
 1 / 26

Graph Algorithms

● Recall basic Graph definition:

– A graph is a pair (of sets) G = (V,E)
● V is a finite set, called the “vertices”
● E is a set of pairs of elements from V,

denoting the “edges” of the graph

 2 / 26

Review of types of graphs

● Weighted: comes with a function w: E → R

– Denotes weight on each edge
● Simple: no self-loop edges
● Directed: edges are one-way
● Acyclic: no cycles
● Complete: all possible edges
● Connected: path between every pair of

vertices

 3 / 26

Important Graph Problems

● Minimal spanning tree

– (in a weighted graph): find the smallest
spanning tree, in terms of total edge
weight

● Calculate shortest paths between nodes

– Either weighted or unweighted
● Maximal independent set

– Largest set of vertices that have no
common edges

 4 / 26

Prim’s Algorithm

● Idea: start from a single node, then iteratively
and “greedily” add vertices to the MST until
all are added

 5 / 26

Parallelizing Prim’s Alg.

● Distribute columns or rows of the adjacency
matrix

● The inner-loop can be re-framed as a reduce
operation, using the MAX operation

● The structure Q can be a priority queue for
efficiency, also distributed.

– Then the selection of the min can be a
reduction as well

– Can keep a copy of the full queue on each
node for easier bookkeeping

 6 / 26

Parallel Prim’s Algorithm
● Cost to select the minimum entry

– O(n/p): scan n/p local part of vector on processors
– O(log p) all-to-one reduction across processors

● Broadcast next node selected for membership

– O(log p)
● Cost of locally updating d vector

– O(n/p): replace d with min of d and matrix row
● Parallel time per iteration

– O(n/p + log p)
● Total parallel time

– O(n2/p + n log p)

 7 / 26

Single-Start Shortest Path

● Use BFS!

– The “d” property
after completion
is the length of
the s.p.

– The “pi” attribute
is the predecessor
in that s.p.

● Not very easy to
make parallel :(

 8 / 26

All-Pairs Shortest Path

● Do them all at once!
● Floyd-Warshall Algorithm:

– Use dynamic programming
– The length of the min path between nodes

has a “nice” recursive structure
– Idea: iterate k = 0 to |V| times, each time

increasing the length of all paths

 9 / 26

Floyd-Warshall Algorithm

● We can “save” the paths in a matrix as we
calculate the distance updates:

 10 / 26

Parallel Floyd-Warshall

● Split the Adjacency matrix block-wise and
parallelize the two inner loops:

 11 / 26

Parallel Floyd-Warshall

 12 / 26

Independent Sets

● Want to find the largest independent set of
vertices (no edges between)

● Simple naive algorithm:

– Start with an empty set of vertices
– Add vertex with smallest degree; remove

its neighbors from G
● Repeat this until G has no vertices left

● Very difficult to parallize!

– As in, can’t be done :(

 13 / 26

Luby’s Max Ind. Set

● Randomized!
● Algorithm:

– Start with an empty set
– Assign random numbers to each vertex
– Add vertices that got a number smaller

than all neighbors to the set, remove nbrs
– Repeat above two steps until G empty

● Good to parallelize?

– Yes!

 14 / 26

Strategies for Graphs
● Spoiler: use linear algebra!

– Easy to distribute
– Lets us leverage data reuse and cache

locality
● Use the adjacency matrix of the graph. E.g:

– If we have vector of distances from a single
vertex (e.g. after BFS), we can re-formulate
the kinds of loops above

– Define a custom “inner product”:

 15 / 26

Example: Bellman-Ford

● Finds shortest path from a single source,
allowing negative edge weights

● Easily parallelized now, using the above
vector-matrix product!

 16 / 26

Example: Search Engine

● Model web-pages with hyperlinks between
them as a graph:

● Every webpage will have an “authority” and
“hub” score

● If we say x is the vector of authorities and y
the vector of hub scores:

 17 / 26

HITS
(hypertext-induced search)

● Using the previous formulation (after some
substitution), we get

● In other words, this is an eigenvalue problem!

– Saved by linear algebra again!
● How do we compute these then?

 18 / 26

Eigenvalue Problems

<preach>

Some of the most important types of
problems in practical scenarios. Period.

</preach>
● Most of “data analysis” is really just solving

fancy eigenvalue problems
● Eigenvalues capture “importance” of data, as

just mentioned earlier in the context of web-
pages

 19 / 26

Eigenvalue Problems

● Eigenvalues/Eigenvectors:

– Given a matrix A, we say that x is an
eigenvector with corresponding (scalar)
eigenvalue t if

Ax = tx
– i.e. Applying A to x only stretches the

vector
– i.e. x lies along one of the important

“directions” of the matrix A
● Matrices typically have many eigenvectors

 20 / 26

Eigenvalues/Eigenvectors

 21 / 26

Solving Eigenvalue Systems

● Given a matrix A

● Choose a vector (hopefully smartly) x0

● Perform the sequential update:
● This is called the power method because we

end up with
● If we got lucky with starting point, we would

simply have

 22 / 26

Example

● Try the following matrix A and starting vector

● Try by hand for small examples. What
happens?

 23 / 26

Back to HITS...

● Note: normalization means adjust to have
unit length (root of sum of squares)

// This is a vector-matrix product!

// This is a vector-matrix product!

// Can detect when x & y don’t change anymore

 24 / 26

PageRank

● Start with vector p = e = vector of all 1’s

● Use the adjacency matrix M where Mij = 1 if
page j has a link to page I

– Then normalize it so that columns have a
sum of 1, making it a stochastic matrix

● Choose small constant s > 0 to represent the
chance of moving to a page that is not linked

● Iterate the process:

– p = s*M*p + s * e

 25 / 26

PageRank

● Assuming the above process converges, what
can we say analytically about the situation?

● Fixed point is: p = s*M*p + s*e

● Then (In – sM) p = s*e

● So what we really need is (In- sM) to have an
inverse

● But if it does, it must be of the form

– In + sM + s2M2 + s2M2 …

– Which does converge!

 26 / 26

PageRank

● Using the above, we can also compute the
inverse of (In- sM) and multiply s*e by it

● This gives a way to compute pagerank by a
much simpler series of matrix-vector
multiplications

● Recall that if we disallow “teleportation” by
setting s = 0, the calculating the pagerank is
the power iteration:

– pk = M*pk-1

– Which is (generally) a sparse product!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

