
 1 / 14

Processor Topology

● Describes the “scheme” or “structure” by
which different processors are connected

● Influences the method and cost of
communication between nodes

● Considerations include sharing of physical
links, congestion, distance between nodes

● (Quite different from mathematical notion of
topology, though related)

 2 / 14

Characterizations

● Using some tools from graph theory…
● Topologies are most generally represented by

a graph, where processors are nodes, and
edges represent direct connectivity (via
ethernet or other hardware)

● Typically want (and assume) that all
processors have the same edge degree in the
graph

 3 / 14

Characterizations

● For a network topology graph G, define its
diameter, d(G), as the longest shortest path
between any two nodes in the graph.

– i.e. the worst case communication cost
between nodes, assuming routing is done
intelligently

● Exercise: can you put concrete bounds on the
diameter of a graph in terms of the number
of nodes and edges? How about vice versa?

 4 / 14

Characterizations

● Messages competing for delivery to a node may
cause network congestion, or contention

● Define the bisection width as the smallest number
of edges which, when removed, would partition the
network into two connected graphs

– Ex. for a linear array, the b.w. is 1
● A bisection width of w guarantees that w messages

can be in transit simultaneously in the network

– However, one can typically have more in special
cases

 5 / 14

Bisection and Bandwith

● Bisection width also gives a quantification of
redundancy; if there are failures in the
communication hardware, we know how many
alternate routes are still available

● However, we also need to include a measure of
how much data can be sent across each
connection

● The bisection bandwidth is thus the product of
the bisection width and the bandwidth of the
wires

 6 / 14

Linear arrays and rings

● Linear array: connect a processor Pi to both
Pi+1 and Pi-1

– In graph theory, this is a Path Graph
● We can optionally connect the first to the last

processor to get a ring configuration

– In graph theory, known as a Cycle Graph
● If our network is a linear array, what are the

implications for the cost of collectives such as
broadcasting?

 7 / 14

Mesh arrangements

● Processors can also be arranged into a grid-
like coordinate system

– In addition to rank, each processor will also
get coordinates, e.g. (i,j,k) for a 3-D mesh

● Optionally, we can transform the mesh into a
“torus” by connecting edge nodes to opposite
edge nodes

● Exercise: what is the bandwidth, diameter, of
grid arrangements? Torus arrangements?

 8 / 14

Hypercubes
● Used to get good

“nearest-neighbor”
behavior, with a
smaller diameter
than a mesh

● Don’t want a fully-
connected network

● Formed by 2n
processors

● Easily described by
bit sequences

Exercise: What is the diameter?
Bisection width?

 9 / 14

Hypercubes

● Can “embed” a 1-D mesh into an N-D
hypercube using Gray Codes

● It follows that we can also embed higher-dim
meshes! (How?)

 10 / 14

Declaring Topologies in MPI

● “Virtually” defined topologies

– MPI_UNDEFINED
– MPI_CART
– MPI_GRAPH
– MPI_DIST_GRAPH

● Use MPI_Topo_test(MPI_Comm, int*) to check
which one your communicator is using

 11 / 14

MPI Grids
● Create a grid:

int MPI_Cart_create(
MPI_Comm comm_old, // original comm
int ndims, // dimension of the grid
int *dims, // # of coords in each axis
int *periods, // whether each is periodic
int reorder, // whether rank can change
MPI_Comm *comm_cart // new comm

)
● MPI_Cart_coords(MPI_Comm, int, int, int*)
● MPI_Cart_rank(MPI_Comm, int*, int*)

 12 / 14

Grid example

Note:
● The two different communicators
● Periodicity is axis-by-axis
● The rank in the old communicator may change!

● This may happen due to network and hardware constraints, to better
represent the grid structure

● Inside the grid comm, if we specify a processor coordinates outside the
grid, will be regarded as MPI_PROC_NULL!

● Typically will want non-blocking communication
● MPI_Isend, MPI_Irecv

 13 / 14

General Graph Topology

● Can construct arbitrary graph structure
between nodes

– MPI_Dist_graph_create
● Can also specify “weight” of edges between

nodes

– Maybe communication is asymmetric!
● Minimal description:

– Number of neighbors for each node
– Ranks of the neighbors

 14 / 14

Topology-based Collectives

● MPI_Neighbor_allgather,
MPI_Neighbor_alltoall, with standard variants

● MPI_Dist_graph_neighbors_count
MPI_Dist_graph_neighbors_count

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

