
 1 / 19

Point-to-Point Methods

● Used to distribute large data across
processes

● Allows nodes to send data directly between
each other

– “Send” and “Receive” will be two operative
ideas

● Luckily, all communication managed by the
communicator!

– We just need to know rank destinations

 2 / 19

Local vs global data

● Keep in mind that each processor will have to
index from 0, while that index may be in a
broader context!

int myfirst = ...; // calculate

for(int ilocal=0; ilocal<nlocal;
ilocal++) {

int iglobal = myfirst+ilocal;

array[ilocal] = f(iglobal);

}

 3 / 19

Example: Fourier Transform

● (More on this, mathematically, later)
● Used to transform a “signal” or “wave” from

time domain to frequency domain
● If f is a function on interval [0,1] then the

Fourier coefficients are given by

● So we approximate by:

 4 / 19

More Blocking Operations

● Recall that collective operations are blocking

– Consider reduce, gather, scatter, bcast
– Slowdown in prime detection lab?

● We sometimes need blocking to be
intentional

● Example: three-point averaging

– For vector x, compute y so that

 5 / 19

Three-point averaging

● Consider the problem when vector x is
disjointly distributed

● The first index computed by every processor
will be an issue!

– Needs an index “owned” by another active
processor

– Same happens with the last index

 6 / 19

Sending & Receiving

● “ping-pong”: A sends message to B, which
receives it and sends a reply:

// On A

MPI_Send(/* to: */ B);

MPI_Recv(/* from: */ B ...);
// On B

MPI_Recv(/* from: */ A ...);

MPI_Send(/* to: */ A);

 7 / 19

MPI_Send Semantics

● int MPI_Send(

const void* buf, int count, MPI_Datatype
datatype,

int dest, int tag, MPI_Comm comm)
● Notice similarity with rooted collectives
● This maybe non-blocking!!

– (For small messages)
– Use MPI_Ssend to block

 8 / 19

Receive Semantics

● int MPI_Recv(

void* buf, int count, MPI_Datatype
datatype,

int source, int tag, MPI_Comm comm,
MPI_Status *status)

● Status will encode other metadata of the data
– Receiver can use MPI_STATUS_IGNORE a lot of

the time

 9 / 19

Example: Ping-Pong

● Create two clients that send each other a
message back and forth

● Use a counter, if same parity as rank,
increment and send back to partner

 10 / 19

Simulating Ring Topology

● Create a “token” and pass it between all
processes in order of rank

● Keep in mind the “last” process has to send
to rank 0

● Add prints at each stage, notice the blocking
behavior!

 11 / 19

Probing & Dynamic Recv

● Finally use the MPI_Status object!
● It contains:

– The rank of the sender, MPI_SOURCE field
– The tag of the message, MPI_TAG field

● We can pass the status to MPI_Get_count to
determine the length of the message

– MPI_Get_count(MPI_Status*, MPI_Datatype,
int*)

– Ordinarily, Recv size specifies a maximum,
but may get less

 12 / 19

Why??

● In MPI_Recv, we can pass MPI_ANY_TAG and
MPI_ANY_SOURCE, to accept any values in
that field

– Remember that otherwise, these fields
have to match what we receive, all others
will be queued in a message buffer!

● So use the status to store information on
what the source and tag is

– Tags commonly used to differentiate
message types, specific for the application

 13 / 19

Tag Example

● Use c enums to specify the “purpose” of
some data

● enum my_tag_t {
day_tag, month_tag, year_tag

}
● Now we can add semantics to MPI_Send!
● MPI_Send(&var, 1, MPI_Int, dest, day_tag,

world)

 14 / 19

Probing

● MPI_Probe(int source, int tag, MPI_Comm
comm, MPI_Status* status)

– Gets the status before actually loading the
message out of the incoming buffer

– Regular blocking behavior
– This way, allocation for the receiving data

buffer can be done more efficiently

 15 / 19

Pairwise Exchange

● We can send and receive data at the same
time with MPI_Sendrcv(

const void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest,
int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status
*status

)
● Example: “every node send data to the right”

 16 / 19

Partial Operations

● “Scanning”

– Like a reduce, but leaves the first i
elements combined, on processor i

– MPI_Scan
● Indices are inclusive

– MPI_Exscan
● Indices are exclusive

● “Noop” destination, MPI_PROC_NULL can be
used to send nowhere, ignoring the send
completely

 17 / 19

Sorting Algorithm Example
● The “Odd-Even” sort on an array of n

elements works as follows:

– Distribute data across a linear array
– Repeat n times:

● Even processors do “compare-and-swap”
with right neighbor

● Odd processors do “compare-and-swap”
with right neighbor

● Compare-and-swap puts the larger of two
elements to the right of the smaller one

– One can use MPI_MIN and the other
MPI_MAX!

 18 / 19

In-place Sendrcv “Swap”

● If send and recv buffer have the same type
and size, we can us MPI_Sendrcv_replace to
use just one buffer to send and receive the
data

● int MPI_Sendrecv_replace(

void *buf, int count, MPI_Datatype
datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status
*status)

 19 / 19

Exercise

● Adapt the “odd-even” sort algorithm to
situation where each processor stores more
than one single element

● Consider the following diagram for
inspiration:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

