Thm: If S and T are denumerable sets then SUT is a denumerable set.

Proof:
First, suppose that S and T are disjoint.

Lemma 1: If S and T are disjoint denumerable sets then SUT is a denumerable set.

Since S and T are denumerable there exists bijections \(f: \mathbb{N} \rightarrow S \) and \(g: \mathbb{N} \rightarrow T \).
Let \(h \) be defined as follows:

\[
 h(n) = \begin{cases}
 f(n/2) & \text{if } n \text{ is even} \\
 g((n+1)/2) & \text{if } n \text{ is odd}
 \end{cases}
\]

Then \(h: \mathbb{N} \rightarrow SUT \) is a bijection. To show that \(h \) is onto, let \(x \) be an element of SUT. Then either \(x \) is in S or \(x \) is in T. If \(x \) is in S then there exists \(n \) such that \(f(n) = x \) since \(f \) is a bijection into S. In this case \(h(2n) = x \). On the other hand, if \(x \) is in T then there exist \(n \) such that \(g(n) = x \) and \(h(2n-1) = g(((2n-1)+1)/2) = g(n) = x \). In either case there is an \(m \) in \(\mathbb{N} \) such that \(h(m) = x \) so \(h \) is onto. To see that \(h \) is one to one, suppose that \(h(n) = h(m) \) for some \(n \) and \(m \) in \(\mathbb{N} \). Either \(n \) and \(m \) are both even, both are odd or one is even and the other is odd.

If \(n \) and \(m \) are both even then \(h(n) = f(n/2) = h(m) = f(m/2) \); so \(f(m/2) = f(n/2) \). However, since \(f \) is one to one, this means that \(n/2 = m/2 \) and \(m = n \).

If, on the other hand \(n \) and \(m \) are both odd then \(h(n) = g((n+1)/2) = h(m) = g((m+1)/2) \); so \(g((n+1)/2) = g((m+1)/2) \). Since \(g \) is one to one this means that \((n+1)/2 = (m+1)/2 \) which implies that \(m = n \).

The only other possibility is that one is odd and the other even. WLOG, assume \(n \) is even and \(m \) is odd. This means that \(h(n) = f(n/2) \) is in S and \(h(m) = g((m+1)/2) \) is in T. But we assumed that S and T were disjoint so this cannot happen.

Therefore whenever \(h(n) = h(m) \), \(n = m \) and \(h \) is one to one. There is thus a bijection \(h: \mathbb{N} \rightarrow SUT \) so SUT is denumerable by definition.

Thus we know that the union of any two disjoint denumerable sets is denumerable.

Lemma 2: If S is denumerable and T is finite and S and T are disjoint then SUT is denumerable.

Proof: Since S is denumerable there exists a bijection \(f: \mathbb{N} \rightarrow S \). Since T is finite, T has \(n \) elements for some natural number \(n \) and there is a bijection \(g: \mathbb{N}_n \rightarrow T \). Let \(h: \mathbb{N} \rightarrow SUT \) be defined as follows:

\[
 h(m) = \begin{cases}
 g(m) & \text{if } m \leq n \\
 f(m-n) & \text{if } m > n
 \end{cases}
\]

If \(x \) is in SUT then either \(x \) is in S or \(x \) is in T. If \(x \) is in S then there exists a natural number \(r \) such that \(f(r) = x \), since \(f \) is onto. Then \(h(r+n) = f(r) = x \). If on the other hand, \(x \) is in T then there exists a number, \(r \) in \(\mathbb{N}_n \) such that \(g(r) = x \). Then \(h(r) = x \) as well. So in both cases there is a natural number \(m \) such that \(h(m) = x \) so \(h \) is onto.

The function \(h \) is one to one as well. Suppose \(h(r) = h(m) \) for some natural numbers \(r \) and \(m \). Either, \(r \) and \(m \) are both in \(\mathbb{N}_n \), neither is in \(\mathbb{N}_n \) or one is in \(\mathbb{N}_n \) and the other is not. If both are in \(\mathbb{N}_n \) then \(h(r) = g(r) = h(m) = g(m) \) and since \(g \) is one to one, \(r = m \). If neither is in \(\mathbb{N}_n \) then both are greater than \(n \) and \(h(r) = f(r-n) = h(m) = f(m-n) \) and since \(f \) is one to one, \(r-n = m-n \) or \(r = m \). If, on the other hand \(r \leq n \) and \(m > n \) then \(h(r) \) is in T and \(h(m) \) is in S, since S and T are disjoint it is not possible for \(h(r) \) to equal \(h(m) \) in this case. Thus whenever \(h(m) = h(r) \) then \(m = r \) so \(h \) is one to one.
Now, suppose S and T are denumerable (but not disjoint) sets. Let A = the intersection of S and T. Since T/A is contained in T then T/A is either finite or denumerable. Also S and T/A are disjoint and SUT=SU(T/A). If T/A is denumerable then SU(T/A) is denumerable by Lemma 1. If T/A is finite then SU(T/A) is denumerable by Lemma 2.

This final argument along with Lemma 1 show that if S and T are denumerable sets then SUT is denumerable.

QED