Inferences about winter temperatures and summer rains from the late Quaternary record of \(C_4 \) perennial grasses and \(C_3 \) desert shrubs in the northern Chihuahuan Desert

CAMILLE A. HOLMGREN,1* JODI NORRIS2 and JULIO L. BETANCOURT3

1 Department of Geography, California State University, Long Beach, CA, USA
2 Department of Botany, University of Wyoming, Laramie, WY, USA
3 Desert Laboratory, US Geological Survey, Tucson, AZ, USA

Received 22 July 2005; Revised 15 February 2006; Accepted 20 February 2006

ABSTRACT: Late Quaternary histories of two North American desert biomes—\(C_4 \) grasslands and \(C_3 \) shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that \(C_4 \) grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial–interglacial cycle. By contrast, key \(C_3 \) desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select \(C_4 \) and \(C_3 \) species are mapped to interpret the glacial–interglacial persistence of desert grassland and the mid-to-late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of \(C_4 \) grasses, whereas winters were probably too cold (or too wet) for \(C_3 \) desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial–interglacial cycle. Mid-latitude effects, however, truncated midsummer (July–August) moisture transport north of 35°N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño–Southern Oscillation variability.

Published in 2006 by John Wiley & Sons, Ltd.

KEYWORDS: Chihuahuan Desert; bioclimatic envelopes; Pleistocene; Holocene; North American monsoon

Introduction

Despite steady and focused research that now spans half a century, questions linger about the changing seasonality of southwestern USA palaeoclimates. There is general consensus that Late Pleistocene (30 000–13 000 yr BP; all ages are reported in calendar years BP) winters were wetter and temperatures were generally cooler than today (Thompson et al., 1993). The resulting increases in effective moisture permitted large pluvial lakes to grow and persist in what are now dry playas along the Arizona–New Mexico border (Long, 1966; Fleishhauer and Stone, 1982; Waters, 1989; Krider, 1998; Hawley et al., 2000). Increases in effective moisture also supported mixed-conifer forests and open woodlands where there are now pinyon-juniper woodlands, and pinyon-juniper woodlands where there are now deserts (see regional summaries in Van Devender et al., 1987; Betancourt et al., 1990; Thompson et al., 1993; Thompson and Anderson, 2000). Uncertainties remain, however, about the history of summer rains and winter temperatures as could be inferred primarily from biological indicators. In the most recent synthesis of past biomes in western North America based on pollen and packrat midden data, Thompson and Anderson (2000) conclude that the Last Glacial Maximum (ca. 21 000 yr BP) was characterised by (1) southward displacement of the westerlies and enhanced persistence throughout the year; (2) virtual elimination of the present summer monsoon circulation; and (3) a strong temperature gradient throughout the interior, with very cold temperatures to the north and mild conditions along the Mexican border. The dominance of pinyon-juniper woodland species in Pleistocene-aged middens attests to the
importance of enhanced winter precipitation associated with southward displacement of the westerlies and cooler summer temperatures. Here, we aim to refine the latter two inferences by evaluating the packrat midden record and modern bioclimatic distributions of select species in two functional plant groups—C_4 desert grasses and C_3 desert shrubs—that characterise the northern Chihuahuan Desert in the USA–Mexico borderlands (Fig. 1).

The presence and abundance of select C_4 herbs and perennial grasses and C_3 desert shrubs in middens from the northern fringe of the Chihuahuan Desert (Fig. 2), all of which occur today at or near the midden sites, demonstrate interestingly disparate histories. C_4 herbs and grasses persisted from late Pleistocene (Marine Isotope Stages 2 and 3) to the present (MIS 1), whereas many C_3 desert shrubs did not occupy the northern extent of their ranges until the last 4000–5000 years. To evaluate the climatic significance of these patterns, we focused on several C_4 grasses (*Botriochloa barbinodis*, *Digitaria californica*, *Leptochloa dubia*, *Setaria macrostachya*) and C_3 shrubs (*Acacia constricta*, *Acacia greggii*, *Flourensia cernua*, *Fouquieria splendens*, and *Larrea tridentata*) common in midden records from the northern Chihuahuan Desert and with easily obtainable distributional data from herbarium collections. We added *Simmondsia chinensis* to the suite of C_3 shrub species because it represents a unique case where a Sonoran Desert species is in the process of invading the northwestern edge (Peloncillo Mts in Figs 1 and 2) of the Chihuahuan Desert. We used distributional data to construct a multidimensional climatic niche for each species, and distances from the niche were calculated and mapped on a 4-km grid for each of 10 climatic variables. The maps are used to evaluate hypotheses about the late Quaternary history of summer rains and winter temperatures in the southwestern United States.

Bioclimatic envelopes

Bioclimatic envelopes can be used to relate physiological functioning of species to conditions found along environmental gradients, such as light, temperature and moisture. The environmental conditions in which a species can survive and reproduce comprise the fundamental ecological niche of a species. Hutchinson (1957) defined the fundamental niche as an n-dimensional space consisting of all the environmental conditions within which a species can survive and reproduce. Following Jackson and Overpeck (2000), parts of the fundamental niche can be broken down further into potential and realised niches. Not all climatic combinations occur in nature, so species distributions are limited to areas where the realised environmental variables and the fundamental niche overlap, forming the potential niche space. Within this area of overlap, the species' range may not entirely fill the potential niche if it is limited by other factors such as competition, dispersal ability, etc. As shown in Fig. 3, the realised niche comprises the niche space actually occupied by the species (Jackson and Overpeck, 2000).

The geographic range of a species can be viewed as a spatial reflection of its niche: the species occurs where all environmental conditions are suitable and is absent from areas where one or more conditions are unsuitable (Brown and Lomolino, 1998). Thus, it is possible to re-map distribution patterns from geographic space into climatic space to produce a bioclimatic envelope for a species. We can also map the distance, in terms of climate, that an area falls outside of the bioclimatic envelope to understand potential limiting factors. Once we have constructed present-day bioclimatic envelopes for individual species, the envelopes for assemblages of species found in the fossil record can be determined. The climate at some time in

Figure 1 Map of the USA–Mexico borderlands (area in box) with locations of key midden sites (▲) from the northern Chihuahuan Desert. Arrows indicate major moisture sources.
the past is inferred to lie within the area of overlap of the climatic ranges for the species present (Atkinson et al., 1986; Elias, 1997).

Two limitations of this technique warrant discussion. First, bioclimatic envelopes produced using geographic ranges are based on realised niches rather than fundamental niches, because non-climatic factors also constrain plant distributions. On smaller spatial scales, non-climatic variables such as topography, canopy cover, soil texture and moisture, nutrient availability, or competitive interactions may be key factors in determining species’ distributions. At the continental scale, however, climate is considered the dominant factor regulating plant distributions (Woodward, 1987). In fact, bioclimatic envelopes have been shown to perform well at the macroscale where climatic influences dominate and the impact of biotic interactions is minimised (Pearson et al., 2002; Pearson and Dawson, 2003). A second limitation is the assumption that vegetation, whether today or in the past, is in equilibrium with the contemporary climate. While species ranges continually adjust to both natural and human-induced changes in climate, land use and disturbance, the assumption of equilibrium is probably sound for vegetation on timescales of a few hundred years and longer. Consistent replication in the nature and timing of assemblage changes across remote sites in the same region suggests that, in most cases, this assumption is also valid for the past. Climate models and the fossil record show reasonable agreement between changes in climate and changes in the timing and spatial distribution of vegetation, likewise

Figure 2 Relative abundance of summer-flowering annuals and C4 grasses and C3 desert shrubs through time for sites in the northern Chihuahuan Desert. Note that midden records are discontinuous, with occurrences of midden samples indicated by horizontal bars.
supporting the assumption of equilibrium (Williams et al., 2001; Brewer et al., 2002). The high taxonomic resolution afforded by packrat midden records, where species-level identification of taxa is common, provides a unique opportunity for assessing past climates using information about species’ ranges. Bioclimatic envelopes have been used only sparingly, however, to infer climate from packrat midden records (Thompson et al., 1999; Arundel, 2002; Sharpe, 2002; Norris et al., 2006). Here, we used georeferenced herbarium records and a Geographic Information System (GIS)-based approach to construct bioclimatic climatic envelopes for indicator species. Although other platforms such as the GARP modelling system (Genetic Algorithms for Rule-set Prediction; Stockwell and Noble, 1991) improve statistical confidence, the envelope method works well for continuous variables such as climatic data, where range limits represent extremes of tolerance for a species. The envelope method thus allows us to easily extract climatic tolerance data for species to evaluate climatic controls on (1) the relative stability of C₄ grasses and herbs throughout the late Quaternary and (2) the arrival of C₃ desert shrubs in the late Holocene.

Methods

Species presence data for key midden taxa were compiled by integrating georeferenced herbarium data from several different institutions (Table 1). Point-specific data are preferable to
generalised (flat) range maps, an important factor when constructing bioclimatic envelopes in mountainous regions where vegetation varies greatly with elevation (Betancourt, 2004). After compiling the database, we removed records that did not contain adequate location data or for which location data were coarser than a minute in latitude/longitude (1.8-km resolution). Any sites were excluded where species were either cultivated or introduced. All latitude–longitude data, as well as township–range–section locations, were standardised to decimal degree. In cases where multiple herbaria records for a species had been collected at a particular site, we removed replicate records. Species occurrence points were then plotted on a base map and any geographic outliers checked for accuracy against location information in the database. Finally, the occurrence data for each species were converted into a separate GIS point coverage.

A grid of climate variables was created from PRISM (Parameter-elevation Regressions on Independent Slopes Model)
After Jackson and Overpeck (2000) realised environmental space, potential niche space, and realised niche space. A moving window of topographically adjusted regression equations to produce 2.5-minute (ca. 4-km) resolution gridded climate data for the western United States (Daly et al., 1997). In other words, the climatic values at each of the grid points represent the climate at the average elevation computed for each grid cell. To create our climate grid, the following variables were selected or derived from PRISM data and overlain in the GIS: mean frost-free period, mean January temperature, mean minimum January temperature, mean July temperature, mean maximum July temperature, mean winter (DJF) precipitation, mean summer (JJA) precipitation, mean growing season precipitation, mean annual precipitation, and summer precipitation/temperature as a measure of heat stress. Because precipitation tends to exhibit a non-normal distribution, we also incorporated grids of logged values for each of the precipitation variables in our climate grid.

Next, we combined the point coverage and climate grid to find the niche space for each species. After joining the point coverage and climate grid, climate data for all variables were extracted at each presence point. Climate data were exported into a spreadsheet and the mean and standard deviation calculated for each variable. All points with values lying outside two standard deviations of the mean for any variable were removed; in the case of precipitation variables, we used the logged variables to trim the data points. We chose to trim the data for several reasons. First, although the PRISM data provide high (ca. 4 km) spatial resolution, we expect that some presence points occur at much lower/higher elevation than the average elevation of grid cells that encompass a broad range of elevations. Second, species occurrence data may contain inaccuracies due to poor initial field location determinations, errors in estimation of latitude and longitude from township–range-section data, or database errors. Removing points that fall outside of two standard deviations should minimise these types of errors. In addition, with few exceptions, visual inspection of the niche spaces created with the trimmed data compared more favourably with known distributions than those created using untrimmed data. After trimming the data, we selected only those cells where climatic conditions fell within the trimmed minimum and maximum values to construct the niche space. For points falling outside of the niche space, we calculated the distance, in terms of climate, from the niche space. For points falling outside of the niche space, we calculated the distance, in terms of climate, from the niche space for each variable. In the case of precipitation variables, we calculated distances using the non-logged values to facilitate interpretation.

Results

Species presence points versus the modelled niche space

Figure 4 shows species presence points versus the modelled niche space for all species. Points falling outside of the modelled niche space are the trimmed points, i.e. those that exceeded the 2-σ range for one or more variables. The modelled niche space extending beyond the presence points represents potential niche space for the species. Again, one possible source of error derives from the fact that the climatic values for each point used to construct the niche space represent climate at the average elevation for the grid cell, which may be higher or lower than the actual elevation. Even so, this technique is a significant improvement over the use of flat range maps that are not elevation-specific, and good agreement exists between the modelled niches and known distributional data (i.e. Turner

Table 1 List of herbarium data sources

<table>
<thead>
<tr>
<th>Institution</th>
<th>Herbarium code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td></td>
</tr>
<tr>
<td>Arizona State University</td>
<td>ASU</td>
</tr>
<tr>
<td>Desert Botanical Garden</td>
<td>DES</td>
</tr>
<tr>
<td>Northern Arizona University</td>
<td>ASC</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>ARIZ</td>
</tr>
<tr>
<td>SALVIAS</td>
<td></td>
</tr>
<tr>
<td>California</td>
<td></td>
</tr>
<tr>
<td>Rancho Santa Ana Botanical Garden</td>
<td>RSA</td>
</tr>
<tr>
<td>University of California at Berkeley</td>
<td>UC, JEPS</td>
</tr>
<tr>
<td>University of California at Riverside</td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
</tr>
<tr>
<td>Colorado State University</td>
<td>CS</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>COLO</td>
</tr>
<tr>
<td>Kansas</td>
<td></td>
</tr>
<tr>
<td>University of Kansas Natural History Museum</td>
<td>KANU</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
</tr>
<tr>
<td>Instituto de Ecologia, A.C.</td>
<td>IEB</td>
</tr>
<tr>
<td>Missouri</td>
<td></td>
</tr>
<tr>
<td>Missouri Botanical Garden</td>
<td>MO</td>
</tr>
<tr>
<td>Nebraska</td>
<td></td>
</tr>
<tr>
<td>University of Nebraska at Omaha</td>
<td>OMA</td>
</tr>
<tr>
<td>University of Nebraska State Museum</td>
<td>NEB</td>
</tr>
<tr>
<td>Nevada</td>
<td></td>
</tr>
<tr>
<td>University of Nevada at Las Vegas</td>
<td>UNLV</td>
</tr>
<tr>
<td>University of Nevada at Reno</td>
<td>RENO</td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
</tr>
<tr>
<td>New Mexico State University</td>
<td>NMC, NMCR</td>
</tr>
<tr>
<td>University of New Mexico</td>
<td>UNM</td>
</tr>
<tr>
<td>Texas</td>
<td></td>
</tr>
<tr>
<td>Angelo State University</td>
<td>SAT</td>
</tr>
<tr>
<td>Sam Houston State University</td>
<td>SHST</td>
</tr>
<tr>
<td>Southwest Texas State University</td>
<td>SWT</td>
</tr>
<tr>
<td>Stephen F. Austin State University</td>
<td>ASTC</td>
</tr>
<tr>
<td>Texas A&M University</td>
<td>TAES, TAMU</td>
</tr>
<tr>
<td>University of Texas at Austin</td>
<td>LL, TEX</td>
</tr>
<tr>
<td>West Texas A&M University</td>
<td>WTS</td>
</tr>
<tr>
<td>Utah</td>
<td></td>
</tr>
<tr>
<td>University of Utah</td>
<td>UT</td>
</tr>
<tr>
<td>Utah State University</td>
<td>UTC</td>
</tr>
</tbody>
</table>
et al. (1995), although this work does not extend east of the Arizona–New Mexico border) suggests error is minimal.

Climatic envelopes for C₄ grasses

The climatic controls on the distribution of the C₄ grasses Bothriochloa barbinodis, Digitaria californica, Leptochloa dubia and Setaria macrostachya are apparent in Figs 5–8. The northern limits for these species are strongly influenced by mean January temperature, mean minimum January temperature, and frost-free period, with mean January temperature having an effect over the greatest spatial extent. We expect these variables to be highly correlated since areas with colder mean January temperatures are also likely to have colder minimum temperatures and a shorter frost-free period. Cold summers (mean July temperature, mean maximum July temperature) also appear to be limiting north of the physiographic break that separates the low, warm deserts from the higher, colder ones to the north (the Great Basin and Colorado Plateau). Lowlands in the basins and valleys to the north, however, are apparently warm enough in the summer but too cold in the winter for these desert grassland species. The latter may be due to the large temperature inversions in winter that characterise the Colorado Plateau and Great Basin (Whiteman et al., 1999).

Summer (JJA) precipitation and growing season precipitation are the main limiting factors to the west, although these are somewhat less important for Bothriochloa barbinodis than the other grasses (Fig. 5). During summer, high temperatures also restrict the presence of these C₄ grasses in southwestern Arizona and southeastern California. The combined influence of high summer temperatures and moisture deficit is notable in the map of heat stress (summer precipitation/temperature). Conversely, maps of mean annual precipitation, growing season precipitation, and summer precipitation/temperature indicate that conditions to the east are too wet.

A comparison of the bioclimatic envelopes produced for 21170, 15410, 13925 and 12405 yr BP at the Peloncillo Mountains Wilderness Area (PMWA) site allows us to place

Figure 4 Comparison of species point-occurrences from herbarium data and modelled niche space

Published in 2006 by John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 22(2) 141–161 (2007)
boundaries on the Late Pleistocene climatic conditions in the northern Chihuahuan Desert. For each period examined, we compare only those species that appear in the midden record at that time. Assuming that the climatic tolerances of individual species have not changed over time, using only the species present allows us to simulate assemblages for which there may be no modern analogue. Climatic range limits for each species were determined from bioclimatic envelopes (Table 2), and the lower range limits for species present at various time periods were subtracted from the modern values for mean January temperature (6.9°C), mean July temperature (27.7°C), and mean summer precipitation (105.5 mm). For 21 170 yr BP during the Last Glacial Maximum, our results indicate that mean January temperatures were not below 2.4°C (4.5°C lower than today) and mean July temperatures were not below 23.3°C (4.4°C lower than today), while mean summer precipitation was at least 80 mm. For 15 410, 13 925 and 12 405 yr BP, mean January and July temperatures remained the same, but modelled mean summer precipitation was 105.3 mm, which is equivalent to modern summer precipitation along the Arizona–New Mexico–Mexico border. The summer precipitation value of 105.2 mm is based on the niche requirements for *Leptochloa dubia* and is significantly greater than the amount for other species, which have minimum summer precipitation values between 55.1 and 80.1 mm.

C₃ desert shrubs

The bioclimatic envelopes for all desert shrub species studied (*Acacia constricta, Acacia greggii, Flourensia cernua,*...
Fouquieria splendens, Larrea tridentata and Simmondsia chinensis are remarkably similar (Figs 9–14). To the north, cold mean January temperature, cold mean minimum January temperature, and a short frost-free period strongly limit the niches of all species. Cold mean July temperature and mean maximum July temperatures also appear limiting to the north, but less so than winter temperatures. To the west, hot and dry summer conditions (summer precipitation, growing season precipitation, summer precipitation/temperature, mean July temperature, and mean maximum July temperature) truncate the niches for most species. An exception is Larrea tridentata, which is excluded only from lower Colorado Delta vicinity and southwestern California and appears more tolerant of hot, arid conditions. In the east, wetter conditions in central and eastern Texas fall outside the climatic range for all species.

Comparison of bioclimatic envelopes for desert shrub species in the PMWA shows a warming trend in winter temperatures in the mid- to late Holocene. The presence of Flourensia cernua and Acacia constricta by 5460 yr BP indicates that mean January temperatures were not below ca. 3°C (i.e. ca. 4°C cooler than today). The arrival of Acacia greggii by 3760 yr BP suggests mean January temperatures had warmed another ca. 0.5°C. Establishment of the disjunct population of Simmondsia chinensis, the most cold-intolerant species with a mean January temperature of 6.38°C (only 0.5°C cooler than today), in the PMWA between ca. 2260–0 yr BP (Holmgren et al., in press) indicates further warming of winter temperatures. Although the arrival of desert shrubs is a notable occurrence throughout the northern Chihuahuan Desert during the latter part of the mid-Holocene, there is no obvious sequence of species arrivals. It is clear that other factors such as dispersal ability, distance from late glacial refugia, or other climatic, biotic or edaphic variables can factor into species arrival times.

Figure 6 Niche space for *C₄ Digitaria californica*
Discussion

We have considered the large-scale climatic factors limiting modern species distributions in order to understand climatic controls on Late Pleistocene and Holocene vegetation in the northern Chihuahuan Desert. Our analysis is based on correlations among species distributions and climatic variables, and as such, we cannot establish causal relationships. Because autecological and physiological information is incomplete for all of the selected species, our models are by necessity statistical and not deterministic. The similarity of the limiting factors identified for related plant functional types (perennial C_4 grasses, desert shrubs), however, lends credence to their importance in influencing plant distributions.

Late Pleistocene climate

The presence of C_4 herbs and grasses in late Pleistocene middens from the Bolson de Mapimi (ca. 26°–27° N) in Mexico and Big Bend (ca. 29° N) in Texas to the Tularosa Basin (32°–33° N), southern New Mexico was long noted by Van Devender (Van Devender and Riskind, 1979; Van Devender et al., 1984; Van Devender and Burgess, 1985; Van Devender and Toolin, 1983; Van Devender, 1990; Van Devender, 1995). The prevalence of these summer-flowering species throughout the last 40 000 years has been confirmed for the Tularosa Basin (Betancourt et al., 2001), the middle Rio Grande Valley south of Albuquerque (Betancourt, Rylander and Anderson, in prep.), and Playas (Holmgren et al., 2003) and San Simon valleys (Holmgren et al., in press) of southwestern New Mexico and southeastern Arizona, respectively (Fig. 2). Recent work integrating carbon...
isotopes from soil carbonates (Liu et al., 1996; Monger et al., 1998) and tooth enamel from megaherbivores (Connin et al., 1998; Koch et al., 2004) suggests that the C₄ grass occurrences represent more than just secondary elements in woodland understories. Instead, they were part of an expansive summer-flowering C₄ grassland that stretched from central Texas to southern Arizona, mostly south of 35°N. These may have been the northernmost grasslands in western North America to green up in response to mid-to-late summer rains during the glacial period. Although some C₄ grass species may respond opportunistically to available moisture regardless of season (Van Devender 1990), this argument is less likely to apply to the diverse suite of C₄ grasses and summer-flowering annuals identified from Pleistocene middens. Surprisingly, many of the C₄ grasses (e.g. Botriochloa barbinodis, Digitaria californica, Leptochloa dubia, Setaria macrostachya) that appear in the Late Pleistocene midden record of the northern Chihuahuan Desert do not extend much further north today, and thus can help constrain the magnitude of glacial-age cooling.

The results of our bioclimatic envelopes suggest cold winter temperatures are an important factor limiting the distribution of many C₄ grass species along their northern and upper elevation range margins. There is currently little consensus, however, regarding physiological constraints on C₄ plant distribution in cold climates. Dissociation of the C₄ enzymes pyruvate-phosphate dikinase and PEP carboxylase (Long, 1983; Potvin et al., 1986), Rubisco limitation (Long 1999; Kubien et al., 2003), and lower quantum yield of C₄ versus C₃ grasses (Ehleringer et al., 1997) at lower temperatures have all been proposed as explanations for the scarcity of C₄ species in cold environments. Most of these studies have focused on low temperatures during
We now estimate that summer precipitation was equivalent to at least 50% of modern values and may have reached amounts similar to today. We now estimate that summer precipitation was equivalent to at least 50% of modern values and may have reached amounts similar to today. However, this low temperature limit may have been altered during the Late Pleistocene owing to shifts in dominance between C4 and C3 species. The higher quantum yield of C3 species at low temperatures may limit C4 grass distribution at sites with cooler growing season temperatures when reduced crossover temperatures (the mean monthly temperature at which C4 plants have a higher quantum yield than C3 plants) resulted from decreased atmospheric CO2 concentration (Ehleringer et al., 1997; Koch et al., 2004). Thus, minimum summer temperatures for C4 grasses may have been more than 5.5 °C cooler during the Late Pleistocene, assuming that low summer temperatures are regulated via competition with C3 species rather than other physiological mechanisms. In contrast, changes in crossover temperatures would have had negligible effects in winter when C4 grasses are inactive.

Bioclimatic envelopes also allow us to quantify the amount of Late Pleistocene summer precipitation in the borderlands. The opportunity for assessing the seasonality of precipitation changes, a rare opportunity in proxy records, is possible due to the high taxonomic resolution afforded by packrat midden records where species-level identifications are common. The importance of summer precipitation in the borderlands was inferred previously from the diverse suite of C4 grasses and summer-flowering annuals found in glacial-aged packrat middens (Betancourt et al., 2001; Holmgren et al., 2003, in press), although the amount of summer precipitation was unknown. We now estimate that summer precipitation was equivalent to at least 50% of modern values and may have reached amounts similar to today.

In contrast to models suggesting the virtual elimination of summer monsoonal precipitation (Thompson and Anderson, 2000), we find that at least moderate amounts of summer precipitation characterised Late Pleistocene climate in what is now the northern fringe of the Chihuahuan Desert. Note that we do not imply a diminished role for winter precipitation during the Late Pleistocene, because greater-than-present-winter precipitation is still necessary to account for the increased effective moisture needed to fill pluvial lakes and support displacement of woody C4 highland species into the lowlands. Rather, we suggest that summer precipitation was more extensive in the USA-Mexico borderlands than previously thought. Thus, it appears that key atmospheric and topographic features
anchoring the core of the North American monsoon over the Sierra Madre Occidental in Mexico and the tongue of moisture extending northward to the Arizona–New Mexico border remained intact during the glacial period. Although we cannot resolve the relative contributions of the eastern Pacific–Gulf of California and Gulf of Mexico to Late Pleistocene summer precipitation, both are generally viewed as important moisture sources for the North American monsoon with low-level moisture primarily derived from the Gulf of California and upper-level water vapour coming from the Gulf of Mexico (Stensrud et al., 1995; Schmitz and Mullen, 1996; Adams and Comrie, 1997). In the mid-latitudes, on the other hand, persistent snowpack and southward displacement of the westerlies may have curtailed monsoonal precipitation to the north, as indicated by the scarcity of C4 grasses and annuals in midden records from the Colorado Plateau (Betancourt, 1984, 1990).

In contrast to C4 grasses, C3 desert shrubs remained absent from the USA–Mexico borderlands during the Late Pleistocene. Although the northern limits of C3 desert shrub are similar to those of C4 grasses, their absence during the Late Pleistocene may have been due to the somewhat higher minimum winter temperature requirements. Both low mean January temperatures and mean minimum January temperatures for desert shrub species are generally higher than those for C4 grasses (1.79 to 6.38°C vs. 0.63 to 2.40°C and −6.44 to −1.53°C vs. −7.47 to −5.22°C, respectively), which may have been sufficient to exclude them during the Late Pleistocene. Alternatively, wetter Late Pleistocene conditions may have prevented the establishment of desert shrub species via competitive exclusion by more mesic-adapted species. Whatever the case, the majority of desert shrub species remained notably absent from the northern Chihuahuan Desert prior to their abrupt arrival around 5000–4000 yr BP.

Figure 9 Niche space for C3 Acacia constricta. This figure is available in colour online at www.interscience.wiley.com/journal/jqs
Mid- to late Holocene

A repeating theme across midden records (Fig. 1) is the early to mid-Holocene (13 000–5000 yr BP) absence and surprisingly late arrival (last 4000–5000 yr) of C₃ desert shrubs (including Acacia constricta, Acacia greggii, Flourensia cernua, Fouquieria splendens and Larrea tridentata) now common in the northern Chihuahuan Desert. During the mid-Holocene, conditions in the northern Chihuahuan Desert were marked by hot, moist summers and cold, dry winters. Expanded upper and lower treelines (Fall, 1997), northward expansion of C₄ grasses and tropical elements in packrat middens (Van Devender, 1990; McAuliffe and Van Devender, 1998), and climate model output (Rind, 1994; Kutzbach, 1998) all indicate greater-than-modern summer temperatures and precipitation during the mid-Holocene (ca. 8000–4000 yr BP). In contrast, desiccating or intermittent lakes from the USA–Mexico borderlands northward (Waters, 1989; Davis and Shafer, 1992; Anderson, 1993; Hasbargen, 1994; Krider, 1998), peak dune activity in the Great Plains (Forman et al., 2001) and the decline in midden production throughout the southwestern United States (Webb and Betancourt, 1990; Spaulding, 1991) indicate pervasive mid-Holocene winter drought. While warm wet summers and dry winters would tend to favour C₄ grasses over C₃ desert shrubs, we suggest the absence of C₃ desert shrubs during the mid-Holocene was due to colder-than-present winter temperatures prior to ca. 5000–4000 yr BP noted in climate model simulations (Rind, 1994; Kutzbach, 1998).

Bioclimatic envelopes from desertscrub species clearly demonstrate the role of cold winter temperatures in defining the northern range limits for these species. This is consistent with evidence for reduced stature and vigour in Fouquieria...
splendens near its northern limit (Bradley, 1966), and freezing-induced xylem cavitation limiting the northern distribution of Larrea tridentata (Pockman and Sperry, 1997). Van Devender (1990) suggests that the northward advance of subtropical species was stymied by high frequencies of hard advective freezes due to incursions of Arctic air masses in the mid-Holocene (8000–4000), but accelerated when such freezes became less common in the late Holocene (4000–0 yr BP). Furthermore, desert shrubs may also have been limited by radiative freezes resulting from lower winter insolation during the early to mid-Holocene.

The arrival of desertscrub species in the northern Chihuahuan Desert around 5000–4000 yr BP corresponds to increasing winter insolation after reaching a minimum ca. 11 000 yr BP (Fig. 15), consistent with the advent of milder winter temperatures and a decrease in winter freezes. The northward expansion of desert shrub species appears to have occurred fairly quickly. For example, Larrea tridentata abruptly advanced to sites ranging from 1340–1430 to 1600–1985 m and was near its northernmost and uppermost limits at the Sevilleta Long Term Ecological Research (LTER) site by ca. 4100 yr BP. Exceptions are isolated, northern outposts, such as Isleta north of the Sevilleta LTER, where Larrea arrived more recently (after 300 yr BP) (Van Devender, 1990). After attaining their northern limits, subsequent northward progression for most desert shrubs appears to have been blocked by the higher topography and colder temperatures of the Colorado Plateau.

We note that the northward migration of desert species tended to occur earlier in the Sonoran Desert (Van Devender, 1990; McAuliffe and Van Devender, 1998), which may have been due to pockets of warmer temperatures in the lower, hotter Sonoran Desert. There is also some evidence to indicate that

Figure 11 Niche space for C3 Flourensia cernua. This figure is available in colour online at www.interscience.wiley.com/journal/jqs
other subtropical shrubs are continuing to move into the northern Chihuahuan Desert, such as *Simmondsia chinensis* from the warmer Sonoran Desert to the west (Holmgren *et al.*, in press). Despite these exceptions, the transition to vegetation more modern in character around 5000–4000 yr BP in the northern Chihuahuan Desert appears to have been due, at least in part, to the ameliorisation of winter temperatures. The seemingly abrupt expansion of desert shrubs ca. 5000–4000 yr BP could mean that the climate forcing was equally abrupt or that some critical temperature threshold was crossed early on as winters warmed gradually.

Factors other than increasing winter temperatures also may have played a role in the modernisation of flora in the northern Chihuahuan Desert. For example, increased aridity and the resultant reduction in plant cover, leading to progressive erosion of the soil mantle and increased bare ground for colonisation, would tend to favour desertscrub species at the expense of grasses (Van Devender, 1995). Likewise, there is general consensus in proxy records and climate models that orbitally driven enhancement of the seasonal cycle during the mid-Holocene led to reduced ENSO variability prior to ca. 5000 yr BP and a more La-Niña-like average state, a condition correlated with drier winter conditions in the southwest (e.g. Rodbell *et al.*, 1999; Clement *et al.*, 2000). With the onset of greater ENSO frequency and magnitude in the later part of the mid-Holocene, the southwestern United States would have experienced more regular winter precipitation with greater extremes (Cane, 2005) and possibly higher freezing level heights, i.e. the elevation above sea level at which the air temperature is close to 0 °C (Diaz *et al.*, 2003). Increased ENSO strength beginning ca. 5000 yr BP, combined with warmer winter temperatures, may have favoured the

Figure 12 Niche space for *C₃ Fouquieria splendens*. This figure is available in colour online at www.interscience.wiley.com/journal/jqs.
expansion of woody C_3 desert shrubs that respond to winter precipitation.

Finally, we acknowledge that the progressive ‘modernisation’ of vegetation in the northern Chihuahuan Desert may not be wholly in equilibrium with climate, but may be contingent on the exact sequence of climatic events and lagged ecological responses. The greater similarity of more recent fossil assemblages to present-day vegetation is likely to result, to some extent, from a shared history of climate variability, since the effects of drought-related mortality or greater recruitment during exceptionally wet years may leave a lasting imprint on the landscape (Swetnam and Betancourt, 1998). Likewise, landscape modification over time by species can lead to changes in plant community structure. For example, establishment of woody desert shrubs can alter microclimate and soil properties beneath their canopies where litter and nutrients accumulate, providing favourable microsites for some species while depleting resources in intercanopy areas. The resulting microsite heterogeneity between canopy and intercanopy areas may in turn affect the composition and spatial distribution of species (Charley and West, 1977; Vinton and Burke, 1995). The progressive modernisation of flora may have been due to such a feedback mechanism subsequent to mid-Holocene establishment of pioneer desert shrub species.

Conclusions

C_4-dominated desert grasslands represent one of the most stable biomes in North America. At their northern extent, these
graslands persisted in more or less the same geographic location through MIS 1, 2 and 3. This persistence is most easily explained by the glacial–interglacial permanence of warm winters and summer rainfall in the region. It should follow then that the core of the monsoon in the USA–Mexico borderlands and northern Chihuahuan Desert must have remained relatively intact throughout the last glacial–interglacial cycle. In its present form, the North American monsoon is primarily a Neogene phenomenon associated with formation of the Gulf of California (Lonsdale, 1989), which substituted cold, upwelling Pacific waters with the warm Sea of Cortez immediately west of the Sierra Madre Occidental.

The persistence of the core of the monsoon contrasts with conventional wisdom, mostly derived from coarsely resolved general circulation models, that southward displacement of the westerlies in glacial summers suppressed monsoonal circulation and rainfall over the southwestern USA (Kutzbach et al., 1998; Thompson and Anderson, 2000). Mesoscale climate models have been able to resolve the present-day role of the Sea of Cortez and Sierra Madre Occidental in the multi-stage transport of moisture in the North American monsoon (Fawcett et al., 2002). We submit that mesoscale models will eventually show a similar role during the Last Glacial Maximum and throughout the Quaternary. This permanence of summer rains and desert grassland, and the inconstancy of adjacent desert and woodland biomes, surely have left clear imprints on the biogeographic and evolutionary history of the region, akin to those outlined by Hafner and Riddle (2005).

Finally, the location of Pleistocene refugia for desert shrubs, presumably to the south in Mexico, remains elusive and warrants future study. Their abrupt arrival and expansion in the northern Chihuahuan Desert did not occur until ca.
Figure 15 Changes in June and December insolation (W/m²) relative to present for 30° N. Large arrow denotes step change in vegetation around 5000–4000 yr BP and onset of increased ENSO variability.

5000–4000 yr BP, concurrent with increasing winter insolation and the onset of modern ENSO variability. It remains to be sorted out whether the warming that forced this expansion happened gradually or abruptly as a series of steps that may be ongoing.

Acknowledgements We thank J. Pelletier for providing computing resources and the following individuals for assistance obtaining herbarium records: K. Alfred (NMCR), K. Birgy (UNLV), S. Boyd (RSA), B. Boyle (SALVIAS), Chris Frazier (UNM), R. Kaul (NEB), A. Kelsey (UC), C. Malone (RENO), R. Moe (JEPS, UC), C. Morse (KANU), A. Sanders (UCR), L. Schauer and R. Spellenberg (NMC), and D. Sutherland (OMA). We thank Sarah Metcalf for thoughtful comments.

References

