MINIMUM QUANTUM DEGREES WITH MAYA DIAGRAMS IN A
FAMILY OF ODD ORTHOGONAL PARTIAL FLAG VARIETIES

STEPHEN BARR AND RYAN M. SHIFLER

ABSTRACT. We refine the criterion of Fulton and Woodward for the smallest powers of the
quantum parameter q that occur in a product of Schubert classes in the (small) quantum
cohomology of the odd orthogonal partial flag variety OF := OF(1,2;2n+1). Our approach
uses Maya diagrams and yields a combinatorial proof that the minimal quantum degrees
are unique for OF.

1. INTRODUCTION

The vector space V < C?"*! is isotropic with respect to a non-degenerate symmetric
bilinear form w if w(z,y) = 0 for all z,y € V. Let OF := OF(1,2;2n + 1) denote the odd
orthogonal partial flag given by

OF(1,2;2n 4+ 1) = {0 c Vi < Vo c C**! | dim V; = i and V; isotropic with respect to w}.

Let QH*(OF) be the small quantum cohomology with Schubert classes o, w € W7,
The set W7 is the minimum length coset representative of the associated Weyl group W
modded by a parabolic P that corresponds to the set I. The set W is defined in Section
2. We denote the Poincare dual of ¢, by ¢? or g,v. The small quantum cohomology ring
QH*(OF) is a graded Z[g]-module. Multiplication is given by

v ud d
O * Oy = Z Co¥ wd Ou
u,d=0

d . . . . .
where ¥, is the Gromov-Witten invariant that enumerates the rational curves of degree

W
d. Given any element 7 € QH*(OF), we say that ¢? occurs in 7 if the coefficient of ¢%o,, is
not zero for some w e W¥.

In [Shi25] Maya diagrams were used for Type A (partial) flag varieties to refine a criterion
by Fulton and Woodward in [FWO04] to calculate the smallest powers of ¢ that occur in the
quantum product of two Schubert classes. The criterion is given as Proposition 4.1. The
refinement both simplifies and reduces the number of cases that need to be checked to
find the smallest quantum degrees. That is, a priori, it is not clear from the Fulton and
Woodward criterion that the smallest quantum degrees are unique. Fulton and Woodward’s
criterion is for general homogeneous G/P. So, it is natural to pursue using Maya diagrams
to refine their criterion in other types. This manuscript focuses on Type B odd orthogonal
partial flag varieties OF. We are ready to state our main results from Section 8.

Theorem 1.1. Let v,we W7F.

(1) The minimum quantum degree that occurs in o¥ x oy, is unique using combinatorial
methods.

(2) The minimum quantum degree can be found using an algorithm built on Maya dia-
grams that refines the criterion by Fulton and Woodward.
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The results in this article are combinatorial in the sense that we use Maya diagrams to
describe the chains in the moment graph that Fulton and Woodward defined in [FW04]
(see Proposition 4.1). Like in the Type A case found in [Shi25] we introduce a generalized
notion of rim hook removals on Maya diagrams which is found in Section 6. In addition,
Maya diagrams give a characterization of the Bruhat order by slightly modifying a theorem
by Proctor in [Pro82, Theorem 5BC] and are stated herein as Proposition 5.7.

In the present work, a new challenge is introduced. In the Type A case, it was enough
to study how the Bruhat order behaved on the rows of the Maya diagrams to know which
rim hook to use. That is not the case for OF and is highlighted in Theorem 8.5.

2. PRELIMINARIES

The vector space V. < C?"*1 is isotropic with respect to a non-degenerate symmetric
bilinear form w if w(z,y) = 0 for all z,y € V. Let OF := OF(1,2;2n + 1) denote the odd
orthogonal partial flag given by

OF(1,2;2n+ 1) = {0 c Vi < Vo c C**! | dim V; = i and V; isotropic with respect to w}.

Here we give some notation that is useful for describing the geometry of OF(1,2; E).
Consider the root system of type B, with positive roots Rt = {t; £¢; | 1 < i < j <
n} u{t; | 1 < i < n} and the subset of simple roots A = {a; 1= t; —t;41 | 1 < i <

n—1} U {ans1 = thyr}. Let (6 £¢5)Y = (4 £¢j) when 1 <@ < j <nand ()" = 2t
when 1 < ¢ < n. The associated Weyl group W is the hyperoctahedral group consisting
of signed permutations. That is, W = {w € Sa,, | w(i) = w(i)} where Ss, is the group of
permutations on {1,2,--- ,n,n, -+ ,2,1} and i = 2n + 1 —i. Let a € R" and let s, denote
the corresponding reflection.

Ezample 2.1. Let w e W. Then w(st,1+,(2)) = w(5) and w(sg, 14 (5)) = w(2).

Let Ap = {a; | i ¢ {1,2}}, Rf = SpanzAp n RT, and Ay, = {a" : a € Ap}. We
also need the Weyl group Wp = (s, | @ # 1,2). Denote by WP the set of minimal length
representatives of the cosets in W /Wp. The minimal length representatives W¥ have the
form (w(1)|w(2)|w(3) < -+ < w(n) < n+ 1). Since the last n — 1 labels are determined
from the first 2 labels, we will identify an element in W with (w(1)|w(2)).

wall

Ezample 2.2. We have w = (1]3) = (1/3]2) and w(2) = w(2) = 3 = 3.

3. MOMENT GRAPH

We say that two unequal elements v and w in W’ are adjacent if there is a reflection
Sa € W such that w = vs,. Define d(v,w) = (d1,dz2) where

a¥ + Ap =diay +doas + Ap.
The moment graph has a vertex for each w € W, and an edge w — ws, for each
ae RM\RE={ti—t;|1<i<2ji<j<n+l}u{ti+¢;,2t;|1<i<2,1<i<j<n+1}.

Geometrically, this edge corresponds to a curve Co(w) joining w and ws,. The curve Cy, (w)
has degree d = (dy,ds), where

a¥ + Ap =dioy +doas + Ap.



Ezample 3.1. Consider w = (1|3) and a = ¢; + t3. Then
a¥ +Ap = (t1+t3)+Ap

\4
g Qg
I 1 I 1

= (751 — tz) + (tz — t3) +2t3 + Ap
Therefore, the curve C,(w) has degree d = (1,1).

Define a chain C from v to w in W¥ to be a sequence ug,u1, - ,u, in W¥ such that
u;—1 and wu; are adjacent for 1 < ¢ < r and ugp < v and w < u,. We say that the chain
originates at ugp and terminates at u,. For any chain ug, u1,-- - ,u, we define the degree

of the chain C, denoted deg.(v,w), to be the sum of the degrees d(u;—1,u;) for 1 <i < r.
Note that there is a chain of degree 0 between v and w exactly when w < v.

4. QUANTUM COHOMOLOGY

Let QH*(OF) denote the quantum cohomology ring of OF. The Schubert classes oy,
w e WF, form a basis. Let ¢ := o) be the Poincare dual of o, for any w € W¥. Let
Z|q1, q2] be a polynomial ring where deg g1 = 2 and deg g2 = 4n—8. For a degree d = (d1, d2)
that corresponds to dyos, + doos, € Ha(OF) (this is an integral sum of curve classes), we
write ¢¢ = qfl q3%. The small quantum cohomology ring QH*(OF) is a graded Z[g]-module.

The multiplication is given by

d
o x oy = Z cg’v’wqdau
u,d=0
d . . . . .
where ¥, is the Gromov-Witten invariant that enumerates the degree d rational curves.

4.1. Fulton and Woodward’s formula for minimal quantum degrees. Given any
element 7 € QH*(OF), we say that ¢¢ occurs in 7 if the coefficient of ¢%¢,, is not zero for
some w. The following result provides an equivalent definition to degrees in terms of chains
in the Bruhat graph.

Proposition 4.1. [FW04, Theorem 9.1] Let v,w € W, and let d be a degree. The following
are equivalent:

(1) There is a degree ¢ < d such that ¢° occurs in o % oy,.
(2) There is a chain of degree ¢ < d between v and w.

5. MAYA DIAGRAMS

In this section, we will define Maya diagrams and give an associated characterization of
the Bruhat order.

Definition 5.1. Let w € W. The Maya diagram M™ corresponding to w is a 3 x n grid
with the southwest corner chosen to be the box (1,1) and we index with (rows, columns).
We place an z in the (j,w(7)) position when w(i) < n and i < j < 2. We place an e in the
(7, w(?)) position when w(i) = n and i < j < 2. Each box in the top row contains an x. We
denote the row indexed by y as my/.

Ezample 5.2. The minimal length representatives w = (3|1) and v = (2|3) correspond to
the Maya diagrams

Mw=.7: x andM”= o | T
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Let M™ be the Maya diagram corresponding to w € W' and let 1 < y < 2. Let
Ty WP — WP denote the natural projection. Then M™(®) is a Maya diagram with two
rows and n columns, with the top row having an x in each position and the bottom row is
m.

Y

Ezxample 5.3. We have the following.

r|lxrx|r|x|T
MY = [« M) — , and M™W) = : .

5.1. Bruhat order with Maya diagrams. We begin the subsection with technical defi-
nitions.

Definition 5.4. Let w,v € W¥. Let M% be the Maya diagram that corresponds to w € W7
(1) Define
x z=w()<n
f(MY,y,z):= <o z=uw(i)=n for all
0 otherwise;
(2) Define Sy(M™,z) := #{i: f(M",y,i) € {x,e} for 1 <i < z}.
(3) We say M™ < M if Sy(M"™,z) > S,(M",z) for all y and z such that 1 < 2z <1
and 1 <y <2
(4) Let y € {1,2}. We say M™®) < M™®) if § (M™,z) > S,(M?,z) for all z such
that 1 <z < 1.

Example 5.5. Consider w = (2|3). Then we have

r|lr|xrx|x|T
MY = o |z

We have f(M",2,2) =2, f(M",2,3) =1, and f(M",1,3) =0.

Ezxample 5.6. Recall the Maya diagrams from Example 5.2.

Mw= T + | and MUZ o |

x

Next we have a few examples of computations color coordinated to match with the x
that are being counted in the Maya diagrams.

S1(M™,5)=12=0= 851 (M"5) and So(M".3) =2 >=1=Sy(M",3).
In this example, we have M" < M".

Next, we present a proposition that relates the Bruhat order in W with the partial

order in Maya diagrams. This is another way of presenting the result in [Pro82, Theorem
5BC].

Proposition 5.7. [Pro82, Theorem 5BC] Let w,v € WF. Then w < v if and only if
MY < M°.



6. RIM HOOK RULES

In this section, we will define four rim hook rules corresponding to degrees (1,0), (0,1),
(1,1), and (1,2). These rules are the main tools for calculating minimum quantum degrees
and proving their uniqueness. These rules correspond to the curve neighborhood calcula-
tions in [BM15].

6.1. (1,0)-rim hook rule. Let v = (j|k) € W¥. If j > k then the (1,0)-rim hook rule is
not defined. If j < k then the (1,0)-rim hook rule is defined by (j|k) =% (k[5).
Ezxample 6.1. We have the following example.

(1,0)—rim hook

6.2. (0,1)-rim hook rule. Let v = (j|k) € WP\{(j|k) : K = 1}. Then the (0,1)-rim hook

rule is defined by (j|k) ©n (j|k*) where k* = max{v(2),v(3),---,v(3)}. In terms of Maya
diagrams, the (0, 1)-rim hook of M" is found using the following algorithm. First, note that
if the leftmost box in the second row is e, then the rim hook rule is not defined.

Algorithm 1 (0,1)-rim hook rule

If the leftmost box in the second row is e and the leftmost box in the first row is empty
or if the two leftmost entries of the second row are both e, then the (0,1)-rim hook rule
is not defined.

(1) Place a e in the leftmost unoccupied box in the second row.

(2) Remove the other x or e in the second row that has an empty box below it in the
first row.

Example 6.2. We have the following example.

x| z|e

6.3. (1,1)-rim hook rule. Let v = (jlk) € WP\{(1|k), (2]1) : k < 2}, j* = max{v(1),v(2)}
and k* = max{v(3),v(4), - ,v(3)}. Define j** = max{j* k*} and k** = min{j*, k*}.

Then (j|k) ) (7%*, k**). In terms of Maya diagrams, the (1,1)-rim hook of M" is found

with the following algorithm. First, note that if the two leftmost entries in the second row
are e, then the rim hook rule is not defined.

Algorithm 2 (1,1)-rim hook rule

If the two leftmost entries of the second row are both e or if the leftmost entry in the
first row is e, then the (1, 1)-rim hook rule is not defined.

(1) Delete the entry in the first row.

(2) Put a e in the leftmost empty box on the second row.

(3) If there is an x in the second row, then delete the leftmost x. If there is no z in the
second row, delete the right most e.

(4) Place a e in the first row under the leftmost e in the second row.




6 STEPHEN BARR AND RYAN M. SHIFLER

Ezample 6.3. Next, we will provide three examples of applying the (1,1)-rim hook rule to
a Maya diagram.

rirx|r|x|T rT|Tr|T xr r|lr|Tr|T|T
step 1 step 2
r|xT|T T rlxrx|Tr|x|T
step 3 step 4
L] L]
L]
r|lrx|xrx|x|T r|rT|x|XT rlir|xrx|xr|x
step 1 step 2
° ° T | e °
L]
rir|lr|xrx|T rir|r|xTx|T
step 3 step 4
_— L] L] _—> L] L]

step 1 step 2
L] L] e L] L] _—> L] L] .
Step 3 r|rx|x|x|X Step 4 r|rx|x|x|x
_— L] L] _— L] (]

6.4. (1,2)-rim hook rule. Let v = (j|k) € WF. Then the (1,2)-rim hook rule is defined
by one of the following cases.

1) Glk) &2 @2T) when j = 1.
) Glk) Y2 (12) when j > 1.

Example 6.4. We have the following example.

xT

LTI (1,2)-rim hook
T | T o | e
x

7. ADDITIONAL PRELIMINARY RESULTS WITH RIM HOOK RULES

The main results for this section connect the (a,b)-rim hook rules to degree (a, b)-chains
in an explicit way. These results help control the combinatorics associated to minimum
degree calculations. We begin with a technical definition.

Definition 7.1. Let {)\q}qul, {5; 3]:1 c R*T. We say that D)\, = >, 6; if X \; — >0, is a
non-negative linear combination of positive roots.

Lemma 7.2. Let MY be a Maya diagram that corresponds to v € WF. Let (a,b) €
{(1,0),(0,1),(1,1),(1,2)}. Apply the (a,b)-rim hook rule to M" and call the resulting
Maya diagram M"@® where v(qy) € WP, Then there exists a sequence of positive roots
{ﬁj}le < R*T such that

(1) (a,b) = > B} .
(2) V(a,b) = VSB, 5By -+ - 56,
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Proof. The proof is constructive, so we produce a sequence of positive roots for each possible
case. If (a,b) = (1,0) then (1) and (2) are both clear.

Suppose (a,b) = (0,1). Since v € W, one of the following must occur: If v = (1|k) with
k <2 then vgp) = vstyyey. If v = (j|k) with j,k < T then v, ) = vst, 145 If v = (K|1) then
V(a,p) is N0t defined. If v = (1|2) then v(, ) is not defined.

Suppose (a,b) = (1,1). Since v € WT then one of the following must occur: If v = (j|k)
with 5,k < 1 then Viab) = USty+ts- If v = (7]1) with j < 2 then V(ah) = Sti—taStatts- 1
v = (1]k) then v, is not defined. If v = (2[1) then v(, ) is not defined.

Suppose (a,b) = (1,2). Since v € W, then one of the following must occur: If v = (1]2)
orv = (2|1) then v(qp) = Vs 4, v = (112) or v = (2|1) then v(qp) = V5, — 1,50, v = (2]1)
then v(qp) = V81,81, —t,- If v = (1|2) then v(g ) = vsy,. If v = (2[1) then vy = vsy . If

1]2) then v(, ) = v. If v = (1|k) with 2 > k > 2 then v(qp) = V54, 4350, 13- If v = (K[1)
with 2 >k > 2 then v, ) = vS4, 14551, —15- If v = (1]k) with 2 > k > 2 then v, p) = V51,445
If v = (k[1) with 2 > k > 2 then v(,p) = VS, —t,81,415- If v = (2|k) with 2 > k& > 2
then V(a,b) = VS +t3Sto—t3- Ifv= (k|2) with 2 > k£ > 2 then V(a,b) = VSty+t5 St —to Sto—t3- If
v = (2[k) with 2 > k > 2, then v, = V84,1155t —1,- If v = (k]2) with 2 > k > 2, then
V() = VSti+ts- If v = (jlk) with 2 > j k > 2, then v, ) = VSt 4435, +1,- This completes
the proof. 0

v=(

As an immediate consequence of Lemma 7.2 we have the following proposition.

Proposition 7.3. Let MV be a Maya diagram that corresponds tov e WF. Apply the (a,b)-
rim hook rule to MV and call the resulting Maya diagram M@t where v e W . Then there
is a chain C originating at v and terminating at v,y such that dege(v,v(qp)) < (a,b).

8. MINIMUM QUANTUM DEGREE CALCULATIONS

In this section, we prove the main result. The theorems are broken down by Bruhat
compatibility in each row of Maya diagrams through natural projections m,. Theorem 8.2
handles the case where both rows are compatible in the Bruhat order. Theorem 8.3 is
the case where only the first row is not compatible in the Bruhat order. Theorem 8.4 is
the case where the second row is not compatible in the Bruhat order. Theorem 8.5 is the
case where neither row is compatible in the Bruhat order. It is important to note that in
Theorem 8.5 the choice of whether to use the (1, 1)-rim hook or the (1,2)-rim hook needs
to be made, which distinguishes this work from the results in [Shi25]. We begin with a
technical definition.

Definition 8.1. Define {I, m}<i{j, k} to mean that min{l, m} < min{j, k} and max{l,m} <
max{j, k}.

Theorem 8.2. Suppose that we have two Maya diagrams with M* < M°. Then d = (0,0)
is the unique smallest d such that g* occurs in the quantum product o¥  oy,.

Proof. This is clear. (|

Theorem 8.3. Suppose that there are two Maya diagrams M"Y and M where M (w) £
M™O) put M™W) < M™®) | Then d = (1,0) is the unique smallest d such that q¢¢ occurs
i the quantum product o * oy,.

Proof. Suppose v = (jlk) and w = (I/m). This means j < [ and {l,m} < {j, k}. Assume
k< j, then k < j <. If I < m, then {{,m} 4 {j,k} asm > jand | > k. If m < k,
then {I,m} 4 {j,k} asm <k < j <. Thus, j < k and I,m < k for {{,m} < {j,k}. One
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element of {l,m} must be less than j, but j <[, so m < j and m < j <l < k is the only
possible ordering. Applying d = (1,0) to M, (jlk) — (j*|k*) where j* is the maximum
element of {j,k}. As shown above j* =k > [ and M" < M". Finally, note that the chain
corresponding to the rim hook cannot be degree 0. This completes the proof. g

Theorem 8.4. Suppose that two Maya diagrams M™ and MY where M) g Nfm2(0) pyt
M7r1(w) < Mﬂ'l(v)'

(1) If M" on)-rim hook, M oY with MY < MY©CY then d = (0,1) is the unique

smallest d such that ¢¢ occurs in the quantum product o¥ * oy,.

(2) If M (0,1)—rim hook MP,1) w MP©.2) with MY € MY©0) and M* <
M?©:2) then d = (0,2) is the unique smallest d such that ¢ occurs in the quantum
product a¥ * gy

Proof. This a direct consequence of Proposition 4.1 and Proposition 7.3 after noting the
chains corresponding to each rim hook cannot be degree 0. This completes the proof. [J

Theorem 8.5. Suppose that two Maya diagrams M™ and M? where M™®) & M™®) gnd
M7’I’1(w) $ Mﬂ'l(v).

(1) If M w M O with MY < MP0) then d = (1,1) is the unique

smallest d such that ¢@ occurs in the quantum product o¥ x o,.

(2) 1f v LD OOK oy g age AT BOOK oy i, b v
and M™ < M2 then d = (1,2) is the unique smallest d such that ¢* occurs in
the quantum product o’ * oy,.

(3) If M® (1,2)—rim hook MUa2) MV@2) with MY & MP.2) gnd MY <
M@ then d = (2,2) is the unique smallest d such that ¢% occurs in the quantum
product a¥ * g,

(1,0)—rim hook

Proof. For this proof we must use care since Proposition 7.3 indicates that the application
of the (a,b)-rim hook guarantees a chain of at most degree (a,b) originating at v and
terminating at v(, p).

We consider part (1). A chain from v to w in W of degree (1,0) does not exist since
M™W) & M7®s1)  Likewise, a chain from v to w in W of degree (0,1) does not exist

since M™ (W) M™2(vs250) for an 3 < k < n. By Proposition 7.3 the result for part (1)
follows.

For part (2) note that the work for the proof of part (1) eliminates the possibility that no
chain from v to w of degree (1,0) or (0,1) exists. By the proof of Lemma 7.2 we have the
following: If v = (j|k) with j,k < 1 then V(ab) = VSty +15; if v = (4]1) with j < 2 then Viap) =
Sti—toStatts; if v = (1|k) then v(qp) is not defined; if v = (2|1) then v(,y) is not defined.
Notice that t; + t3 is the maximal root of the set {o« € RT | a¥ + AY, = o) + ay + A}},
see Definition 7.1, and ¢ + t3 = (t; — t2) + (t2 + t3). Therefore, there is no chain from v to
w of degree (1,1). In the cases where the (1, 1)-rim hook does not exist, a chain from v to
the longest permutation (1]2) is reached with a chain of degree (0, 1), (1,0), or (0,0). By
Proposition 7.3 the result for part (2) follows.

For part (3) first observe that v(; 1) < v ). If M™ £ M"®2 then it must be the case
that v(; 2y = (2[1) and w = (1]2). So, only a (1,0)-rim hook may be applied and the result
follows. 0



We conclude with a corollary that states which degrees appear as minimum degrees in
quantum products.

Corollary 8.6. For any v,w € WF, the unique minimum quantum degree that occurs in
the quantum product o * o, must be in set {(0,0),(1,0),(0,1),(1,1),(1,2),(0,2),(2,2)}.

Proof. For any v note that v 9y = (12) or (2[1). In the second case, note that (v(1,2))(1,0) =
(1]2). That is, no degree larger than (2, 2) may appear as a minimum quantum degree. The
degrees (2,0) and (2,1) will not appear as minimum quantum degrees because v(; g)s1 <
v(1,0) and v(q 1)1 < v(y,1). The result follows.
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