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SUMMARY

Despite the prevalence of obesity and its related dis-
eases, the signaling pathways for appetite control
and satiety are not clearly understood. Here we re-
port C. elegans quiescence behavior, a cessation of
food intake and movement that is possibly a result
of satiety. C. elegans quiescence shares several
characteristics of satiety in mammals. It is induced
by high-quality food, it requires nutritional signals
from the intestine, and it depends on prior feeding
history: fasting enhances quiescence after refeeding.
During refeeding after fasting, quiescence is evoked,
causing gradual inhibition of food intake and move-
ment, mimicking the behavioral sequence of satiety
in mammals. Based on these similarities, we propose
that quiescence results from satiety. This hypothe-
sized satiety-induced quiescence is regulated by
peptide signals such as insulin and TGF-b. The
EGL-4 cGMP-dependent protein kinase functions
downstream of insulin and TGF-b in sensory neurons
including ASI to control quiescence in response to
food intake.

INTRODUCTION

Uncontrolled appetite and subsequent overeating contribute to

obesity and related diseases, but despite the high prevalence

of obesity and related diseases, the detailed signaling pathways

controlling appetite are not clearly understood. We chose to use

Caenorhabditis elegans to study this complex behavior, appetite

control, because C. elegans has been used as a powerful genetic

model system to understand molecular mechanisms of behavior

and has conserved mechanisms of fat storage and energy ex-

penditure (Ashrafi et al., 2003).

In mammals, appetite is controlled by satiety signals from the

gastrointestinal tract and adiposity signals from adipose tissue

(Schwartz et al., 2000). These two signals are integrated in the

hypothalamus to control feeding. Satiety signals result in a spe-

cific sequence of behaviors: termination of meals, reduction of

locomotion, and rest or sleep (Antin et al., 1975; Gibbs et al.,
1973). Because factors other than satiety can cause meal termi-

nation, the whole behavioral sequence of satiety is used as an in-

dication of satiation, especially for developing and testing drugs

that control appetite (Halford et al., 1998).

C. elegans varies its feeding rate by regulating the rate of

pumping, a motion of the pharynx. Feeding rates are high in

the presence of food and low in the absence of food (Avery

and Horvitz, 1990; You et al., 2006). However, the impact on

feeding of the animal’s nutritional status and prior feeding his-

tory, factors that influence feeding and satiety in mammals,

has not previously been assessed. Under normal laboratory con-

ditions, worms feed and move constantly. In this study, however,

we show that under certain conditions, worms stop feeding and

moving and become quiescent. Because this quiescence re-

sembles the behavioral characteristics of satiety in other animals

and is regulated by molecules such as insulin that are known to

control food intake in mammals, we suggest that quiescence is

a satiety behavior of worms. Furthermore, we find that the be-

havior is regulated by cGMP and TGF-b pathways whose func-

tions in appetite control and metabolism have not been studied

in mammals.

RESULTS

High-Quality Food Induces Quiescence
When we grew worms on high-quality food (either E. coli HB101

or Comamonas sp.), approximately 90% of the worms were

found to be quiescent (Figure 1A), defined as complete cessation

of both feeding and moving (see Experimental Procedures and

Movie S1 available online). We operationally define ‘‘food qual-

ity’’ as the ability to support growth: high-quality food supports

growth better than low-quality food (Shtonda and Avery, 2006).

In contrast, less than 5% of worms grown on lower-quality

food (E. coli DA837) were found to be quiescent (Figure 1A).

This suggests that high-quality food induces behavioral quies-

cence, i.e., termination of feeding and cessation of locomotion.

This difference in behavior results from a relatively small differ-

ence in food quality—the growth rate on DA837 is 92% of that

on HB101 or Comamonas (Shtonda and Avery, 2006). DA837

is derived from OP50, the E. coli strain used routinely by most

C. elegans labs to culture worms, suggesting that DA837 does

not prevent quiescence by making worms starved or sick.
Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc. 249

mailto:young@eatworms.swmed.edu


Cell Metabolism

Quiescence in Worms Mimics Satiety
Quiescence Requires Nutritional Signals
Because quiescence is regulated by food quality, we hypothe-

sized that it is dependent on the animal’s nutritional status. To

disturb the nutritional status of the animal, we used mutants

that either cannot feed well or cannot absorb nutrients well. First,

we tested eat-2 mutants, which pump at approximately 15% of

the wild-type rate (Avery, 1993; Raizen et al., 1995). On high-

quality food, only 10% of eat-2 mutants were quiescent, com-

pared to 90% of wild-type worms (Figure 1B). Second, we tested

an act-5 mutant. act-5 encodes a microvillus-specific actin re-

quired for absorbing nutrients from the intestine (MacQueen

et al., 2005). Approximately 45% of act-5 mutants were quies-

cent (Figure 1B). This attenuation of quiescence by malnutrition

suggests that quiescence depends on nutritional status. The at-

tenuation of quiescence in act-5 mutants also suggests that qui-

escence requires nutritional signals from the intestine.

Fasting Enhances Quiescence after Full Refeeding
To manipulate the nutritional status of wild-type animals, we

fasted young adults for 12 hr, refed them, and compared their

quiescence behavior to that of worms that had not experienced

fasting. After 3 hr of refeeding, fasted and refed worms typically

showed 2- to 4-fold longer quiescence duration than nonfasted

worms (Figure 2A). This suggested that fasting and refeeding en-

hance quiescence. To examine whether the threshold of quies-

cence was also increased by fasting and refeeding, we disturbed

quiescent worms by touching their noses and then measured the

probability for the worms to return to quiescence (Movie S2).

100% of the fasted and refed worms returned to quiescence,

while only 30% of the nonfasted worms did (Figure 2B). To test

whether fasting and refeeding could induce quiescence even

on low-quality food, we refed worms with DA837. Worms fasted

and refed with DA837 showed more quiescence than worms fed

with DA837 without fasting (Figure 2C), indicating that fasting in-

deed enhanced quiescence. However, induction of quiescence

by low-quality food lagged induction of quiescence by high-

quality food (Figure 2D), suggesting that it took longer for worms

to become quiescent on low-quality food. Also, the level of qui-

escence with low-quality food did not reach the level of quies-

cence with high-quality food, suggesting that quiescence after

fasting and refeeding also depends on food quality. Our results

from the malnutrition mutants and the fasted wild-type worms

Figure 1. Quiescence Is Induced by High-Quality Food and Is Depen-

dent on Nutritional Status of Animals

(A) Quiescence (shown as percent quiescent worms) is dependent on food

quality. Values are the mean ± SEM of two independent experiments. In

each experiment, 20 wild-type worms were tested for each type of food.

(B) Quiescence is dependent on nutrition, as shown by the effect of eat-2 and

act-5 mutations. Twenty wild-type worms (+) and 20 of each type of mutant

were tested on HB101.
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show that quiescence is regulated by nutritional status as well

as feeding history.

Fasting Enhances Food Intake
To examine how fasting affects refeeding, we compared feeding

rates of fasted worms and nonfasted worms. We quantified food

intake during the first 5 min of refeeding by measuring fluores-

cence intensity in the intestine of worms fed GFP-expressing

bacteria (see Experimental Procedures). Fasted worms (Figures

3A–3C) fed more than nonfasted worms (Figures 3D–3F). We ob-

tained identical results when we refed worms with fluorescent

beads mixed with food (data not shown). As an alternative, we

added the fluorescent dye BODIPY to the food. Ingested

BODIPY accumulates in the worm, and its fluorescence can be

measured (Ashrafi et al., 2003). Because the BODIPY dye needs

time to accumulate, we measured fluorescence after 15 min of

feeding on food with BODIPY. The fluorescence intensity of the

fasted worms was more than 30-fold that of the nonfasted

worms, confirming that fasted worms consumed more food

than nonfasted worms (Figures 3I and 3J; Figure S1).

Figure 2. Enhancement of Quiescence by Fasting and Refeeding

(A) Quiescence duration of fasted and refed worms is longer than that of non-

fasted worms. Duration of quiescence was compared for fasted (black bars,

n = 13) and nonfasted (gray bars, n = 19) groups after 3 or 6 hr of feeding

with HB101.

(B) Fasted and refed worms have a higher probability to return to quiescence

than nonfasted worms. The probability to return to quiescence after nose

touch (see Experimental Procedures) was compared between fasted (n = 10)

and nonfasted groups (n = 11).

(C) Fasting can induce quiescence on low-quality food. Duration of quiescence

was compared for fasted (black bars, n = 20) and nonfasted (gray bars, n = 20)

groups after 3 and 6 hr of feeding with DA837.

(D) Induction of quiescence by low-quality food lags induction of quiescence

by high-quality food. Duration of quiescence was compared for worms refed

with HB101 (-) and worms refed with DA837 (,) after 3 or 6 hr of refeeding.

Values are the mean ± SEM. **p < 0.001.
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Quiescence Resembles the Behavioral
Sequence of Satiety
To examine how quiescence is induced, we measured feeding

rates every 5 min during the first 1 hr of refeeding. The initial

high feeding rate gradually decreased, and after 1 hr it reached

50% of the initial feeding rate (Figure 4A). During the same re-

Figure 3. Fasting Enhances Food Intake during the Initial Period of

Refeeding

(A) Differential interference contrast (DIC) image of a worm fasted for 12 hr and

refed for 5 min on GFP-expressing HB101.

(B) Fluorescence image of the worm in (A).

(C) Overlay of (A) and (B). The arrow indicates strong GFP signal in the proximal

intestine.

(D) DIC image of a nonfasted worm fed for 5 min on GFP-expressing HB101.

(E) Fluorescence image of the worm in (D).

(F) Overlay of (D) and (E). The arrow indicates weak GFP signal in the proximal

intestine.

(G) Fluorescence image of a worm fasted for 12 hr and refed for 15 min on

HB101 mixed with BODIPY dye.

(H) Fluorescence image of a nonfasted worm fed for 15 min on HB101 mixed

with BODIPY dye.

(I) Quantification of images from ten fasted and ten nonfasted worms fed on

GFP-expressing HB101, expressed in arbitrary units (A.U.) of fluorescence.

Data are from one of three independent experiments.

(J) Quantification of images from five fasted and five nonfasted worms fed for

15 min on HB101 mixed with BODIPY dye, expressed in arbitrary units (A.U.) of

fluorescence. Data are from one of three independent experiments.

Values are the mean ± SEM. **p < 0.001.
feeding period, food intake measured by fluorescence intensity

in the intestines of worms fed GFP-expressing bacteria also

gradually decreased (Figure 4B).

In rodents, fasting and refeeding evoke a behavioral sequence

of satiety: gradual attenuation of feeding and locomotion (Antin

et al., 1975; Gibbs et al., 1973). When we observed worms every

1.5 hr during refeeding, feeding (as measured by pumping rate)

gradually decreased and quiescence (as measured by duration)

increased (Figures 4C and 4D). This suggests that quiescence

resembles the behavioral sequence of satiety in mammals. The

behavior was most consistent between 3 hr of refeeding, when

95.4% of the worms (767 out of 804) were quiescent, and 6 hr

of refeeding, when 99.3% of the worms (798 out of 804) were qui-

escent (Table S1). After 6 hr of refeeding, the behavior became

less consistent (Figure 4E). For technical reasons (see Experi-

mental Procedures for details), we were unable to track individ-

ual worms throughout the entire refeeding time course. How-

ever, since 95% of worms observed after 3 hr of refeeding

were quiescent, we deduce that, on the average, an individual

worm must spend 95% of its time quiescent at this point. In sum-

mary, quiescence can be induced by high-quality food and is at-

tenuated by malnutrition. Moreover, the behavioral sequence

(attenuation of feeding and locomotion) leading to quiescence

is similar to that of satiety in mammals, suggesting that quies-

cence is a result of satiety.

Peptide Signals Are Necessary for Quiescence
Many peptide signals such as NPY and CCK control feeding in

mammals (Schwartz et al., 2000). Because quiescence mimics

many aspects of satiety in mammals, we asked whether quies-

cence is also regulated by peptide signals. Mutations in egl-3

and egl-21, which encode proprotein convertase and carboxy-

peptidase, respectively, eliminate most peptidergic signals

(Husson et al., 2006; Jacob and Kaplan, 2003; Kass et al.,

2001). We found that mutations in either gene abolished quies-

cence behavior (Figures 5A and 5B). unc-31 encodes calcium-

dependent activator protein for secretion (CAPS) and functions

in peptide secretion in the synapses (Ann et al., 1997). unc-31

mutants also failed to show quiescence (Figure 5C). On the other

hand, mutants defective for nonpeptidergic neurotransmission

via acetylcholine, serotonin, and dopamine showed little differ-

ence in quiescence behavior from wild-type worms (Table S2).

This suggests that quiescence after fasting and refeeding is

probably mediated by peptides rather than by nonpeptidergic

neurotransmitters.

Insulin and TGF-b Signaling Regulate Quiescence
Insulin is a nutrition signal and contributes to controlling food in-

take in mammals (Anika et al., 1980; Woods and Porte, 1983).

Based on the high conservation of insulin signaling between

mammals and worms (Kimura et al., 1997), we hypothesized

that worm insulin signaling might regulate quiescence as well.

An insulin receptor mutant, daf-2, showed shorter quiescence

duration than wild-type (Figure 5D). This result supports the hy-

pothesis that quiescence is a result of satiety because both be-

haviors are regulated by a common nutritional signal, insulin.

In worms, TGF-b signals favorable environmental characteris-

tics such as presence of food (Patterson and Padgett, 2000). Ex-

pression of the C. elegans TGF-b DAF-7 is upregulated during
Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc. 251
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refeeding after fasting (Wang and Kim, 2003), suggesting that

DAF-7 mediates a food signal. We found that mutations in daf-7

attenuated quiescence after fasting and refeeding, as did muta-

tions in daf-1 and daf-4, homologs of the TGF-b receptor type I

and type II, respectively (Figure 5D). This suggests that DAF-7

may be necessary for quiescence after fasting and refeeding,

probably as a food signal. In summary, we conclude that quies-

cence after fasting and refeeding is regulated by peptide signals

such as insulin and TGF-b.

DAF-7 in ASI Neurons Regulates Quiescence
DAF-7 is expressed in a pair of ASI neurons (Ren et al., 1996).

Unfavorable conditions such as shortage of food, high tempera-

ture, and high concentration of dauer pheromone induce dauer

Figure 4. Quiescence Resembles the Behavioral Sequences of Sati-

ety in Mammals

(A) Decrease in feeding rate (measured in pumps per minute [ppm]) over the

time course of refeeding. Feeding rates of each of five wild-type worms

were measured every 5 min for the first hour of refeeding.

(B) Decrease in food intake as measured by GFP intensity.

(C) Decrease in feeding rate (measured in ppm) over the time course of refeed-

ing after 12 hr of fasting. Feeding rates of each of 20 wild-type worms were

measured at each of the indicated time points (0, immediately after worms

were transferred to food; 1.5, 1.5 hr after transfer, etc.).

(D) Increase in quiescence duration over the time course of refeeding. The qui-

escence durations of ten worms were measured at the indicated time points

after transfer to food.

(E) Recovery of normal activity begins after 12 hr of refeeding. The x axis is not

linear. Some points are replotted from (D).

Values are the mean ± SEM.
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formation in worms. Worms become dauers even under favor-

able conditions if ASI neurons are killed (Bargmann and Horvitz,

1991). Recent findings suggest that ASI neurons are necessary

for life-span extension by diet restriction (Bishop and Guarente,

2007). These results suggest a role of the ASI neurons in regulat-

ing or sensing food intake. When we replaced the wild-type DAF-7

gene product in the ASI neurons of daf-7 mutants using a gpa-4

promoter (Jansen et al., 1999), we completely rescued the quies-

cence defect (Figure 5E). Thus, quiescence after fasting and re-

feeding is mediated by daf-7 in ASI neurons, supporting the role

of ASI neurons in regulating or sensing food intake.

PKG in TAX-2/4-Expressing Neurons
Regulates Quiescence
It has been shown that the protein kinase G (PKG) EGL-4 is nec-

essary in worms for olfactory adaptation, body size control, and

determination of locomotor behavioral states (roaming versus

dwelling) (Fujiwara et al., 2002; Hirose et al., 2003; L’Etoile

et al., 2002). PKG in other invertebrates plays a role in food-seek-

ing behavior (Ben-Shahar et al., 2002; Osborne et al., 1997). egl-4

loss-of-function mutants roam more and are larger than wild-

type, while an egl-4(ad450) gain-of-function mutant is often

found to be quiescent and is smaller than wild-type (Avery,

1993; Raizen et al., 2006). As described above, wild-type adults

hardly show quiescence on DA837, whereas egl-4 gain-of-func-

tion mutants do. We reasoned that if egl-4 gain of function

caused excessive quiescence, then egl-4 loss of function might

abolish quiescence. In fact, egl-4 loss-of-function mutants did

not show quiescence behavior at all, but constantly fed and

moved, even after fasting and refeeding (Figures 6A and 6B).

In contrast, nonfasted egl-4 gain-of-function mutants showed

approximately double the quiescence duration of wild-type

(Figure 6C). The quiescence duration of egl-4 gain-of-function

mutants was not further enhanced by fasting, however, suggest-

ing that the quiescence duration of nonfasted egl-4 gain-

of-function mutants had already reached the maximum value

(Figure 6C).

To determine the site of action of egl-4, we expressed wild-

type egl-4 under the control of a tax-4 promoter and asked

whether this expression rescued the quiescence defect. tax-4

encodes a cGMP-gated channel expressed in a dozen neurons

(including ASI) that sense the worm’s environment and internal

state (Komatsu et al., 1996). These neurons have critical roles

in controlling body fat, determining body size, and changing

feeding behaviors depending on environmental factors such as

oxygen concentration (Coates and de Bono, 2002; Fujiwara

et al., 2002; Mak et al., 2006). tax-4::egl-4 rescued quiescence

in the egl-4 mutants (Figure 6D). In contrast, expressing egl-4

in a subset of TAX-4-expressing neurons using either an odr-3

promoter (to express in AWA, AWB, and AWC neurons) or

a gcy-32 promoter (to express in AQR, PQR, and URX neurons)

did not rescue quiescence (Figure 6D).

TAX-4 and TAX-2 are a and b subunits, respectively, of

a cGMP-gated channel (Komatsu et al., 1996), and their neuronal

expression overlaps. When we tested tax-2 mutants, they

showed no quiescence (Figure 6E). (We were unable to test

tax-4 mutants because, unlike tax-2 mutants, they often stray

away from food.) These results suggest that the TAX-2/4-

expressing neurons and their neuronal activities mediated by
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the TAX-2/4 cGMP-gated channel are necessary for quiescence

after fasting and refeeding.

Insulin, cGMP, and TGF-b Signaling Regulate
Quiescence through PKG
Because EGL-4 is a cGMP-dependent protein kinase, we

searched for guanylyl cyclases (GCYs) that might activate it.

We found that mutants of daf-11, which encodes a membrane-

bound GCY (Birnby et al., 2000), showed a shorter quiescence

duration than wild-type (Figure 6F). The egl-4 gain-of-function

mutation suppressed the daf-11 defect in quiescence behavior,

suggesting that daf-11 is upstream of egl-4, as expected if this

signaling model were correct.

The egl-4 gain-of-function mutation also suppressed the daf-2,

daf-1, and daf-7 defects, suggesting that daf-2, daf-1, and daf-7

are upstream of egl-4. Although the egl-4 gain-of-function muta-

tion partially suppressed the daf-1 and daf-7 defects, it did not

suppress that of daf-4 (Figure 6G). This suggests that TGF-b

conveys satiety signals via egl-4-dependent and -independent

pathways, consistent with other reports regarding the role of

TGF-b pathways in dauer formation (Daniels et al., 2000; Kimura

et al., 1997).

Figure 5. Peptide Signals Including Insulin and TGF-b

Mediate Quiescence after Fasting and Refeeding

In (A), (B), and (C), the x axis crosses the y axis at y =�5 so that

the data for some mutants are visible.

(A) Quiescence duration of egl-21 mutants. egl-21 mutants

failed to show quiescence after 3 (gray bars) or 6 (black

bars) hr of refeeding.

(B) Quiescence duration of egl-3 mutants. egl-3 mutants failed

to show quiescence after 3 (gray bars) or 6 (black bars) hr of

refeeding. Four different alleles of egl-3 (nu349, gk238, n729,

and nr2090) were tested, and all failed to show quiescence.

The data from nr2090 are shown.

(C) Quiescence duration of unc-31 mutants. unc-31 mutants

failed to show quiescence after 3 (gray bars) or 6 (black

bars) hr of refeeding.

(D) Quiescence durations (expressed as a percent of wild-type)

of daf-2 and TGF-b signaling mutants after 3 (gray bars) or 6

(black bars) hr of refeeding (see Experimental Procedures).

(E) Expression of daf-7 in ASI neurons rescues the daf-7 quies-

cence defect.

Values are the mean ± SEM. *p < 0.005, **p < 0.001. + indicates

wild-type.

DISCUSSION

In this study, we report quiescence behavior in

worms, which results in inhibition of food intake

and movement. We propose that quiescence is a re-

sult of satiety because it depends on food quality,

requires nutritional signals from the intestine, and

depends on prior feeding history. Moreover, the be-

havioral sequence leading to quiescence in worms

resembles the behavioral sequence of satiety in

mammals. Quiescence after fasting and refeeding

is regulated by insulin and neuropeptide signaling

pathways, suggesting that it may share molecular

mechanisms with the control of food intake in mam-

mals. Based on our findings, we suggest a model wherein quies-

cence after fasting and refeeding induces signaling pathways in

which PKG (EGL-4) is activated by insulin, cGMP, and TGF-b

pathways (Figure 7).

Quiescence is distinct from other, previously described

C. elegans behavioral states. Worms alternate between two

locomotor behavioral states, dwelling and roaming (Fujiwara

et al., 2002). Dwelling and quiescence show superficial similari-

ties: both attenuate locomotion, and EGL-4 is necessary in

TAX-4 neurons for both. However, we found that the two behav-

iors were different in their details. Worms in the quiescent state

are completely inactive in terms of both locomotion and feeding,

unlike dwelling worms, which feed actively. In fact, during the ini-

tial refeeding period immediately after fasting, worms dwelled

but fed actively. In addition, we did not find a correlation between

the two behaviors in mutants that predominantly dwell (Table

S3). This implies that, with the exception of EGL-4, the molecules

that control the two behaviors are different. For these reasons,

we conclude that quiescence and dwelling are distinct behav-

iors. Quiescence is also distinct from the enhanced slowing re-

sponse (Ranganathan et al., 2000), because mod-1 mutants

showed intact quiescence behavior (Table S2).
Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc. 253
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Figure 6. Insulin, cGMP, and TGF-b Signaling Regu-

late Quiescence through PKG in TAX-2/4-Expressing

Neurons

In (A), (D), and (E), the x axis crosses the y axis at y =�5 so that

the data for some mutants are visible.

(A) Quiescence duration of egl-4 loss-of-function mutants (lf)

after 3 hr of refeeding. Eleven egl-4(lf) mutants and thirteen

wild-type (+) worms were used for the fasting/refeeding exper-

iment.

(B) Feeding rates (measured in ppm) of egl-4(lf) mutants at the

indicated time points during refeeding (n = 11).

(C) Quiescence duration of egl-4 gain-of-function mutants (gf)

after 3 hr of isolation. For the nonfasted data, 19 nonfasted

wild-type (+) and 20 nonfasted egl-4(gf) mutants were used.

For the fasted data, 11 wild-type worms and 16 egl-4(gf)

mutants were fasted and refed.

(D) Expression of egl-4 under the control of a tax-4 promoter

(black bars) rescued the egl-4 quiescence behavior defect

after 6 hr of refeeding, whereas expressing egl-4 under the

control of either an odr-3 (white bars) or a gcy-32 (gray bars)

promoter did not.

(E) Mutations in tax-2 abolish quiescence. tax-2 failed to show

quiescence after 3 (gray bars) or 6 (black bars) hr of refeeding.

Two different alleles of tax-2 (p671 and p694) were tested, and

both failed to show quiescence. The data from p694 are

shown.

(F) daf-11 is an upstream guanylyl cyclase (GCY) regulating

EGL-4 in quiescence. Quiescence durations of daf-11 and

daf-11; egl-4(gf) double mutants.

(G) Quiescence durations of TGF-b signaling mutants (gray

bars) and double mutants with egl-4(gf) (black bars) calculated

as percent of wild-type (see Experimental Procedures for SEM

estimation).

Values are the mean ± SEM. *p < 0.005, **p < 0.001.
In worms, insulin, cGMP, and TGF-b pathways are involved in

sensing a favorable environment and making the decision to

keep growing and reproducing instead of becoming a dauer,

a nonreproductive form specialized for long-term survival (Riddle

et al., 1981). However, we do not believe that quiescence is sim-

ply related to dauer formation, for two reasons. First, we used

temperature-sensitive mutants and maintained the worms so

that they did not become dauers. Whatever function these dauer

genes have in quiescence, it is at least not at the dauer-specific

stage. Second, and more importantly, there is no clear correla-

tion in strength between dauer formation and quiescence de-

fects. For example, tax-2 and egl-4 are weak dauer-constitutive

mutants (daf-c) but show the strongest defect in quiescence. All

the other dauer-constitutive mutants (including daf-11, the stron-

gest daf-c) still show quiescence, albeit briefly. Therefore, we

suggest that these pathways that mediate the regulation of dauer

formation by food may also regulate other food-dependent

behaviors such as satiety, but through somewhat different

mechanisms.

Interestingly, most mutants defective in quiescence behavior

have darker intestines than wild-type. A dark intestine usually

correlates with increased fat storage (McKay et al., 2003). In

fact, some of these mutants, including daf-2 and daf-7, are

known to store more fat than wild-type (Kimura et al., 1997).
254 Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc.
Our hypothesis that quiescence results from satiety strongly

suggests that worms do not feed constantly but rather regulate

their feeding depending on nutritional status and environment.

Quiescence-defective mutants that have reduced ‘‘good condi-

tions’’ signaling may be defective in regulating feeding, which

might cause increased feeding and fat accumulation. Recent

studies suggest that natriuretic peptide receptors, homologs of

DAF-11, have a role in storing and degrading fat through PKG

in adipose tissue (Sengenes et al., 2000) and that TGF-b signaling

in neurons regulates adiposity during exercise (Ishikawa et al.,

2006). Our results suggest the possibility of conserved linkage

of these signaling pathways to regulation of feeding and metab-

olism in worms and mammals.

In conclusion, we have found that C. elegans has a conserved

feeding behavior that shares characteristics typical of satiety be-

havior in mammals, making it a useful genetic model system to

understand the regulation of appetite.

EXPERIMENTAL PROCEDURES

General Methods and Strains

Worms were cultured and handled as described previously (Sulston and

Hodgkin, 1988) with the following modifications: worms were routinely grown

on NGMSR plates (Avery, 1993). All worms were maintained at 20�C on E. coli
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strain HB101 unless indicated otherwise. The wild-type strain was C. elegans

variant Bristol, strain N2. Mutant strains used were DA465 eat-2(ad465) II,

IN2043 act-5(dt2017sd) III / eT1(III); + / eT1(V), CB1370 daf-2(e1370) III,

DR1942 daf-2(e979ts) III, DR1942 daf-2(e979ts) III, FK234 egl-4(ks62) IV,

UP1411 egl-4(ad450sd) IV; daf-11(sa195ts) V, DA521 egl-4(ad450sd) IV,

DA2143 egl-4(ks62) IV; adEx2143[tax-4p::egl-4 rol-6p::GFP], DA2149 egl-

4(ks62) IV; adEx2149[odr-3p::egl-4 rol-6p::GFP], DA2185 egl-4(ks62) IV;

adEx2185[gcy-32p::egl-4 rol-6p::GFP], CB1372 daf-7(e1372ts) III, JT195 daf-

11(sa195ts) V, DR40 daf-1(m40ts) IV, CB1364 daf-4(e1364ts) III, UP1395 daf-

2(e1370) III; egl-4(ad450sd) IV, UP1438 daf-1(m40ts) egl-4(ad450sd) IV,

UP1341 daf-7(e1372ts) III; egl-4(ad450sd) IV, UP1401 daf-4(e1364ts) III;

egl-4(ad450sd) IV, PR671 tax-2(p671) I, PR694 tax-2(p694) I, CB1112 cat-

2(e1112) II, LX703 dop-3(vs106) X, LX734 dop-2(vs105) V; dop-1(vs100) dop-

3(vs106) X, BR1671 gar-2(by124) III, JD250 gar-3(lg1201) V, DA2100 ser-

7(tm1325) X, DA2109 ser-7(tm1325) ser-1(ok345) X, DA1814 ser-1(ok345) X,

GR1321 tph-1(mg280) II, MT9668 mod-1(ok103) V, FX903 dat-1(tm903) III,

KP2018 egl-21(n476) IV, DA509 unc-31(e928) IV, KP1873 egl-3(nu349) V,

VC461 egl-3(gk238) V, GR1328 egl-3(nr2090) V, MT1541 egl-3(n729) V,

DA2202 daf-7(e1372ts) III; adEx2202[gpa-4p::daf-7 rol-6p::GFP], and

DA2203 daf-7(e1372ts) III; adEx2203[gpa-4p::daf-7 rol-6p::GFP].

The standard ‘‘high-quality’’ and ‘‘low-quality’’ bacterial strains used were

E. coli HB101 and E. coli DA837, respectively (Shtonda and Avery, 2006). It

is unlikely that the nutritional content of these bacteria differs significantly—

we believe rather that the significant difference is in the worm’s ability to ingest

them. On NGMSR, DA837 tend to clump together, while HB101 do not, and

a computer model suggests that these larger clumps will not be transported

as efficiently within the pharynx (Shtonda and Avery, 2006). Unfortunately,

we have no quantitative information on the net effect of this transport problem

on nutrient uptake. The question cannot be answered simply by measuring

food uptake, because it is likely that worms do not always absorb all of the nu-

trient that reaches the intestine (i.e., they release some by defecation) and that

the efficiency of nutrient absorption may depend on the nutritional state of the

worm. Thus, while we are confident that the worms obtain less nutritional ben-

efit from DA837 than from HB101, we cannot quantify the ratio.

Quiescence Assay in Different Qualities of Food

and for Malnourished Mutants

All worms were grown on the indicated food until young adulthood (approxi-

mately 9–12 hr after the L4 stage). To observe pumping and movement of

worms precisely, 3 hr prior to observation we placed individual worms on

plates seeded with the same food on which they had been grown. If a worm

did not move and feed for more than 10 s (as shown in Movie S1), we consid-

ered it quiescent.

The Fasting/Refeeding Experiment

Worm Preparation

About 50 L4 larvae were transferred to HB101-seeded plates. Twelve hours

later, when they had reached young adulthood, we transferred each worm

with a platinum pick to an individual 60 mm NGMSR plate (Avery, 1993) without

Figure 7. Insulin, cGMP, and TGF-b Signaling Regulate Quiescence

through PKG

Quiescence after fasting and refeeding is controlled by a signaling pathway in

which PKG (EGL-4) is activated by insulin, cGMP, and TGF-b pathways.
food. After 12 hr of fasting, we again transferred them singly to NGMSR plates

seeded with HB101 for refeeding. Each worm was observed through a dissect-

ing microscope (with 503 magnification) after refeeding for the indicated num-

ber of hours. For the nonfasted control, about 50 L4 larvae were transferred to

HB101-seeded plates (same as the fasted samples). Twelve hours later, when

they had reached young adulthood, these worms were transferred singly to

NGMSR plates seeded with HB101 for the indicated periods of time.

We attempted to track individual worms during refeeding but did not suc-

ceed. The main problem was that at microscope resolution and magnification

high enough to see pumping clearly, worms were disturbed by unknown fac-

tors and showed only inconsistent and brief quiescence.

Measuring Pumping Rate

Immediately after the worm was located at the indicated refeeding time point,

the number of pumps was counted over the first 30 s. This number was then

doubled to get ‘‘pumps per minute.’’

Measuring Food Intake with GFP-Expressing E. coli HB101

Fasted and nonfasted worms were prepared as described above. GFP-ex-

pressing HB101 (a kind gift from D. Omura and R. Horvitz, Massachusetts In-

stitute of Technology) was cultured overnight in LB broth and washed and re-

suspended in 50 ml of M9 buffer. Five microliters of this suspension was placed

on each plate and allowed to dry. Fasted or nonfasted worms were placed

on the bacterial lawn. Five minutes after transfer, worms were observed

with a Zeiss Axioplan 2 imaging microscope, and pictures were taken with

an AxioCam HRm camera and Openlab software (Improvision). Fluorescence

intensity was measured and analyzed using ImageJ (http://rsb.info.nih.gov/ij/).

We believe that these measurements are monotonic with total fluorescence,

but they are unlikely to be linear.

Measuring Food Intake during Refeeding

Using GFP-Expressing E. coli HB101

Fasted worms were prepared as described above. Worms were refed on non-

GFP-expressing HB101 for the indicated length of time (0, 30, or 60 min) and

then transferred to GFP-expressing HB101 for 5 min to measure food intake.

Worms were observed, pictures were taken, and fluorescence intensity was

analyzed as described above.

Measuring Food Intake Using BODIPY Dye

BODIPY dye (Molecular Probes, catalog number D-3822) was dissolved in

DMSO at 1 mg/ml (a stock solution). The stock solution was diluted and spread

on plates to achieve a nominal final concentration of 200 ng/ml based on the

volume of agar on the plate. Fasted and nonfasted worms were placed on

BODIPY plates seeded with HB101 for 15 min. Worms were observed, pic-

tures were taken, and fluorescence intensity was analyzed as described

above.

Measuring the Duration of Quiescence

The duration of quiescence was measured from the time when the worms were

found to be quiescent until either continuous feeding or continuous locomotion

occurred.

Quiescence Behavior Assays for Insulin Receptor,

GCY, and TGF-b Signaling Mutants

Mutants and wild-type controls were grown at a permissive temperature

(15�C) until they became L4 larvae, to prevent the mutants from becoming

dauers. They were then transferred to and kept at a nonpermissive temperature

(23�C) throughout the test period. The worms were prepared and observed as

described for the fasting/refeeding experiment. All of the experiments were

performed blindly with concurrent wild-type controls, and each was repeated

independently three times. To combine the results into one graph, the ratio of

the quiescence duration of mutants to that of concurrent wild-type controls

was calculated from each experiment and then converted to a percent.

Each value given is the mean ± SEM of the percents from three independent

experiments.

Quiescence behavior assays for other mutants were performed as for insulin

and TGF-b mutants, except that worms were grown and maintained at 20�C.

Nose Touch Test

Two groups (fasted and nonfasted) were prepared and observed as described

for the fasting/refeeding experiment. After 3 hr of refeeding, each worm was

checked to determine whether it was quiescent. If so, the tip of its nose was

touched with an eyelash to disturb it (Kaplan and Horvitz, 1993). Once
Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc. 255
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movement had been confirmed, observation continued to determine whether

the animal returned to quiescence within 30 s. If it did not, it was scored as 0; if

it did, it was scored as 1. The mean of the scores was calculated to get the

probability to return to quiescence.

Satiety Behavior Assay for Transgenic Lines Expressing

egl-4 in TAX-4-Expressing Neurons

The tax-4p::egl-4 and odr-3p::egl-4 DNA constructs were kind gifts of M. Fu-

jiwara (Kyushu University Graduate School) and N. L’Étoile (University of Cal-

ifornia, Davis), respectively. The gcy-32p::egl-4 plasmid was constructed as

follows: two primers were used to PCR amplify 902 bp of the gcy-32 promoter

(Yu et al., 1997): YJ213f (gcy-32 promoter forward containing a SphI site),

50-CCAAAATTGCATGCCCACTGATGATGTGATGAAGC-30; YJ214r (gcy-32

promoter reverse containing a BamHI site), 50-ATAGGATCCATTCATTATATT

TTCCTTTCCGCTTTC-30.

The plasmid containing tax-4p::egl-4 was digested with SphI and BamHI to

remove the tax-4 promoter. This digested plasmid was ligated to the PCR

product to replace the tax-4 promoter with the gcy-32 promoter. The promoter

exchange was confirmed by sequencing.

GFP under the control of a rol-6 promoter was used as a transgenic marker.

Stable transgenic lines were recognized by expression of green fluorescence

in the second-generation progeny of worms microinjected with the DNA. Fif-

teen transgenic and fifteen nontransgenic siblings were prepared and ob-

served as described for the fasting/refeeding experiment, and their quies-

cence behaviors were scored blind to their genotype. The experiment was

performed twice for each of two independent transgenic lines.

DNA Construct and Injection for Expression of daf-7 in ASI Neurons

2.4 kb of the gpa-4 promoter region containing the 50 end of daf-7 was gener-

ated by PCR using primers forward 50-GACAGAAGACAGAGACTCGAG-30, re-

verse 50-TGCCATGAACATTGTTGAAAAGTGTTCACAAAATG-30 (product 1).

The daf-7 coding region containing the 30 end of the gpa-4 promoter was gen-

erated by PCR using primers forward 50-CACTTTTCAACAATGTTCATGGCAT

CTTCACTCC-30, reverse 50-GACCTGACACCAAGTGTATGG-30 (product 2).

PCR products 1 and 2 were fused by PCR using primers forward 50-GCGACTT

TCGATACGTAGGTC-30, reverse 50-GTTACCGTTCAAGCAATTTCTCAG-30 to

produce 4.4 kb of the gpa-4 promoter fused to the daf-7 coding region. GFP

under the control of a rol-6 promoter was used as a transgenic marker. Stable

transgenic lines were recognized by expression of green fluorescence in the

second-generation progeny of worms microinjected with the DNA. Ten trans-

genic and ten nontransgenic siblings were prepared and observed as de-

scribed for the fasting/refeeding experiment, and their quiescence behaviors

were scored blind to their genotype. The experiment was performed three

times for each of two independent transgenic lines.

Statistics

The heteroscedastic two-tailed Student’s t test was used to assess the statistical

significance ofdifferencesbetween two groups. All data are presented asmeans,

and error bars represent SEM. p values are indicated in the figure legends.

Since the data in Figure 6G come from a single experiment, we estimated the

standard error from the variation between worms in that experiment using the

following equation:

�
SEr

r

�2

=

�
SE+

q+

�2

+

�
SEm

qm

�2

where

q+ is the mean quiescence duration for wild-type
qm is the mean quiescence duration for mutant
r = qm=q+ is the ratio of mutant quiescence duration to wild-type
SE+ and SEm are the standard errors of q+ and qm

SEr is the estimated standard error of r:

SUPPLEMENTAL DATA

Supplemental Data include three tables, one figure, and two movies and

can be found with this article online at http://www.cellmetabolism.org/cgi/

content/full/7/3/249/DC1/.
256 Cell Metabolism 7, 249–257, March 2008 ª2008 Elsevier Inc.
ACKNOWLEDGMENTS
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