Graph Algorithms

- Recall basic Graph definition:
- A graph is a pair (of sets) $G=(V, E)$
- V is a finite set, called the "vertices"
- E is a set of pairs of elements from V, denoting the "edges" of the graph

Review of types of graphs

- Weighted: comes with a function w: $\mathrm{E} \rightarrow \mathrm{R}$
- Denotes weight on each edge
- Simple: no self-loop edges
- Directed: edges are one-way
- Acyclic: no cycles
- Complete: all possible edges
- Connected: path between every pair of vertices

Important Graph Problems

- Minimal spanning tree
- (in a weighted graph): find the smallest spanning tree, in terms of total edge weight
- Calculate shortest paths between nodes
- Either weighted or unweighted
- Maximal independent set
- Largest set of vertices that have no common edges

Prim's Algorithm

- Idea: start from a single node, then iteratively and "greedily" add vertices to the MST until all are added

```
\(\operatorname{MST-PRIM}(G, w, r)\)
    for each \(u \in G . V\)
    \(2 \quad\) u.key \(=\infty\)
        \(u . \pi=\) NIL
    \(r . k e y=0\)
    \(Q=G . V\)
    while \(Q \neq \emptyset\)
        \(u=\operatorname{Extract-Min}(Q)\)
        for each \(v \in G \cdot \operatorname{Adj}[u]\)
        if \(v \in Q\) and \(w(u, v)<v . k e y\)
            v. \(\pi=u\)
            \(\nu . k e y=w(u, v)\)
```


Parallelizing Prim's Alg.

- Distribute columns or rows of the adjacency matrix
- The inner-loop can be re-framed as a reduce operation, using the MAX operation
- The structure Q can be a priority queue for efficiency, also distributed.
- Then the selection of the min can be a reduction as well
- Can keep a copy of the full queue on each node for easier bookkeeping

Parallel Prim's Algorithm

- Cost to select the minimum entry
- O(n/p): scan n/p local part of vector on processors
- O(log p) all-to-one reduction across processors
- Broadcast next node selected for membership
- O(log p)
- Cost of locally updating d vector
- O(n/p): replace d with min of d and matrix row
- Parallel time per iteration
- O(n/p + log p)
- Total parallel time
- $O(n 2 / p+n \log p)$

Single-Start Shortest Path

- Use BFS!
- The "d" property after completion is the length of the s.p.
- The "pi" attribute is the predecessor in that s.p.
- Not very easy to make parallel :(
$\operatorname{BFS}(G, s)$
for each vertex $u \in G . V-\{s\}$

$$
2
$$

$$
3
$$

$$
4
$$5678

9 Enqueue (Q, s)
10 while $Q \neq \emptyset$
$u=\operatorname{DEQUEUE}(Q)$
for each $v \in G . \operatorname{Adj}[u]$
if v.color $==$ WHITE
v.color $=$ GRAY
v. $d=u . d+1$
$\nu . \pi=u$
Enqueue (Q, v)
u.color $=$ BLACK

All-Pairs Shortest Path

- Do them all at once!
- Floyd-Warshall Algorithm:
- Use dynamic programming
- The length of the min path between nodes has a "nice" recursive structure
- Idea: iterate $\mathrm{k}=0$ to $|\mathrm{V}|$ times, each time increasing the length of all paths

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}
$$

Floyd-Warshall Algorithm

Floyd-Warshall (W)
$1 n=W$.rows
$2 \quad D^{(0)}=W$
3 for $k=1$ to n
$4 \quad$ let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new $n \times n$ matrix
$5 \quad$ for $i=1$ to n
$6 \quad$ for $j=1$ to n
$7 \quad d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$
8 return $D^{(n)}$

- We can "save" the paths in a matrix as we calculate the distance updates:

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
$$

Parallel Floyd-Warshall

- Split the Adjacency matrix block-wise and parallelize the two inner loops:

```
procedure FLOYD_2DBLOCK( }\mp@subsup{D}{}{(0)}
begin
    for }k:=1\mathrm{ to }n\mathrm{ do
    begin
        each process }\mp@subsup{P}{i,j}{}\mathrm{ that has a segment of the }\mp@subsup{k}{}{\mathrm{ th }}\mathrm{ row of }\mp@subsup{D}{}{(k-1);
            broadcasts it to the }\mp@subsup{P}{*,j}{}\mathrm{ processes;
        each process }\mp@subsup{P}{i,j}{}\mathrm{ that has a segment of the }\mp@subsup{k}{}{\mathrm{ th column of }\mp@subsup{D}{}{(k-1)};
            broadcasts it to the }\mp@subsup{P}{i,*}{}\mathrm{ processes;
        each process waits to receive the needed segments;
        each process }\mp@subsup{P}{i,j}{}\mathrm{ computes its part of the D D (k) matrix;
    end
end FLOYD_2DBLOCK
```


Parallel Floyd-Warshall

Independent Sets

- Want to find the largest independent set of vertices (no edges between)
- Simple naive algorithm:
- Start with an empty set of vertices
- Add vertex with smallest degree; remove its neighbors from G
- Repeat this until G has no vertices left
- Very difficult to parallize!
- As in, can't be done :(

Luby's Max Ind. Set

- Randomized!
- Algorithm:
- Start with an empty set
- Assign random numbers to each vertex
- Add vertices that got a number smaller than all neighbors to the set, remove nbrs
- Repeat above two steps until G empty
- Good to parallelize?
- Yes!

Strategies for Graphs

- Spoiler: use linear algebra!
- Easy to distribute
- Lets us leverage data reuse and cache locality
- Use the adjacency matrix of the graph. E.g:
- If we have vector of distances from a single vertex (e.g. after BFS), we can re-formulate the kinds of loops above
- Define a custom "inner product":

$$
y^{t}=x^{t} G \equiv \forall_{i}: y_{j}=\min \left\{x_{j}, \min _{i: G_{i j} \neq 0}\left\{x_{i}+1\right\}\right\}
$$

Example: Bellman-Ford

- Finds shortest path from a single source, allowing negative edge weights

Let s be given, and set $d(s)=0$
Set $d(v)=\infty$ for all other nodes v
for $|E|-1$ times do for all edges $e=(u, v)$ do

Relax: if $d(u)+w_{u v}<d(v)$ then

$$
\text { Set } d(v) \leftarrow d(u)+w_{u v}
$$

- Easily parallelized now, using the above vector-matrix product!

Example: Search Engine

- Model web-pages with hyperlinks between them as a graph:

$$
L_{i j}= \begin{cases}1 & \text { document } i \text { points to document } j \\ 0 & \text { otherwise }\end{cases}
$$

- Every webpage will have an "authority" and "hub" score
- If we say x is the vector of authorities and y the vector of hub scores:

$$
\begin{aligned}
& x=L^{t} y \\
& y=L x
\end{aligned}
$$

HITS
 (hypertext-induced search)

- Using the previous formulation (after some substitution), we get $x=L L^{t} x$ and $y=L^{t} L y$
- In other words, this is an eigenvalue problem!
- Saved by linear algebra again!
- How do we compute these then?

Eigenvalue Problems

<preach>
Some of the most important types of problems in practical scenarios. Period.
</preach>
- Most of "data analysis" is really just solving fancy eigenvalue problems
- Eigenvalues capture "importance" of data, as just mentioned earlier in the context of webpages

Eigenvalue Problems

- Eigenvalues/Eigenvectors:
- Given a matrix A, we say that x is an eigenvector with corresponding (scalar) eigenvalue tif

$$
A x=t x
$$

- i.e. Applying A to x only stretches the vector
- i.e. x lies along one of the important "directions" of the matrix A
- Matrices typically have many eigenvectors

Eigenvalues/Eigenvectors

Solving Eigenvalue Systems

- Given a matrix A
- Choose a vector (hopefully smartly) x_{0}
- Perform the sequential update: $x_{i}=A x_{i-1}$
- This is called the power method because we end up with $x_{i}=A^{i} x_{0}$.
- If we got lucky with starting point, we would simply have $A x_{0}=\lambda x_{0}$ and $x_{i}=\lambda^{i} x_{0}$.

Example

- Try the following matrix A and starting vector

$$
A=\left(\begin{array}{ccccc}
1 & 1 & & & \\
& 1 & 1 & & \\
& & \ddots & \ddots & \\
& & & 1 & 1 \\
& & & & 1
\end{array}\right), \quad x=(0, \ldots, 0,1)^{t} .
$$

- Try by hand for small examples. What happens?

Back to HITS...

Input: Adjacency matrix A of size $n \times m$ and number of iterations Output: Authority and hub score vectors \mathbf{x} and \mathbf{y} respectively $\mathrm{x}=(1,1, \ldots, 1) \in \mathcal{R}^{m} ; \mathbf{y}=(1,1, \ldots, 1) \in \mathcal{R}^{n}$;
while Iterations still left do // Can detect when x \& y don't change anymore
for $i=1,2, \ldots, m$ do

$$
x_{j}=\sum_{a_{i j}=1} y_{i} ; \quad / / \text { This is a vector-matrix product! }
$$

end
for $j=1,2, \ldots, n$ do

$$
y_{i}=\sum_{a_{i j}=1} x_{j} ; \quad \text { // This is a vector-matrix product! }
$$

end
Normalize(x); Normalize(y);
end

- Note: normalization means adjust to have unit length (root of sum of squares)

PageRank

- Start with vector $p=e=$ vector of all 1's
- Use the adjacency matrix M where $M_{i j}=1$ if page j has a link to page I
- Then normalize it so that columns have a sum of 1 , making it a stochastic matrix
- Choose small constant s > 0 to represent the chance of moving to a page that is not linked
- Iterate the process:
$-p=s^{*} M^{*} p+s^{*} e$

PageRank

- Assuming the above process converges, what can we say analytically about the situation?
- Fixed point is: $p=s^{*} M^{*} p+s^{*} e$
- Then ($\left.I_{n}-s M\right) p=s^{*} e$
- So what we really need is $\left(I_{n}-s M\right)$ to have an inverse
- But if it does, it must be of the form
$-I_{n}+s M+s^{2} M^{2}+s^{2} M^{2} \ldots$
- Which does converge!

PageRank

- Using the above, we can also compute the inverse of ($\mathrm{I}_{\mathrm{n}}-\mathrm{sM}$) and multiply $\mathrm{s}^{*} e$ by it
- This gives a way to compute pagerank by a much simpler series of matrix-vector multiplications
- Recall that if we disallow "teleportation" by setting $s=0$, the calculating the pagerank is the power iteration:
- $\mathrm{p}^{k}=\mathrm{M}^{*} \mathrm{p}^{\mathrm{k}-1}$
- Which is (generally) a sparse product!

