

Caches

● Built “in between” the registers and main
memory (RAM)

● Higher bandwidth and lower latency than
main memory, by a large margin

● Main idea: if some piece of memory is used
multiple times, keep it in the cache

– Downside: we need to check the cache and
know what’s already in there

● Typically outside control of code, but we can
still take it into account!

 4 / 15

Caches

● Also have the overhead of cache tags, used
to reconstruct the original memory location
and information about data

● Comes in various sizes, typically L1, L2, etc.,
in decreasing order of performance and,
inversely, size

● Try the `lscpu` command in linux to get some
CPU info

● Be careful when benchmarking, L3 can be
very large (10s of megabytes!)

 5 / 15

Cache loads and misses

● Compulsary miss: the first time we use data,
it is definitely going to miss

– Hardware can still try and predict!
● Capacity miss: data was overwritten because

we filled the cache with newer data

– To avoid: partition access into “chunks”
● Conflict miss: two data get mapped to the

same location, but there were better
candidates for eviction

● Invalidation miss: data is invalid, another
(parallel) computation changed it in RAM

 6 / 15

Locality and Data Reuse

● We want to analyze when algorithms even
have the ability to leverage data reuse

● Example: vector addition has no data reuse
because each element is only used once :(

● Example: vector-matrix multiplication
definitely has some re-use because the
vector is used once for each row of the
matrix!

– Still need to consider the size of each to
make sure we don’t have capacity miss

 7 / 15

Cache replacement policies

● Least Recently Used (LRU) tracks the last
time each was used, replacing the oldest first

● FIFO removes the least recently saved data
first

● Random replacement flushes randomly

– Not as bad as you think!
● Removal is called a “flush”

 8 / 15

Types of Caches

● Need for mapping: where to put data from
cache back into RAM?

● Direct map: e.g. for 32-bit mem address, and
cache can hold 8K words (i.e. 64kB), meaning
16 bits to address. So direct mapping will
take last 16 bits from physical memory
address and remember in the cache

– Problem, if items are a whole cacheline
apart, we get a conflict miss!

– Benefit: very quick to compute

 9 / 15

Associative caching

● For some k > 1, map elements in such a way
that an element can appear in any of k
different cache locations

● This means, we need a k+1-way collision for
a conflict miss

● So for k large enough, relative to the data, we
may never get a conflict!

● Bad news: need to check k places to find data
in the cache, and need to do more
computation beforehand

 10 / 15

Cache Blocking

● Idea: stride across arrays in ways that allow
more L1 cache usage

 11 / 15

Using Cachelines

● Better to stride less than the cache line

 12 / 15

Loop Tiling

● Consider matrix A = A + B^T:

● Versus the “tiled” version:

 13 / 15

Loop Tiling

 14 / 15

Tiling Matrix Multiplicaion

● for kk=1..n/bs

for i=1..n

for j=1..n

S = 0
for k=(kk-1)*bs+1..kk*bs

s += a[i,k]*b[k,j]
c[i,j] += s

● Keeps rows of A in the cache for faster code

 15 / 15

Fastest MM comparison

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

