
 1 / 19

File I/O and Shared Memory

● Base type: MPI_File
● To open:

– MPI_File_open(comm, fname, mode, info,
fh)

● Fname is a string
● Mode is an access mode

– e.g. MPI_MODE_RDWR
● Info can contain other directives for file

access, or MPI_INFO_NULL
● Fh is the MPI_File to use later

 2 / 19

Parallel File I/O

● Can manipulate files across processors
similar to send and receive

– MPI_File_seek, sets writer position
– MPI_File_read, MPI_File_read_at, etc.
– MPI_File_write, MPI_File_write_at, etc.

● Can also use MPI_File_set_view to dictate
which parts of a file will be used by the
processor

– Can build in displacements, e.g. matrix
columns!

 3 / 19

File Views

 4 / 19

File Views

 5 / 19

Custom Datatypes

● We can create derived datatypes, similar to
structured datatypes in other languages

MPI_Datatype newtype;

MPI_Type_<sometype>(<old specs>,
&newtype);
MPI_Type_commit(&newtype);

/* code that uses your new type */

MPI_Type_free(&newtype);

 6 / 19

Datatype creation

● MPI_Type_contiguous – contiguous blocks of
data

● MPI_Type_vector – for strided data (e.g.
matrix columns)

● MPI_Type_create_subarray – subsets of higher
dimensional block

● MPI_Type_struct – for irregular data
● MPI_Type_indexed – for irregularly strided

data

 7 / 19

Datatype Creation

● MPI_Type_commit – tells MPI to do the
indexing calculations for the type (which
bytes go where)

● MPI_Type_free – declares the type no longer
needed

– The definition will be MPI_DATATYPE_NULL.
– Communication using this datatype, that

was already started, will be completed.
– Datatypes that are defined in terms of this

data type will still be usable.

 8 / 19

Contiguous Data

● MPI_Type_contiguous(int count,
MPI_Datatype oldtype, MPI_Datatype
*newtype)

– e.g. you could create a matrix row as its
own type, consisting of “m” MPI_FLOAT
elements

 9 / 19

Non-contiguous Data

● MPI_Type_vector(count, blocklength, stride,
oldtype, newtype)

 10 / 19

Communicating Datatypes

● Datatypes can differ on the sender and
receiver!

● E.g. the sender may create a vector, sending
the results to a contiguous datatype on the
receiver

 11 / 19

Example

 12 / 19

Shared Memory

● Two (or more) processors can access each
other’s memory through pointers

● Bad use case: remote update

– Same issues with traditional shared
memory

● Good use case: read-only from large dataset

– Think of your matrix labs!
● MPI can optimize shared memory access,

giving you faster code “for free” over
message-passing

 13 / 19

Shared Memory Tools

● Use “MPI_Comm_split_type” to find processes
on the same shared memory

● Use “MPI_Win_allocate_shared” to create a
window between processes

● Use “MPI_Win_shared_query” to get a pointer
to another process’ data

● Can use “memcpy” instead of MPI_Put

 14 / 19

Invoking Shared Memory

MPI_Info info;

MPI_Comm_split_type(MPI_COMM_WORLD,

 MPI_COMM_TYPE_SHARED,procno,

 info,&sharedcomm);

MPI_Comm_size(sharedcomm,&new_nprocs);

MPI_Comm_rank(sharedcomm,&new_procno);

ASSERT(new_procno<CORES_PER_NODE);

 15 / 19

Application

● Quicksort in shared memory:

– Use the parallel prefix method to partition
in log(n) time:

● Compute Xi = #{aj | j < i and aj < p} for
a given pivot p

● Do the same for the bigger elements
● Now we know where each one goes!

– After the O(log(n)) steps, total is O(log2(n))
time!

 16 / 19

Extra Useful Tool: Wallclock
● MPI Offers a tool to try calculating time since

an event in the past: MPI_Wtime
● For parallel processes, the clock is usually not

global :(
● Typical usage:

MPI_Barrier(comm);

t = MPI_Wtime();

// do stuff

MPI_Barrier(comm);
– t = MPI_Wtime() - t; // offset by first time

 17 / 19

Submitting to the cluster

● (See course webpage for extra instructions)
● Create a bash script with “SBATCH”

parameters to control the MPI environment
● Queue the job with “sbatch <filename>”
● The output will be stored in the file indicated

by the script parameters

 18 / 19

Example:

● Read a large matrix from a shared MPI file

– https://www.kaggle.com/bradklassen/pga-t
our-20102018-data

● (Try a small csv file first)
● Put the data into distributed matrices
● Will adapt Gauss-Jordan to now work with this

large matrix!

https://www.kaggle.com/bradklassen/pga-tour-20102018-data
https://www.kaggle.com/bradklassen/pga-tour-20102018-data

 19 / 19

Coming up: Benchmarking

● Using the “TAU” software package
● Requires compiling software with the TAU

compiler wrapper script
● Runs like normal, output goes into “profile”

files
● Use the TAU “pprof” utility to see the

aggregate summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

