ON THE QUANTUM PARAMETER IN THE QUANTUM
COHOMOLOGY OF A FAMILY OF ODD SYMPLECTIC PARTIAL
FLAG VARIETIES

CONNOR BEAN, CALEB SHANK, AND RYAN M. SHIFLER

ABSTRACT. We will consider a particular family of odd symplectic partial flag varieties
denoted by IF. In the quantum cohomology ring QH* (IF), we will show that qigz2 - - - gm
appears m times in the quantum product Tpsv, * T:a When expressed as a sum in terms of
the Schubert basis.

1. INTRODUCTION

Let IF :=IF(1,2,--- ,m;2n+ 1) denote the family of odd symplectic partial flag varieties
under consideration. This is the parameterization of sequences (V3 < Vo < --- < Vp,),
dim V; = i, of subspaces of C>"*! that are isotropic with respect to a general skew-symmetric
form. The variety IF contains Schubert varieties {X () : A € W%} where W4 is defined
in Section 2. See [Mih07] for more details on odd symplectic flag varieties.

The quantum cohomology of a smooth variety X is a graded algebra over Z[q|, ¢ =
(1,92, - ,q), with a Z[q]-basis given by classes in the cohomology ring H*(X). Multipli-

cation is given by
d kd
0i*x 05 = Z 9650k
d=0;0,eH*(X)

k,d . . . . .
where G = (04,0j,07 ), is the Gromov-Witten invariant. The degree of ¢; is

degq; = f a1(Tx)
Div;

where Div; is the ith divisor class and ¢; (T’ ) is the first Chern class of the tangent bundle of
X. The study of the quantum cohomology of flag varieties has made progress. For example,
Buch and Mihalcea use the technique of curve neighborhoods in [BM15] to produce an
equivariant quantum Chevalley formula for any homogeneous variety G/P. Limited progress
has been made in the study of the quantum cohomology of non-homogenous varieties. For
example, the odd symplectic Grassmannian is studied in [Pec13,MS19]. This manuscript
studies a family of odd symplectic partial flag varieties which are non-homoogenous varieties.

The quantum cohomology ring (QH*(IF), ) is a graded algebra over Z[q] = Z[q1, - - , ¢m]
where deggq; = 2 for 1 <i < m — 1 and degg,, = 2(n —m) + 3. The ring has a Schubert
basis given by {7\ := [X(\)] : A € W%}, Here we take ;4 to be the class of the Schubert
point pt and Tp;,,; to be a divisor class where 1 < ¢ < m. The ring multiplication is given
by Tax T = 3,4 cz’zqdn where CK’i is the degree d Gromov-Witten invariant of 7y, 7,
and the Poicaré dual of 7,,. We are now ready to state our main result. A more precise
statement is given as Theorem 4.8.

2010 Mathematics Subject Classification. Primary 14N35; Secondary 14N15, 14M15.
1



2 CONNOR BEAN, CALEB SHANK, AND RYAN M. SHIFLER

Theorem 1. Consider the quantum cohomology ring QH*(IF). Then qiq2 - - qm appears
m times in the product Tpi, * T;q when expressed as a sum in terms of the Schubert basis
given by {1\ : A e Wodd},

Our strategy will be to use curve neighborhood calculations which we explain next. Let
X be a Fano variety. Let d € Hy(X,Z) be an effective degree. Recall that the moduli
space of genus 0, degree d stable maps with two marked points Mg 2(X, d) is endowed with
two evaluation maps ev;: Mo 2(X,d) — X, i = 1,2 which evaluate stable maps at the i-th
marked point.

Definition 1.1. Let Q2 < X be a closed subvariety. The curve neighborhood of € is the
subscheme

[g(Q) :=eva(evi'Q) c X
endowed with the reduced scheme structure.

The notion of curve neighborhoods is closely related to quantum cohomology. Let X (\) <
IF be a Schubert variety, and let T'3(X(A)) =Ty uT'2 u...UT% be the decomposition of the
curve neighborhood into irreducible components. By the divisor axiom, any component I';
of “expected dimension” will contribute to the quantum product 7pj,; * 7\ with (7piy,,d) -
a; - ¢%[T;], where a; is the degree of evy : evy (X (\)) — T'4(X()\)) over the given component
(see [KM94] and Lemma 4.7). Therefore the main task is to find the components T'; of

m

1
Lmy(pt), where (1) = (1,---,1), that are of expected dimension. That is, the following
equation is satisfied:

codim X (Div;) + codim pt = degq1q2 - - - ¢ + codim T';.

These components are stated precisely in Proposition 4.6.

Broader Context Any curve neighborhood of a Schubert variety in the homogeneous
space G/P is shown to be irreducible in [BM15]. This limits the number of times that ¢¢
appears for a particular d € Ho(G/P,Z) in quantum products of Schubert classes. Examples
of curve neighborhoods having two irreducible components are given for the odd symplectic
Grassmannian in [MS19, PS24]. In particular, in the quantum Chevalley formula for the
odd symplectic Grassmannian, ¢' appears twice in the quantum product of the divisor class
and the class of the point when expressed as a sum in terms of the Schubert basis. The
main purpose of this manuscript is to give a specific example where g% appears a specified
number of times as stated in Theorem 1.

2. PRELIMINARIES

There are many possible ways to index the Schubert varieties of isotropic flag manifolds.
Here we recall an indexation using signed permutations. Consider the root system of type
Ch+1 with positive roots

Rt ={t;i+t;|1<i<j<n+1}u{2;|1<i<n+1}
and the subset of simple roots
A= {Oéi =1 — Ty ‘ 1< < n} ) {an+1 = 2tn+1}-

The coroot of t; +t; € R" is (t; +t;)¥ = t; +t; and the coroot of 2t; € R* is (2t;)¥ = t;. The
associated Weyl group W is the hyperoctahedral group consisting of signed permutations,
i.e. permutations w of the elements {1,--- ,n + 1,n+1,---,1} satisfying w(i) = w(i)
for all w e W. For 1 < i < n denote by s; the simple reflection corresponding to the root
t; —t;+1 and s,11 the simple reflection of 2¢,1. In particular, if 1 <1 < n then s;(i) = i+1,
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si(i4+1) =i, and s;(j) is fixed for all other j. Also, sp41(n+1) =n+1, spy1(n+1) =n+1,
and sy,41(J ) is fixed for all other j.

Each subset I := {iy < ... < i} < {1,...,n + 1} determines a parabolic subgroup
P := P; c Spy,, .o with Weyl group Wp = (s; | i # i;) generated by reflections with indices
not in I. Let Ap := {ay, | is ¢ {i1,...,ir}} and R} := Spany Ap n R"; these are the
positive roots of P. Let £: W — N be the length function and denote by W the set of
minimal length representatives of the cosets in W /Wp. The length function descends to
W /Wp by {(uWp) = £(u') where v/ € WT is the minimal length representative for the
coset uWp. We have a natural ordering 1 <2 <---<n+1<n+1<--- <1, which is
consistent with our earlier notation i := 2n + 3 — 1.

Let P be the parabolic obtained by excluding the reflections s, s, - Sm,. Then the
minimal length representatives W* have the form (w(1)|w(2)|w(3)|---|w(m) < w(m+1) <

- <w(n) <n+1). Since the last n + 1 —m labels are determined from the first m labels,
we will identify an element in W with (w(1)w(2)]-- - |w(m)). Define W = {w e WF :
w(i) <1for1<i<m}

Let X¢ := IF(1,2,---,m;2n + 2) be the symplectic partial flag that parameterizes
sequences (Vi < Vo < --- < V), dim V; = i, of subspaces of C?"*2 that are isotropic with
respect to a skew-symmetric form. Here P < Spy, o is the maximal parabolic subgroup
corresponding to I = {1 < 2 < --- < m} and Top49 = (t1,--- ,tn+1,t;}r1,--~ ,tfl) is a
maximal torus for X¢’. The Schubert varieties of X are indexed by A € W’ and written
as X(\). Since IF is identified with the Schubert variety X (23---mm + 1) < X, the
Schubert varieties of IF are {X()\) : A € W°%}, In addition IF is smooth. The quantum
cohomology ring QH* (IF) has a Schubert basis given by {7y := [X(\)] : A € W%}, We have
that T' = (tq,--- ,tn+1,t;}r1, -+, ty 1) is a maximal torus for IF and dim IF = m(2n—m+1).
Next we will give notation to state the Bruhat order.

Ezample 2.1. Consider IF(1,2,3;11). This identifies with the Schubert variety X (234) in
IF(1,2,3;12). Here (1|2|3), (5/4|2) € W°d while (3|1|2) ¢ Wodd,
Definition 2.2. Let )\, € W% where \; = A(i) and &; = 6(i). Then define the following:
( ) Ak <Ak<Ak e <A£> where {AIf,AIS, ,A,’:} Z{)\l,)\g,'” ,)\k};
(2) AF = <Ak <Af<... < A@ where {AF, AL - CARY = {81,680, 0k}
(3) Ak < AF ifA§<A§ for all 1 <i<k.

Lemma 2.3 (Bruhat Order [Pro82]). Let A\,6 € WP. Then A < § if and only if AF < A*
for all 1 < k <m. In particular, if \,6 € W°¥ then X (\) < X(6) if and only if N < §

3. THE MOMENT GRAPH

Sometimes called the GKM graph, the moment graph of a variety with an action of a
torus 7" has a vertex for each T-fixed point, and an edge for each 1-dimensional torus orbit.
The description of the moment graphs for flag manifolds is well known, and it can be found
in [Kum02, Ch. XII]. In this section we consider the moment graphs for IF and X°".

Definition 3.1. The moment graph of X has a vertex for each w € W’ and an edge
w — WS, for each

a€ RO\RL ={ti—t; |1 <i<m,i<j<m+1}u{t;+t;,2t; | 1 <i<m,1<i<j<m+l}.

This edge has degree d = (dl,dg, sy d), Wherea +AY =diay +daay 4+ -+dmagy, +Ap.
We will say that d = (dy,dg, -+ ,dp) <d = (d] v dr ) if dp < d) forall 1 < i < m.
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Definition 3.2. The moment graph of IF is the full subgraph of X’ determined by the
vertices w € Wo%,
Next we classify the positive roots by their degree.

a b c
L

Definition 3.3. Let (021°2¢) := (b, e 0,1, ,1','2, e ,2') Define the following to de-
scribe moment graph combinatorics.
(1) Define the following sets which partitions RT\R}.
(a) Rzroifllj—iomfj#l) ={ti—tj:1<i<j<m}
(b) R(JBi,llm,iH) ={tittj:1<i<jm<jij<n+1}u{2t:1<i<m}
(c) RZBiflljfimejﬂ) ={ti+t;:1<i<j<m}.
(2) A chain of degree d is a path in the (unoriented) moment graph where the sum of

edge degrees equals d. We will use the notation ulWp 4 vWp to denote such a path.

In the next lemma we give a formula for the degree d of a chain which is useful to calculate
curve neighborhoods. In particular, we will see that the degree of a chain is determined
by summing the weights of the edges included in the chain (repetitions are allowed) in the
moment graph.

Lemma 3.4 ([FW04], Page 8). Let u,v e W' be connected by a degree d chain

(uWp 4 vWp) = (uWp — usq,Wp — -+ — uSq, Say - - - Sa, Wp)

where vWp = uSq,8a, - - .50, Wp and the o are in R+\RIJS. Then d = (O1 + D1,09 +
Dy, ,Op + Dy,) where

0= 3 #{a5€ Riyppguony} and D=2+ 30 #{aje Ripgan )

a<i—1 a+b<i—1
a+b>=1

4. PROOF OF MAIN RESULT

We begin this section by stating Proposition 4.1 which gives curve neighborhoods, defined
in Definition 1.1, a combinatorial interpretation in terms of the moment graph. Then
Lemmas 4.2 and 4.3 demonstrate that A € W°% is constrained when it is reached by a
chain of degree less than or equal to (1™). This follows with Lemmas 4.4 and 4.5 which
gives a precise statement of I'(;m)(pt) in Proposition 4.6. Finally, we present our main result
in Theorem 4.8 which follows from Lemma 4.7.

Proposition 4.1 ([BM15]). Let A € W, [n the moment graph of IF, let {v',--- v®} be
the mazimal vertices (for the Bruhat order) which can be reached from any u < X\ using a

chain of degree d or less. Then Tg(X(\)) = X(v') U --- U X (v¥).

Proof. Let Zy4 = X(v!) U--- U X(v*). Let v := v’ € Z) 4 be one of the maximal T-fixed
points. By the definition of v and the moment graph there exists a chain of T-stable rational
curves of degree less than or equal to d joining u < A to v. It follows that there exists a
degree d stable map joining u < A to v. Therefore v € T'y(X()\)), thus X (v) < Ty(X(N)),
and finally Z 4 < Tq(X(N)).

For the converse inclusion, let v € T'3(X (\)) be a T-fixed point. By [MM18, Lemma 5.3]
there exists a T-stable curve joining a fixed point u € X (A) to v. This curve corresponds
to a path of degree d or less from some u < A to v in the moment graph of IG(k,2n + 1).
By maximality of the v’ it follows that v < v* for some i, hence v € X (v')  Z 4, which
completes the proof. O
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Lemma 4.2. Let C : idW -5 AW be a chain in the moment graph of IF where d < (1™).
Then we have the inequality

‘Akm{l,Q,m,k} >k—1.

Proof. Suppose ’Ak N{1,2,--- ,k:}’ < k — 1. Then there are at at least two elements
Asl,A’gl e A* such that A’;l,A’gl > k. Since A’Cfl > k there exists a reflection in the chain
C corresponding to t,, — t4, where a1 < k and ay > k. Also, since A]gl > k there exists a
reflection in the chain C corresponding to t;, — tp, where by < k and by > k. Therefore,

di, = 2. But di. < 1. The result follows. O

Lemma 4.3. Let C : idW > AW be a chain in the moment graph of IF where d < (1™)
and j € {\1, Ao, , A} for some 2 <j <m. The chain C has a reflection corresponding
to the root 2t;. In particular, 1 € AJ.

Proof. Consider the chain C : idWp LY AWp. One of the following three cases must have
occurred.

(1) The chain C has a reflection corresponding to the root 2t;;

(2) The chain C has two reflections corresponding to two roots of the form ¢, + ¢, where
a<mandb=m;

(3) The chain C has a reflection corresponding to the root t, + ¢, where a,b < m and
a <b.

In the first case we have that
(th)v = tj = (tj — tj+1) + (t]’+1 — tj+2) + -+ (tnfl — 1tn) + t,.

In particular, d; < 1 for all 1 < ¢ < m. In the second case, the coefficient of ¢,;, — t;,11 is 1
when t, +t, and t. £t4 (a,c < m and b,d = m), are written as a sum of simple roots. Thus,
dm = 2. This is not possible. In the third case, the coefficient of ¢,,, — t,,,+1 is 2 when ¢, + ¢
(a,b < m and a < b) is written as a sum of simple roots. This is not possible. Therefore,
the chain C has a reflection corresponding to the root 2¢;. Finally, if 1 ¢ A7, then d; > 2 or
1 appears in \. Neither is possible. This completes the proof. ]

Lemma 4.4. Let C : idW 5> AW be a chain in the moment graph of IF such that d < (1™).

(1) If A7 <m+ 1 then X(X) < X (m + 1]2[3] - |m).
(2) If.; € {)‘17>\27' v 7>\m}, where 2 Sj <m, then

X(A) = X(5[203] -+ 17 = L[5 + 1] -+ m).

Proof. We will prove Part (1) first. Let 1 < k < m, § = (m+1|2|3|---|m), and A" <
m+ 1. It follows that AF = (2 <3 <.~ <k <m+1). Also, [A\Fn{1,2,--- k}| €
{k —1,k} by Lemma 4.2. If [A* n {1,2,-- ,k}| = k then clearly AF < AF.

Suppose that |[AF A {1,2,--- k}| =k —1. Then A* = (1 <2< <i<--<k<)\)
where i is removed and \; < A™ < m + 1. It follows that AF¥ < A¥. Therefore, A < § and
Part (1) follows by Lemma 2.3.

Next we will prove Part (2). Let 1 < k <m, j € {\, A2, ,Am}, where 2 < j < m, and
§=(5213|--- |7 — 1|1]j + 1| - - - |m). There are two cases for A*.

(1) fk<j—1then AF=(2<3<--- <k<j);
(2) ifk>jthen AF=(1<2<3---<j—1<j+1l<---<k<j).
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If |Ak ~n{1,2,--- ,k}| = k then clearly AF < AF,

Suppose that [A¥ A {1,2,--+ ,k}| =k —1. Then AF = (1 <2< - <i<- <k <)
where i is removed. If k < j — 1 then clearly A¥ < A*. If k > j then 1 must be included
in A* by Lemma 4.3. So, if k > j, we have that Ak < AF. Therefore, A < 6 and Part (2)
follows by Lemma 2.3. This concludes the proof. O

Lemma 4.5. We have the following permutation length calculation
Cm + 1|203] -+ [m) = £(512[3[ -+ |7 = L[L[7 + 1| ---[m) = 2n
for 2 < 5 < m. In particular, the union

X(m +112[3] -- (UXJ|2|3| Ij—1|1|j+1|"'|m)>

J

has m irreducible components of dimension 2n.

Proof. The lengths £(m + 1|2|3|---|m) and £(5]2|3| - |j—1]1|j +1|- - - |m) are calculated by
counting the number of simple reflections in a reduced word of the given permutation. [

Proposition 4.6. Let n € Z* and consider IF. Then I‘(lm)(pt) has m irreducible compo-
nents of dimension 2n. Specifically,

Lamy(pt) =X (m +1]2(3]-- <UX J1213] - 1F = 15+ 1] |))-

Proof. This is an immediate consequence of Proposition 4.1 and Lemmas 4.4 and 4.5. [

Lemma 4.7 (divisor axiom, [KM94)). Let I;(7x, 75, TDiv;) be the 3-point Gromov- Witten
Invariant of T\, 75, and Tpiy, and I4(Tx, Ts5) be the 2-point Gromov- Witten Invariant of Ty
and 75. Then the divisor axiom states

L(7x, 75, TDiv,) = (TDiwv; > d)1a (T, Ts).
In particular, any component T'; of Ty(X (X)) =T1 uTlyu...u Ty that satisfies
codim X (Div;) + codim pt = deg q(lm) + codim T';

will contribute to the quantum product Tpj,, * Tx With (Tpiy,,d) - a; - qd[Fi], where a; is the
degree of evy : evi (X (N\)) — Tq(X (X)) over the given component.

Theorem 4.8. In the quantum cohomology ring QH*(IF) we have that

m
TDiv; *Tid = (TDi’U” d)Q1QZ o dm <a17-(m+1|23|...|m) + Z ajT(j|2|3|“'j—11|j+1|~--|m)> +other terms
j=2
where a; is the degree of evy : evy ' (pt) — Ta(X(N)) over X(m + 1|2|3|---|m) when j = 1
and X (512[3 -+ |7 = 117 + 1|+ |m) when 2 < j < m.

Proof. First notice that each irreducible component of I' (1m)(id) is of expected dimension.

That is, codim X (Div;) 4+ codim pt = deg ¢*™) + (dim IF — 2n). The result follows by the
divisor axiom. O
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