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Abstract. Let E be an odd dimensional complex vector space and IF :“ IFp1, 2;Eq be
the family of odd symplectic partial flag manifold. In this paper we give a full description
of the irreducible components of the degree d curve neighborhood of any Schubert variety
of IF, study their lattice structure, and prove a combinatorial version of Conjecture O.

1. Introduction

1.1. Overview. The degree d curve neighborhood of a subvariety V Ă X, denoted ΓdpV q,
is the closure of the union of all degree d rational curves through V . Curve neighbor-
hoods were introduced in [BCMP13] to prove finiteness of quantum K-theory for X a
cominuscule homogeneous space. Let E be an odd dimensional complex vector space and
IF :“ IFp1, 2;Eq be the family of odd symplectic partial flag manifold made up of sequences
of vector spaces pV1 Ă V2 Ă Eq where dimVi “ i and Vi is isotropic with respect to a
(necessarily degenerate) symmetric form. In this paper we give a full description of the
irreducible components of the degree d curve neighborhood of any Schubert variety of IF,
study their lattice structure, and prove a combinatorial version of Conjecture O.

1.2. Broader context. Curve neighborhoods in homogeneous G{P case are irreducible
and there are combinatorial models to perform calculations (see [BCMP13, BM15, SW22,
Shi25]). In [Asl18], Aslan shows that the irreducible components of curve neighborhoods
in the Affine Flag in Type A have equal dimension. It is shown in [PS24] that curve
neighborhoods in the odd symplectic Grassmannian may not be irreducible. In Section 6,
we see, for the first time, that reducible curves are an integral part of understanding the
geometry of the (combinatorial) quantum Bruhat graph for IF. See Remark 6.4.

1.3. Curve neighborhoods. We now discuss curve neighborhoods. Let X be a Fano
variety (one could consider X to be smooth). Let d P H2pX,Zq be an effective degree.
Recall that the moduli space of genus 0, degree d stable maps with two marked points
M0,2pX, dq is endowed with two evaluation maps evi : M0,2pX, dq Ñ X, i “ 1, 2 which
evaluate stable maps at the i-th marked point. Let Ω Ă X be a closed subvariety. The
curve neighborhood of Ω is the subscheme

ΓdpΩq :“ ev2pev´1
1 Ωq Ă X

endowed with the reduced scheme structure.
This notion was introduced by Buch, Chaput, Mihalcea and Perrin [BCMP13] to help

study the quantum K-theory ring of cominuscule Grassmannians. It was analyzed further
in [BM15, PS24]. Often, estimates for the dimension of the curve neighborhoods provide
vanishing conditions for certain Gromov-Witten invariants.
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1.4. Lattices. We will study curve neighborhoods through the lens of lattices. That is,
let X be a smooth variety containing the subvariety Ω. It’s interesting to ask if the set
tΓdpΩqqud forms a (distributive) lattice where ď is defined by inclusion of varieties. We will
show that this set forms a distributive lattice when X “ IF and Ω is a Schubert variety.

1.5. Conjecture O. We will motivate and define the Combinatorial Property O which
is known to correspond with Conjecture O in the homogeneous G{P and odd symplectic
Grassmannian cases. We begin by reviewing Conjecture O and conclude with its relation
to graph theory in Lemma 1.1. In Subsection 1.7 we state the combinatorial versions of the
quantum Bruhat graph and the Conjecture O. In Subsection 6.1 we state and prove that
Combinatorial Property O holds for IF in Theorem 6.5.

We recall the precise statement of Conjecture O. Let X be a Fano variety, let K :“
KX be the canonical line bundle of X, let XD be a fundamental divisor of X, and let
c1pXq :“ c1p´Kq P H2pXq be the anticanonical class. The Fano index of X is r, where
r is the greatest integer such that KX – ´rXD. The small quantum cohomology ring
pQH˚pXq, ‹q is a graded algebra over Zrqs, where q is the quantum parameter. Consider
the specialization H‚pXq :“ QH˚pXq|q“1 at q “ 1. The quantum multiplication by the
first Chern class c1pXq induces an endomorphism ĉ1 of the finite-dimensional vector space
H‚pXq:

y P H‚pXq ÞÑ ĉ1pyq :“ pc1pXq ‹ yq|q“1.

Denote by δ0 :“ maxt|δ| : δ is an eigenvalue of ĉ1u. Then Property O states the following:

(1) The real number δ0 is an eigenvalue of ĉ1 of multiplicity one.
(2) If δ is any eigenvalue of ĉ1 with |δ| “ δ0, then δ “ δ0γ for some r-th root of unity

γ P C, where r is the Fano index of X.

The property O was conjectured to hold for any Fano, complex manifold X in [GGI16]. If
a Fano, complex, manifold has Property O then we say that the space satisfies Conjecture
O. Conjecture O underlies Gamma Conjectures I and II of Galkin, Golyshev, and Iritani.
The Gamma Conjectures refine earlier conjectures by Dubrovin on Frobenius manifolds and
mirror symmetry. Conjecture O has already been proved for many cases in [CL17,LMS19,
HKLY21,Ke23,BFSS20]. The Perron-Frobenius theory of nonnegative matrices reduces the
proofs that Conjecture O holds for the homogeneous and the odd symplectic Grassmannian
cases to be a graph-theoretic check. This is because Conjecture O is largely reminiscent of
Perron-Frobenius Theory.

The small quantum cohomology is defined as follows. Let pαiqi be a basis of H˚pXq, the
classical cohomology ring, and let pα_

i qi be the dual basis for the Poincaré pairing. The
multiplication is given by

αi ‹ αj “
ÿ

dě0,k

ck,di,j q
dαk

where ck,di,j are the 3-point, genus 0, Gromov-Witten invariants corresponding to the classes
αi, αj , and α_

k . We will make use of the quantum Chevalley formula which is the multi-
plication of a hyperplane class h with another class αj . The explicit quantum Chevalley
formula is the key ingredient used to prove Property O holds.

1.6. Sufficient Criterion for Property O to hold. We recall the notion of the (oriented)
quantum Bruhat graph of a Fano varietyX. The vertices of this graph are the basis elements
αi P H‚pXq :“ QH˚pXq|q“1. There is an oriented edge αi Ñ αj if the class αj appears
with positive coefficient (where we consider q ą 0) in the quantum Chevalley multiplication
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h ‹ αi for some hyperplane class h. We say the graph is strongly connected if there are
directed paths for αi to αj and αj to αi for any αi, αj P H‚pXq. If there is a path

αi1 Ñ αi2 Ñ ¨ ¨ ¨ Ñ αik Ñ αi1

then we say this is a cycle with cycle length k. Using the Perron-Frobenius theory of non-
negative matrices, Conjecture O reduces to a graph-theoretic check of the quantum Bruhat
graph. The techniques involving Perron-Frobenius theory used by Li, Mihalcea, and Shifler
in [LMS19] and Cheong and Li in [CL17] imply the following lemma:

Lemma 1.1. If the following conditions hold for a Fano variety X:

(1) The matrix representation of ĉ1 is nonnegative,
(2) The quantum Bruhat graph of X is strongly connected, and
(3) There exists a set of cycles where the Great Common Divisor of the cycle lengths is

r, the Fano index, in the quantum Bruhat graph of X,

then Property O holds for X.

Remark 1.2. Part (2) of Conjecture O holds automatically if the Fano index is equal to one.
That is, we don’t need to verify Lemma 1.1 (3) for IFp1, 2;Eq.

1.7. Combinatorial version of the quantum Bruhat graph and Conjecture O. Let
X be a Fano variety. Let B :“ tαiuiPI denote a basis of the cohomology ring H˚pXq. Denote
its first Chern class by

c1pXq “ a1Div1 ` a2Div2 ` ¨ ¨ ¨ ` akDivk

where Divi P B is a divisor class for each 1 ď i ď k.

Definition 1.3. The combinatorial quantum Bruhat graph of X is define as follows. The
vertices of this graph are the basis elements αi P H˚pXq. The edges set is given as follows:

(1) There is an oriented edge αi Ñ αj if the class αj appears with positive coefficient
in the Chevalley multiplication h ‹ αi for some hyperplane class h.

(2) Let αi “ rXpiqs and αj “ rXpjqs. There is an oriented edge αi Ñ αj

(a) if Xpjq is an irreducible component of ΓdpXpiqq where d “ pd1, ¨ ¨ ¨ , dkq,
(b) and

dimpXpjqq ´ dimpXpiqq “ a1d1 ` a2d2 ` ¨ ¨ ¨ ` akdk ´ 1.

Lemma 1.1 leads us to naturally consider the following combinatorial formulation of
Conjecture O.

Definition 1.4. Combinatorial Property O holds if the following conditions are satisfied:

(1) There is a basis with respect to which the associated matrix of ĉ1 is nonnegative1,
(2) The combinatorial quantum Bruhat graph is strongly connected and the Greatest

Common Divisor of the cycle lengths is r “ GCDpa1, a2, ¨ ¨ ¨ , akq.

The purpose of Proposition 1.5 is to assert that the Combinatorial versions of the quantum
Bruhat graph and Conjecture O correspond with their geometric analogue.

Proposition 1.5 ([LMS19,CL17]). The combinatorial quantum Bruhat graphs (Combina-
torial Property O) and the quantum Bruhat graphs (Conjecture O) correspond for homoge-
neous G{P and the odd symplectic Grassmannian.

1General Fano manifolds may not satisfy this property. For instance, the blowup of P2 at a point does
not satisfy this property.
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1.8. Organization of the main results. The manuscript has three objectives. The first
is to compute the curve neighborhoods of Schubert varieties in IF. This is done in Section
4. We study curve neighborhoods in the context of lattices in Section 5. In Section 6 we
study the combinatorial analogues of the quantum Bruhat graphs and Conjecture O. We
conclude by showing that Combinatorial Property O holds which motivate futher study of
IF.

2. Notations and Definitions

2.1. A small family of odd symplectic partial flag manifolds. Let n ě 2 and E :“
C2n`1 be an odd-dimensional complex vector space. An odd symplectic form ω on E is
a skew-symmetric bilinear form of maximal rank (i.e. with kernel of dimension 1). It
will be convenient to extend the form ω to a (nondegenerate) symplectic from ω̃ on an

even-dimensional space rE Ą E, and to identify E Ă rE with a coordinate hyperplane
C2n`1 Ă C2n`2.

For that, let te1, . . . , en`1, en`1, . . . , e2̄, e1̄u be the standard basis of rE :“ C2n`2, where

ī “ 2n ` 3 ´ i. Consider rω to be the symplectic form on rE defined by

rωpei, ejq “ δi,j̄ for all 1 ď i ď j ď 1̄.

The form rω restricts to the degenerate skew-symmetric form ω on

E “ C2n`1 “ ⟨e1, e2, ¨ ¨ ¨ , e2n`1⟩

such that the kernel kerω is generated by e1. Then

ωpei, ejq “ δi,j̄ for all 1 ď i ď j ď 2̄.

Let F Ă E denote the 2n-dimensional vector space with basis te2, e3, ¨ ¨ ¨ , e2n`1u.
The odd symplectic partial flag manifold we are considering is

IFp1, 2;Eq :“ tV1 Ă V2 Ă E : dimVi “ i and ωpx, yq “ 0 for any x, y P Viu.

The restriction of ω to F is non-degenerate, hence we can see the odd symplectic Grass-
mannian as intermediate space

(1) IFp1;F q Ă IFp1, 2;Eq Ă IFp1, 2; rEq,

sandwiched between two odd symplectic flag manifolds. This and the more general “odd
symplectic partial flag varieties” have been studied in [Mih07,Clé13,MS19,LMS19,PS24].

In particular, Mihai showed that IF is a smooth Schubert variety in IFp1, 2; rEq.

2.2. The odd symplectic group. Proctor’s odd symplectic group (see [Pro88]) is the
subgroup of GLpEq which preserves the odd symplectic form ω:

Sp2n`1pEq :“ tg P GLpEq | ωpg ¨ u, g ¨ vq “ ωpu, vq,@u, v P Eu.

Let Sp2npF q and Sp2n`2p rEq denote the symplectic groups which respectively preserve
the symplectic forms ω|F and rω. Then with respect to the decomposition E “ F ‘ kerω
the elements of the odd symplectic group Sp2n`1pEq are matrices of the form

Sp2n`1pEq “

"ˆ

λ a
0 S

˙

| λ P C˚, a P C2n, S P Sp2npF q

*

.
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The symplectic group Sp2npF q embeds naturally into Sp2n`1pEq by λ “ 1 and a “ 0,

but Sp2n`1pEq is not a subgroup of Sp2n`2p rEq.2 Mihai showed in [Mih07, Prop 3.3] that

there is a surjection P Ñ Sp2n`1pEq where P Ă Sp2n`2p rEq is the parabolic subgroup which
preserves kerω, and the map is given by restricting g ÞÑ g|E . Then the Borel subgroup

B2n`2 Ă Sp2n`2p rEq of upper triangular matrices restricts to the (Borel) subgroup B Ă

Sp2n`1pEq. Similarly, the maximal torus

T2n`2 :“ tdiagpt1, ¨ ¨ ¨ , tn`1, t
´1
n`1, ¨ ¨ ¨ , t´1

1 q : t1, ¨ ¨ ¨ , tn`1 P C˚u Ă B2n`2

restricts to the maximal torus

T “ tdiagpt1, ¨ ¨ ¨ , tn`1, t
´1
n`1, ¨ ¨ ¨ , t´1

2 q : t1, ¨ ¨ ¨ , tn`1 P C˚u Ă B.

Later on we will also require notation for subgroups of Sp2npF q, viewed as a subgroup of
Sp2n`1pEq. We denote by B2n Ă B the Borel subgroup of upper-triangular matrices in
Sp2npF q and by T2n the maximal torus

T2n “ tdiagp1, t2, ¨ ¨ ¨ , tn`1, t
´1
n`1, ¨ ¨ ¨ , t´1

2 q : t2, ¨ ¨ ¨ , tn`1 P C˚u Ă B2n.

Mihai showed that the odd symplectic group Sp2n`1pEq acts on IF with three orbits:

X˝ “ tV P IF | e1 R V2u the open orbit.

Z2 “ tV P IF | e1 P V2zV1u.

Z1 “ tV P IF | e1 P V1u the closed orbit.

The closed orbit Z1 is isomorphic to IFp1, F q via the map V ÞÑ V X F .

2.3. The Weyl group of Sp2n`2 and odd symplectic minimal representatives.
There are many possible ways to index the Schubert varieties of isotropic flag manifolds.
Here we recall an indexation using signed permutations.

Consider the root system of type Cn`1 with positive roots

R` “ tti ˘ tj | 1 ď i ă j ď n ` 1u Y t2ti | 1 ď i ď n ` 1u

and the subset of simple roots

∆ “ tαi :“ ti ´ ti`1 | 1 ď i ď nu Y tαn`1 :“ 2tn`1u.

The associated Weyl group W is the hyperoctahedral group consisting of signed permuta-
tions, i.e. permutations w of the elements t1, ¨ ¨ ¨ , n`1, n ` 1, ¨ ¨ ¨ , 1u satisfying wpiq “ wpiq
for all w P W . For 1 ď i ď n denote by si the simple reflection corresponding to the root
ti´ti`1 and sn`1 the simple reflection of 2tn`1. In particular, if 1 ď i ď n then sipiq “ i`1,
sipi`1q “ i, and sipjq is fixed for all other j. Also, sn`1pn`1q “ n ` 1, sn`1pn ` 1q “ n`1,
and sn`1pjq is fixed for all other j.

Each subset I :“ ti1 ă . . . ă iru Ă t1, . . . , n ` 1u determines a parabolic subgroup

P :“ PI ď Sp2n`2p rEq with Weyl group WP “ xsi | i ‰ ijy generated by reflections with

indices not in I. Let ∆P :“ tαis | is R ti1, . . . , iruu and R`
P :“ SpanZ∆P X R`; these are

the positive roots of P . Let ℓ : W Ñ N be the length function and denote by WP the set
of minimal length representatives of the cosets in W {WP . The length function descends
to W {WP by ℓpuWP q “ ℓpu1q where u1 P WP is the minimal length representative for the
coset uWP . We have a natural ordering

1 ă 2 ă ¨ ¨ ¨ ă n ` 1 ă n ` 1 ă ¨ ¨ ¨ ă 1,

2However, Gelfand and Zelevinsky [GZ84] defined another group ĂSp2n`1 closely related to Sp2n`1 such

that Sp2n Ă ĂSp2n`1 Ă Sp2n`2.
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which is consistent with our earlier notation i :“ 2n ` 3 ´ i.
Let P be the parabolic obtained by excluding the reflections s1 and s2. Then the minimal

length representatives WP have the form pwp1q|wp2q|wp3q ă ¨ ¨ ¨ ă wpnq ď n`1q. Since the
last n ´ 1 labels are determined from the first 2 labels, we will identify an element in WP

with pwp1q|wp2qq.

Example 2.1. The reflection st1`t2 is given by the signed permutation

st1`t2p1q “ 2̄, st1`t2p2q “ 1̄, and st1`t2piq “ i for all 3 ď i ď n ` 1.

The minimal length representative of st1`t2W
P is p2̄|1̄q.

2.4. Schubert Varieties in even and odd symplectic partial flag manifolds. Recall
that the even symplectic partial flag manifold Xev “ IFp1, 2; Ẽq is a homogeneous space
Sp2n`2 {P , where P is the parabolic subgroup generated by the simple reflections si with

i ‰ 1, 2. For each w P WP let Xevpwq˝ :“ B2n`2wB2n`2{P be the Schubert cell. This is

isomorphic to the space Cℓpwq. Its closure Xevpwq :“ Xevpwq˝ is the Schubert variety. We
might occasionally use the notation XevpwWP q if we want to emphasize the corresponding
coset, or if w is not necessarily a minimal length representative. Recall that the Bruhat
ordering can be equivalently described by v ď w if and only if Xevpvq Ă Xevpwq. Set

w0 “ p2̄|3̄q

this is an element in W . Recall that the odd symplectic Borel subgroup is B “ B2n`2 X

Sp2n`1. The following results were proved by Mihai [Mih07, §4].

Remark 2.2. Here w0 is the longest element for IF which is different than the longest element
for IFp1, 2; Ẽq.

Proposition 2.3. (a) The natural embedding ι : X “ IF ãÑ Xev “ IFp1, 2; Ẽq identifies IF
with the (smooth) Schubert subvariety

Xevpw0WP q Ă IFp1, 2; Ẽq.

(b) The Schubert cells (i.e. the B2n`2-orbits) in Xevpw0q coincide with the B-orbits in IF.

In particular, the B-orbits in IF are given by the Schubert cells Xevpwq˝ Ă IFp1, 2; Ẽq

such that w ď w0.

We discuss Schubert cells or varieties in the odd symplectic case. For each w ď w0 such
that w P WP , we denote by Xpwq˝, and Xpwq, the Schubert cell, respectively the Schubert
variety in IF. The same Schubert variety Xpwq, but regarded in the even symplectic partial
flag manifold is denoted by Xevpwq. For further use we note that IF has complex dimension

ℓp2̄|3̄q “ 4n´6, IFp1, 2; Ẽq has complex dimension ℓp1̄|2̄q “ 4n´4, and IF has codimension 2

in IFp1, 2; Ẽq. Further, a Schubert variety Xpwq in IF is included in the closed Sp2n`1-orbit
Z1 of if and only if it has a minimal length representative w ď w0 such that wp1q “ 1.

Define the set W odd :“ tw P W | w ď w0u and call its elements odd symplectic per-
mutations. The set W odd consists of permutations w P W such that wpjq ‰ 1̄ for any
1 ď j ď n ` 1 [Mih07, Prop. 4.16].

2.5. Divisors and the first Chern class.

Lemma 2.4. The odd symplective flag manifold IF has two divisor classes. If n “ 2 then

rXpDiv1qs :“ rXp3̄ | 2̄qs and rXpDiv2qs :“ rXp2̄ | 3qs.

If n ą 2 then

rXpDiv1qs :“ rXp3̄ | 2̄qs and rXpDiv2qs :“ rXp2̄ | 4̄qs.
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Lemma 2.5. The first Chern class of IF is

c1pIFq “ 2 ¨ rXpDiv1qs ` p2n ´ 1q ¨ rXpDiv2qs.

3. The Moment Graph

Sometimes called the GKM graph, the moment graph of a variety with an action of
a torus T has a vertex for each T -fixed point, and an edge for each 1-dimensional torus
orbit. The description of the moment graphs for flag manifolds is well known, and it can
be found e.g in [Kum02, Ch. XII]. In this section we consider the moment graphs for

X “ IFp1, 2;Eq Ă Xev “ IFp1, 2; Ẽq. As before let P Ă Sp2n`2 be the maximal parabolic

for Xev. Recall that we will identify an element in WP with pwp1q|wp2qq.

3.1. Moment graph structure of IFp1, 2; Ẽq. The moment graph of Xev has a vertex
for each w P WP , and an edge w Ñ wsα for each

α P R`zR`
P “ tti ´ tj | 1 ď i ď 2, i ă j ď n`1u Y tti ` tj , 2ti | 1 ď i ď 2, 1 ď i ă j ď n`1u.

Geometrically, this edge corresponds to the unique torus-stable curve Cαpwq joining w and
wsα. The curve Cαpwq has degree d “ pd1, d2q, where α_ ` ∆_

P “ d1α
_
1 ` d2α

_
2 ` ∆_

P . In
the next section we classify the positive roots by their degree. In order to perform curve
neighborhood calculations we will we give precise combinatorial description of the moment
graph.

Definition 3.1. Define the following to describe moment graph combinatorics.

(1) Define the following four sets which partitions R`zR`
P .

(a) R`

p1,0q
“ tt1 ´ t2u;

(b) R`

p0,1q
“ tt2 ˘ tj | 3 ď j ď n ` 1u Y t2t2u;

(c) R`

p1,1q
“ tt1 ˘ tj : 3 ď j ď n ` 1u Y t2t1u;

(d) R`

p1,2q
“ tt1 ` t2u.

(2) A chain of degree d is a path in the (unoriented) moment graph where the sum of

edge degrees equals d. We will often use that notation uWP
d

Ñ vWP to denote such
a path.

In the next lemma we give a formula for the degree d of a chain which is useful to calculate
curve neighborhoods. In particular, we will see that the degree of a chain is determined by
summing the weights of the edges traversed in the moment graph.

Lemma 3.2. Let u, v P WP be connected by a degree d chain

puWP
d

Ñ vWP q “ puWP Ñ usα1WP Ñ ¨ ¨ ¨ Ñ usα1sα2 . . . sαtWP q

where vWP “ usα1sα2 . . . sαtWP and the αi are in R`zR`
P . Then:

d “

´

#
!

αi P R`

p1,0q

)

,#
!

αi P R`

p0,1q

)¯

`

´

#
!

αi P R`

p1,1q

)

,#
!

αi P R`

p1,1q

)¯

`

´

#
!

αi P R`

p1,2q

)

, 2 ¨ #
!

αi P R`

p1,2q

)¯

.

3.2. Moment graph structure of IF. The moment graph of IF is the full subgraph of
IFp1, 2; 2n` 2q determined by the vertices w P WP XW odd. Notice that the orbits of T and
T2n`2 coincide, therefore we do not distinguish between the moment graphs for these tori.
See Figure 1.
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Figure 1. The moment graph for IF when n “ 2.

p1 | 2q

p2 | 1q p1 | 3q

p2 | 3q p3 | 1q p1 | 3̄q

p3 | 2q p2 | 3̄q p3̄ | 1q p1 | 2̄q

p3̄ | 2q p3 | 2̄q p2̄ | 1q

p2̄ | 3q p3̄ | 2̄q

p2̄ | 3̄q

x yx y x yy x
p1, 0q p0, 1q p1, 1q p1, 2q

4. Curve neighborhoods

The main result of this section is Theorem 4.3 which states all curve neighborhoods of
Schubert varieties IF. We will define a curve neighborhood in Definition 4.1 and Proposition
4.2 will state the combinatorial equivalent version. Then Lemmas 4.4 and 4.5 are used to
prove the main result in Theorem 4.3.

Let X be a Fano variety. Let d P H2pX,Zq be an effective degree. Recall that the moduli
space of genus 0, degree d stable maps with two marked points M0,2pX, dq is endowed with

two evaluation maps evi : M0,2pX, dq Ñ X, i “ 1, 2 which evaluate stable maps at the i-th
marked point.

Definition 4.1. Let Ω Ă X be a closed subvariety. The curve neighborhood of Ω is the
subscheme

ΓdpΩq :“ ev2pev´1
1 Ωq Ă X

endowed with the reduced scheme structure.

The next proposition gives a combinatorial formulation of curve neighborhoods in terms
of the moment graph. See Figure 2 for an example of an application of Proposition 4.2.

Proposition 4.2 ([BM15]). Let w P WP X W odd. In the moment graph of X “ IF, let
tv1, ¨ ¨ ¨ , vsu be the maximal vertices (for the Bruhat order) which can be reached from any
u ď w using a chain of degree d or less. Then ΓdpXpwqq “ Xpv1q Y ¨ ¨ ¨ Y Xpvsq.

Proof. Let Zw,d “ Xpv1q Y ¨ ¨ ¨ Y Xpvsq. Let v :“ vi P Zw,d be one of the maximal T -fixed
points. By the definition of v and the moment graph there exists a chain of T -stable rational
curves of degree less than or equal to d joining u ď w to v. It follows that there exists a
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Figure 2. In this figure we calculate a few curve neighborhoods of the
Schubert point p1|2q for n “ 2 as an example of Proposition 4.2.

p1 | 2q

p2 | 1q

p1 | 2̄q

p3̄ | 2q p2̄ | 1q

x yx y x yy x
p1, 0q p0, 1q p1, 1q p1, 2q

Γp1,0qpXp1|2qq “ Xp2|1q Γp0,1qpXp1|2qq “ Xp1|2̄q Γp1,1qpXp1|2qq “ Xp3̄|2q Y Xp2̄|1q

degree d stable map joining u ď w to v. Therefore v P ΓdpXpwqq, thus Xpvq Ă ΓdpXpwqq,
and finally Zw,d Ă ΓdpXpwqq.

For the converse inclusion, let v P ΓdpXpwqq be a T -fixed point. By [MM18, Lemma 5.3]
there exists a T -stable curve joining a fixed point u P Xpwq to v. This curve corresponds
to a path of degree d or less from some u ď w to v in the moment graph of IGpk, 2n ` 1q.
By maximality of the vi it follows that v ď vi for some i, hence v P Xpviq Ă Zw,d, which
completes the proof. □

The next theorem is the main result of this section that states the precise calculations of
curve neighborhoods of Schubert varieties in IF. The result follows from Lemmas 4.4 and
4.5 stated below.

Theorem 4.3. The following curve neighborhood calculations hold.

(1) Γpd1ě1,0qpXpa|bqq “

#

Xpa|bq; a ą b

Xpb|aq; a ă b

(2) Γp0,d2ě1qpXpa|bqq “

#

Xpa|3̄q; a P t2, 2̄u

Xpa|2̄q; a R t2, 2̄u

(3) Γpd1ě1,1qpXpa|bqq “

$

’

&

’

%

Xp3̄|2q Y Xp2̄|1q; pa|bq P tp1|2q, p2|1qu

Xp2̄|maxta, buq; 1 ď a, b ď 3̄ and pa|bq R tp1|2q, p2|1qu

Xp2̄|3̄q; 2̄ P ta, bu

(4) Γpd1ě1,d2ě2qpXpa|bqq “ Xp2̄|3̄q

Proof. For case (1), if a ą b then pa|bq ¨ s1 “ pa|bq and if a ă b then pa|bq ¨ s1 “ pb|aq.
For case (2) we will need to check four subcases. Notice that we are multiplying pa|bq

by reflections of the form t2 ˘ tj for 3 ď j ď n ` 1 or 2t2. In particular, a remains fixed
so Γp0,1qpXpa|bqq “ Γp0,d2ě1qpXpa|bqq. If a P t2, 2̄u and b R t3, 3̄u then pa|bq ¨ st2`t3 “ pa|3̄q.

If a P t2, 2̄u and b P t3, 3̄u then pa|bq ¨ s2t2 “ pa|3̄q. If a R t2, 2̄u and b R t2, 2̄u then
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pa|bq ¨ st2`t3 “ pa|2̄q. If a R t2, 2̄u and b P t2, 2̄u then pa|bq ¨ s2t2 “ pa|2̄q. In each case, this
is the vertex with the greatest length that can be reached by and edge of degree p0, 1q from
pa|bq.

For case (3), first notice that Γp1,1qpXpa|bqq “ Γpd1ě1,1qpXpa|bqq since the reflection s1
only interchanges pa|bq and there is not an edge in the moment graph of IF with degree
p2, 1q. Case (3) follows by Lemma 4.5.

For case (4), notice that Γp1,2qpXpa|bqq “ Γpd1ě1,d2ě1qpXpa|bqq. By case (3), we see that

Γp1,1qpXpa|bqq has a component of the form Xp2̄|bq. The result for case (4) follows by an
application of case (2). The result follows. □

In the next lemma we state the possible chains in the moment graph of IF of degree less
than or equal to p1, 1q.

Lemma 4.4. Let pa|bq P W odd. Then we have the following chains in the moment graph of
IF.

(1) For chains traversing an edge of degree p1, 0q followed by an edge of degree p0, 1q,
we have the following:

pa|bq
p1,0q
ÝÑ pb|aq

p0,1q
ÝÑ pb|hq

where h R tb, b̄u.
(2) For chains traversing an edge of degree p0, 1q followed by an edge of degree p1, 0q we

have the following:

pa|bq
p0,1q
ÝÑ pa|hq

p1,0q
ÝÑ ph|aq

where h R ta, āu. Notice that if a “ 2̄ then permutation length decreases on the
second step.

(3) For chains traverse an edge of degree p1, 1q we have the following:

pa|bq
p1,1q
ÝÑ ph|bq

where h R tb, b̄u.

Proof. We will prove each case. For case (1), following an edge of degree p1, 0q from pa|bq
results in pb|aq by Lemma 3.2. Then following an edge of degree p0, 1q from pb|aq results in
pb|hq where h R tb, b̄u by Lemma 3.2.

For case (2), following an edge of degree p0, 1q from pa|bq results in pa|hq where h R ta, āu

by Lemma 3.2. Then following an edge of degree p1, 0q from pa|hq results in ph|aq by Lemma
3.2.

For case (3), following an edge of degree p1, 1q from pa|bq results in ph|bq where h R tb, b̄u
by Lemma 3.2. The result follows. □

In this lemma, we calculate the curve neighborhood Γpd1ě1,1qpXpa|bqq for any pa|bq P WP .

Lemma 4.5. First note the Γpd1ě1,1qpXpa|bqq “ Γp1,1qpXpa|bqq for any pa|bq P W odd since
right multiplication by s1 on w P W interchanges wp1q and wp2q. The curve neighborhood
Γp1,1qpXpa|bqq is given by one of the following.

(1) Suppose a R t2, 2̄u and b R t2, 2̄u.
(a) If a ă b then

Γp1,1qpXpa|bqq “ Xp2̄|bq.
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(b) If a ą b then

Γp1,1qpXpa|bqq “ Xp2̄|aq.

(2) Suppose a R t2, 2̄u and b P t2, 2̄u.
(a) If b “ 2̄ then

Γp1,1qpXpa|bqq “ Xp2̄|3̄q.

(b) If a ą 2 and b “ 2 then

Γp1,1qpXpa|bqq “ Xp2̄|aq.

(c) If a “ 1 and b “ 2 then

Γp1,1qpXp1|2qq “ Xp3̄|2q Y Xp2̄|1q.

(3) Suppose a P t2, 2̄u and b R t2, 2̄u.
(a) If a “ 2̄ then

Γp1,1qpXpa|bqq “ Xp2̄|3̄q.

(b) If a “ 2 and b ą 2 then

Γp1,1qpXpa|bqq “ Xp2̄|bq.

(c) If a “ 2 and b “ 1 then

Γp1,1qpXp2|1qq “ Xp3̄|2q Y Xp2̄|1q.

Proof. The result follows from Lemma 4.4 and the observation that the pair tp3̄|2q, p2̄|1qu

is incomparable in the Bruhat order. The result follows. □

5. Lattices

Let X be a Fano variety containing the subvariety Ω. It is interesting to ask if the set
tΓdpΩqqud forms a (distributive) lattice where ď is defined by inclusion of varieties. We will
show that

tΓpd1,d2qpXpa|bqqupd1,d2qěp0,0q

is a distributive lattice for any pa|bq P W odd. We will review the definition of a (distributive)
lattice and two particular lattices next.

Definition 5.1. We will define lattices, distributive lattices, and two useful lattices.

(1) A partially ordered set pL,ďq is a lattice if the following two conditions hold.
(a) if for any a, b P L there is a unique element denoted by a _ b P L such that

‚ a ď a _ b and b ď a _ b
‚ and if there is a c P L such that a ď c and b ď c then a _ b ď c.

(b) if for any a, b P L there is a unique element denoted by a ^ b P L such that
‚ a ě a _ b and b ě a _ b
‚ and if there is a c P L such that a ě c and b ě c then a ^ b ě c.

(2) A Lattice pL,ďq is a distributive lattice if

a _ pb ^ cq “ pa _ bq ^ pa _ cq

for any a, b, c P L.
(3) Define the lattice M3 and N5 as follows:
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Figure 3. M3 and N5.

0

a b c

1

M3

0

b
c

a
1

N5

(a) M3 “ t0, a, b, c, 1u with ď defined by
‚ 0 ă a, b, c,
‚ a, b, c ă 1, and
‚ a, b, and c are incomparable.

(b) N5 “ t0, a, b, c, 1u with ď defined by
‚ 0 ă c ă a ă 1
‚ 0 ă b ă 1
‚ b is incomparable with both a
and c.

See Figure 3.

The next lemma gives a precise description of when a lattice is distributive.

Lemma 5.2. [Grä98, Chapter 2, Theorem 1] A lattice is distributive if and only if it does
not have a sub-lattice isomorphic to M3 nor N5.

We are ready to state the main result of the section.

Theorem 5.3. The set L “ tΓpd1,d2qpXpa|bqqupd1,d2qěp0,0q where ď is defined by inclusions
of varieties is a distributive lattice.

Proof. Figure 4 lists each lattice for each case except the trivial case pa|bq “ p2̄|3̄q. Fur-
thermore, pL,ďq is distributive because neither M3 nor N5 is isomorphic to a sub-lattice of
L. □

6. Combinatorial Property O

We begin by recalling the definitions of the combinatorial quantum Bruhat graph and
Combinatorial Conjecuture O. Let X be a Fano variety. Let B :“ tαiuiPI denote a basis of
the cohomology ring H˚pXq. Denote its first Chern class by

c1pXq “ a1Div1 ` a2Div2 ` ¨ ¨ ¨ ` akDivk

where Divi P B is a divisor class for each 1 ď i ď k.

Definition 6.1. The combinatorial quantum Bruhat graph of X is defined as follows. The
vertices of this graph are the basis elements αi P H˚pXq. The edge set is given as follows:

(1) There is an oriented edge αi Ñ αj if the class αj appears with positive coefficient
in the Chevalley multiplication h ‹ αi for some hyperplane class h.

(2) Let αi “ rXpiqs and αj “ rXpjqs. There is an oriented edge αi Ñ αj

(a) Xpjq is an irreducible component of ΓdpXpiqq where d “ pd1, ¨ ¨ ¨ , dkq,
(b) and

dimpXpjqq ´ dimpXpiqq “ a1d1 ` a2d2 ` ¨ ¨ ¨ ` akdk ´ 1.
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Figure 4. The table contains the lattices ptΓpd1,d2qpXpa|bqqupd1,d2qěp0,0q,ďq

in IF for each possible case except the trivial case when pa|bq “ p2̄|3̄q.

Xpa | bq

Xp2̄ | 3̄q

Xpa | bq

Γp0,1qpXpa | bqq

Xp2̄ | 3̄q

Xpa | bq

Γp1,0qpXpa | bqq

Xp2̄ | 3̄q

If If If
a P t2̄u a P t3̄u b P t2̄u

or and and
pa | bq “ p3̄ | 2̄q. b R t2̄u. a R t3̄u.

Xpa | bq

Γp0,1qpXpa | bqq

Γp1,1qpXpa | bqq

Xp2̄ | 3̄q

Xpa | bq

Γp1,0qpXpa | bqqΓp0,1qpXpa | bqq

Xp2̄ | 3̄q

Xpa | bq

Γp1,0qpXpa | bqqΓp0,1qpXpa | bqq

Γp1,1qpXpa | bqq

Xp2̄ | 3̄q

If If If
a R t2̄, 3̄u b P t3̄u a R t2̄, 3̄u

and and and
b R t2̄, 3̄u a R t2̄u. b R t2̄, 3̄u

and and
a ą b. a ă b.

Lemma 1.1 leads us to naturally consider the following combinatorial formulation of
Conjecture O.

Definition 6.2. Combinatorial Property O holds if the combinatorial quantum Bruhat
graph is strongly connected and the Greatest Common Divisor of the cycle lengths is r “

GCDpa1, a2, ¨ ¨ ¨ , akq.

6.1. Results for IF. We begin this section by describing the combinatorial quantum
Bruhat graph for IF which specializes Definition 6.1.

Proposition 6.3. Let there be a vertex for each w P W odd. Let u, v P W odd. The combina-
torial quantum Bruhat graph Gn can be created by:

(1) There is an arrow u Ñ v if v ď u and ℓpvq “ ℓpuq ´ 1;

(2) Draw an arrow u
d

Ñ v if:
‚ ΓdpXpuqq “ Xpv1q Y ¨ ¨ ¨ Y Xpvq Y ¨ ¨ ¨ Y Xpvsq;
‚ v ę vi for any 1 ď i ď s;
‚ ℓpvq ´ ℓpuq “ 2d1 ` p2n ´ 1qd2 ´ 1.
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Figure 5. Combinatorial quantum Bruhat graph of IF for n “ 2. Notice
that the edge joining p1|2q and p2̄|1q is not in the moment graph.

p1 | 2q

p2 | 1q p1 | 3q

p2 | 3q p3 | 1q p1 | 3̄q

p3 | 2q p2 | 3̄q p3̄ | 1q p1 | 2̄q

p3̄ | 2q p3 | 2̄q p2̄ | 1q

p2̄ | 3q p3̄ | 2̄q

p2̄ | 3̄q

x yx y x y

p1, 0q p0, 1q p1, 1q
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Remark 6.4. Observe that the edge p1|2q
p1,1q
Ñ p2̄|1q in the combinatorial quantum Bruhat

graph is not present in the moment graph. There is no known example of an edge appearing
in the (geometric) quantum Bruhat graph that does not appear in the moment graph.

We are ready to state and prove the main result of this section.

Theorem 6.5. Combinatorial Property O holds for IF.

Proof. We begin the proof by showing that combinatorial quantum Bruhat graph is strongly
connected. First, there is a path from p1|2q to p2̄|3̄q in the combinatorial quantum Bruhat
graph given by

p1|2q
p1,1q
Ñ p2̄|1q

p0,1q
Ñ p2̄|3̄q

since
Γp1,1qpXp1|2qq “ Xp2̄|1q,Γp0,1qpXp2̄|1qq “ Xp2̄|3̄q,

ℓp2̄|1q ´ ℓp1|2q “ 2 ˚ 1 ` p2n ´ 1q ˚ 1 ´ 1, and ℓp2̄|3̄q ´ ℓp2̄|1q “ 2 ˚ 0 ` p2n ´ 1q ˚ 1 ´ 1.

Next, there is clearly a path from pa|bq to p1|2q by decomposing the permutation pa|bq
into simple reflections. Finally we claim that there is a path from p2̄|3̄q to any other
vertex. Indeed, if pa|bq P W oddztp2̄|3̄qu then there is another point pc|dq P W odd and edge
pc|dq Ñ pa|bq such that ℓpc|dq ´ ℓpa|bq “ 1. Since the ℓp2̄|3̄q is maximum in the Bruhat
order, we conclude the combinatorial quantum Bruhat graph is strongly connected.

The quantum Bruhat graph Gn has a cycle of length 2 given by

p1|2q Ñ p2|1q Ñ p1|2q.

There is a cycle of length 2n´ 1 given by one of the following two cases. For n “ 2 we have

p1|2q Ñ p1|3̄q Ñ p1|3q Ñ p1|2q.

For n ą 2 we have

p1|2q Ñ p1|3̄q Ñ ¨ ¨ ¨ Ñ p1|n̄q Ñ p1|nq Ñ ¨ ¨ ¨ Ñ p1|2q.

The result follows. □
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Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002.

[LMS19] Changzheng Li, Leonardo C. Mihalcea, and Ryan M. Shifler, Conjecture O holds for the odd
symplectic Grassmannian, Bulletin of the London Mathematical Society 51 (2019), no. 4, 705–
714.

[Mih07] Ion Alexandru Mihai, Odd symplectic flag manifolds, Transform. Groups 12 (2007), no. 3, 573–
599.

[MM18] Augustin-Liviu Mare and Leonardo C. Mihalcea, An affine quantum cohomology ring for flag
manifolds and the periodic toda lattice, Proceedings of the London Mathematical Society 116
(2018), no. 1, 135–181.

[MS19] Leonardo C. Mihalcea and Ryan M. Shifler, Equivariant quantum cohomology of the odd sym-
plectic Grassmannian, Math. Z. 291 (2019), no. 3-4, 1569–1603.

[Pro88] Robert A. Proctor, Odd symplectic groups, Invent. Math. 92 (1988), no. 2, 307–332.
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