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Graph Algorithms

● Recall basic Graph definition:

– A graph is a pair (of sets) G = (V,E)
● V is a finite set, called the “vertices”
● E is a set of pairs of elements from V, 

denoting the “edges” of the graph
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Review of types of graphs

● Weighted: comes with a function w: E → R

– Denotes weight on each edge
● Simple: no self-loop edges
● Directed: edges are one-way
● Acyclic: no cycles
● Complete: all possible edges
● Connected: path between every pair of 

vertices
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Important Graph Problems

● Minimal spanning tree

– (in a weighted graph): find the smallest 
spanning tree, in terms of total edge 
weight

● Calculate shortest paths between nodes

– Either weighted or unweighted
● Maximal independent set

– Largest set of vertices that have no 
common edges
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Prim’s Algorithm

● Idea: start from a single node, then iteratively 
and “greedily” add vertices to the MST until 
all are added
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Parallelizing Prim’s Alg.

● Distribute columns or rows of the adjacency 
matrix

● The inner-loop can be re-framed as a reduce 
operation, using the MAX operation

● The structure Q can be a priority queue for 
efficiency, also distributed.

– Then the selection of the min can be a 
reduction as well

– Can keep a copy of the full queue on each 
node for easier bookkeeping 
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Parallel Prim’s Algorithm
● Cost to select the minimum entry

– O(n/p): scan n/p local part of vector on processors
– O(log p) all-to-one reduction across processors

● Broadcast next node selected for membership

– O(log p)
● Cost of locally updating d vector

– O(n/p): replace d with min of d and matrix row
● Parallel time per iteration

– O(n/p + log p)
● Total parallel time

– O(n2/p + n log p)
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Single-Start Shortest Path

● Use BFS!

– The “d” property 
after completion 
is the length of 
the s.p.

– The “pi” attribute 
is the predecessor 
in that s.p.

● Not very easy to 
make parallel :( 
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All-Pairs Shortest Path

● Do them all at once!
● Floyd-Warshall Algorithm:

– Use dynamic programming
– The length of the min path between nodes 

has a “nice” recursive structure
– Idea: iterate k = 0 to |V| times, each time 

increasing the length of all paths
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Floyd-Warshall Algorithm

● We can “save” the paths in a matrix as we 
calculate the distance updates:
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Parallel Floyd-Warshall

● Split the Adjacency matrix block-wise and 
parallelize the two inner loops:
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Parallel Floyd-Warshall
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Independent Sets

● Want to find the largest independent set of 
vertices (no edges between)

● Simple naive algorithm:

– Start with an empty set of vertices
– Add vertex with smallest degree; remove 

its neighbors from G
● Repeat this until G has no vertices left

● Very difficult to parallize!

– As in, can’t be done :(
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Luby’s Max Ind. Set

● Randomized!
● Algorithm:

– Start with an empty set
– Assign random numbers to each vertex
– Add vertices that got a number smaller 

than all neighbors to the set, remove nbrs
– Repeat above two steps until G empty

● Good to parallelize?

– Yes!
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Strategies for Graphs
● Spoiler: use linear algebra!

– Easy to distribute
– Lets us leverage data reuse and cache 

locality
● Use the adjacency matrix of the graph. E.g:

– If we have vector of distances from a single 
vertex (e.g. after BFS), we can re-formulate 
the kinds of loops above

– Define a custom “inner product”:
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Example: Bellman-Ford

● Finds shortest path from a single source, 
allowing negative edge weights

● Easily parallelized now, using the above 
vector-matrix product!
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Example: Search Engine

● Model web-pages with hyperlinks between 
them as a graph:

● Every webpage will have an “authority” and 
“hub” score

● If we say x is the vector of authorities and y 
the vector of hub scores:
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HITS 
(hypertext-induced search)

● Using the previous formulation (after some 
substitution), we get

● In other words, this is an eigenvalue problem!

– Saved by linear algebra again!
● How do we compute these then?
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Eigenvalue Problems

<preach>

Some of the most important types of 
problems in practical scenarios. Period.

</preach>
● Most of “data analysis” is really just solving 

fancy eigenvalue problems
● Eigenvalues capture “importance” of data, as 

just mentioned earlier in the context of web-
pages
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Eigenvalue Problems

● Eigenvalues/Eigenvectors:

– Given a matrix A, we say that x is an 
eigenvector with corresponding (scalar) 
eigenvalue t if

Ax = tx
– i.e. Applying A to x only stretches the 

vector
– i.e. x lies along one of the important 

“directions” of the matrix A
● Matrices typically have many eigenvectors



  20 / 26

Eigenvalues/Eigenvectors
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Solving Eigenvalue Systems

● Given a matrix A

● Choose a vector (hopefully smartly) x0 

● Perform the sequential update: 
● This is called the power method because we 

end up with 
● If we got lucky with starting point, we would 

simply have 
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Example

● Try the following matrix A and starting vector

● Try by hand for small examples. What 
happens?
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Back to HITS...

● Note: normalization means adjust to have 
unit length (root of sum of squares)

// This is a vector-matrix product!

// This is a vector-matrix product!

// Can detect when x & y don’t change anymore
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PageRank

● Start with vector p = e = vector of all 1’s

● Use the adjacency matrix M where Mij = 1 if 
page j has a link to page I

– Then normalize it so that columns have a 
sum of 1, making it a stochastic matrix

● Choose small constant s > 0 to represent the 
chance of moving to a page that is not linked

● Iterate the process:

– p = s*M*p + s * e
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PageRank

● Assuming the above process converges, what 
can we say analytically about the situation?

● Fixed point is: p = s*M*p + s*e

● Then (In – sM) p = s*e

● So what we really need is (In- sM) to have an 
inverse

● But if it does, it must be of the form

– In + sM + s2M2 + s2M2 …

– Which does converge!
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PageRank

● Using the above, we can also compute the 
inverse of (In- sM) and multiply s*e by it

● This gives a way to compute pagerank by a 
much simpler series of matrix-vector 
multiplications

● Recall that if we disallow “teleportation” by 
setting s = 0, the calculating the pagerank is 
the power iteration:

– pk = M*pk-1

– Which is (generally) a sparse product!
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