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Abstract. We refine the criterion of Fulton and Woodward for the smallest powers of the
quantum parameter q that occur in a product of Schubert classes in the (small) quantum
cohomology of the odd orthogonal partial flag variety OF :“ OFp1, 2; 2n`1q. Our approach
uses Maya diagrams and yields a combinatorial proof that the minimal quantum degrees
are unique for OF.

1. Introduction

The vector space V Ă C2n`1 is isotropic with respect to a non-degenerate symmetric
bilinear form ω if ωpx, yq “ 0 for all x, y P V . Let OF :“ OFp1, 2; 2n ` 1q denote the odd
orthogonal partial flag given by

OFp1, 2; 2n ` 1q “ t0 Ă V1 Ă V2 Ă C2n`1 | dimVi “ i and Vi isotropic with respect to ωu.

Let QH˚pOFq be the small quantum cohomology with Schubert classes σw, w P WP .
The set WP is the minimum length coset representative of the associated Weyl group W
modded by a parabolic P that corresponds to the set I. The set WP is defined in Section
2. We denote the Poincare dual of σv by σv or σv_ . The small quantum cohomology ring
QH˚pOFq is a graded Zrqs-module. Multiplication is given by

σv ‹ σw “
ÿ

u,dě0

cu,dv_,wq
dσu

where cu,dv_,w is the Gromov-Witten invariant that enumerates the rational curves of degree

d. Given any element τ P QH˚pOFq, we say that qd occurs in τ if the coefficient of qdσw is
not zero for some w P WP .

In [Shi25] Maya diagrams were used for Type A (partial) flag varieties to refine a criterion
by Fulton and Woodward in [FW04] to calculate the smallest powers of q that occur in the
quantum product of two Schubert classes. The criterion is given as Proposition 4.1. The
refinement both simplifies and reduces the number of cases that need to be checked to
find the smallest quantum degrees. That is, a priori, it is not clear from the Fulton and
Woodward criterion that the smallest quantum degrees are unique. Fulton and Woodward’s
criterion is for general homogeneous G{P . So, it is natural to pursue using Maya diagrams
to refine their criterion in other types. This manuscript focuses on Type B odd orthogonal
partial flag varieties OF. We are ready to state our main results from Section 8.

Theorem 1.1. Let v, w P WP .

(1) The minimum quantum degree that occurs in σv ‹ σw is unique using combinatorial
methods.

(2) The minimum quantum degree can be found using an algorithm built on Maya dia-
grams that refines the criterion by Fulton and Woodward.
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The results in this article are combinatorial in the sense that we use Maya diagrams to
describe the chains in the moment graph that Fulton and Woodward defined in [FW04]
(see Proposition 4.1). Like in the Type A case found in [Shi25] we introduce a generalized
notion of rim hook removals on Maya diagrams which is found in Section 6. In addition,
Maya diagrams give a characterization of the Bruhat order by slightly modifying a theorem
by Proctor in [Pro82, Theorem 5BC] and are stated herein as Proposition 5.7.

In the present work, a new challenge is introduced. In the Type A case, it was enough
to study how the Bruhat order behaved on the rows of the Maya diagrams to know which
rim hook to use. That is not the case for OF and is highlighted in Theorem 8.5.

2. Preliminaries

The vector space V Ă C2n`1 is isotropic with respect to a non-degenerate symmetric
bilinear form ω if ωpx, yq “ 0 for all x, y P V . Let OF :“ OFp1, 2; 2n ` 1q denote the odd
orthogonal partial flag given by

OFp1, 2; 2n ` 1q “ t0 Ă V1 Ă V2 Ă C2n`1 | dimVi “ i and Vi isotropic with respect to ωu.

Here we give some notation that is useful for describing the geometry of OFp1, 2;Eq.
Consider the root system of type Bn with positive roots R` “ tti ˘ tj | 1 ď i ă j ď

nu Y tti | 1 ď i ď nu and the subset of simple roots ∆ “ tαi :“ ti ´ ti`1 | 1 ď i ď

n ´ 1u Y tαn`1 :“ tn`1u. Let pti ˘ tjq
_ “ pti ˘ tjq when 1 ď i ă j ď n and ptiq

_ “ 2ti
when 1 ď i ď n. The associated Weyl group W is the hyperoctahedral group consisting
of signed permutations. That is, W “ tw P S2n | wpiq “ wpiqu where S2n is the group of
permutations on t1, 2, ¨ ¨ ¨ , n, n̄, ¨ ¨ ¨ , 2̄, 1̄u and ī “ 2n ` 1 ´ i. Let α P R` and let sα denote
the corresponding reflection.

Example 2.1. Let w P W . Then wpst2`t5p2qq “ wp5̄q and wpst2`t5p5qq “ wp2̄q.

Let ∆P “ tαi | i R t1, 2uu, R`
P “ SpanZ∆P X R`, and ∆_

P “ tα_ : α P ∆P u. We

also need the Weyl group WP “ xsαi | i ‰ 1, 2y. Denote by WP the set of minimal length
representatives of the cosets in W {WP . The minimal length representatives WP have the
form pwp1q|wp2q|wp3q ă ¨ ¨ ¨ ă wpnq ď n ` 1q. Since the last n ´ 1 labels are determined
from the first 2 labels, we will identify an element in WP with pwp1q|wp2qq.

Example 2.2. We have w “ p1|3̄q “ p1|3̄|2q and wp2̄q “ wp2q “ ¯̄3 “ 3.

3. Moment Graph

We say that two unequal elements v and w in WP are adjacent if there is a reflection
Sα P W such that w “ vsα. Define dpv, wq “ pd1, d2q where

α_ ` ∆_
P “ d1α

_
1 ` d2α

_
2 ` ∆_

P .

The moment graph has a vertex for each w P WP , and an edge w Ñ wsα for each

α P R`zR`
P “ tti ´ tj | 1 ď i ď 2, i ă j ď n`1u Y tti ` tj , 2ti | 1 ď i ď 2, 1 ď i ă j ď n`1u.

Geometrically, this edge corresponds to a curve Cαpwq joining w and wsα. The curve Cαpwq

has degree d “ pd1, d2q, where

α_ ` ∆_
P “ d1α

_
1 ` d2α

_
2 ` ∆_

P .
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Example 3.1. Consider w “ p1|3q and α “ t1 ` t3. Then

α_ ` ∆_
P “ pt1 ` t3q ` ∆_

P

“

α_
1

pt1 ´ t2q `

α_
2

pt2 ´ t3q `2t3 ` ∆_
P

Therefore, the curve Cαpwq has degree d “ p1, 1q.

Define a chain C from v to w in WP to be a sequence u0, u1, ¨ ¨ ¨ , ur in WP such that
ui´1 and ui are adjacent for 1 ď i ď r and u0 ď v and w ď ur. We say that the chain
originates at u0 and terminates at ur. For any chain u0, u1, ¨ ¨ ¨ , ur we define the degree
of the chain C, denoted degCpv, wq, to be the sum of the degrees dpui´1, uiq for 1 ď i ď r.
Note that there is a chain of degree 0 between v and w exactly when w ď v.

4. Quantum Cohomology

Let QH˚pOFq denote the quantum cohomology ring of OF. The Schubert classes σw,
w P WP , form a basis. Let σw :“ σ_

w be the Poincare dual of σw for any w P WP . Let
Zrq1, q2s be a polynomial ring where deg q1 “ 2 and deg q2 “ 4n´8. For a degree d “ pd1, d2q

that corresponds to d1σs1 ` d2σs2 P H2pOFq (this is an integral sum of curve classes), we

write qd “ qd11 qd22 . The small quantum cohomology ring QH˚pOFq is a graded Zrqs-module.
The multiplication is given by

σv ‹ σw “
ÿ

u,dě0

cu,dv_,wq
dσu

where cu,dv_,w is the Gromov-Witten invariant that enumerates the degree d rational curves.

4.1. Fulton and Woodward’s formula for minimal quantum degrees. Given any
element τ P QH˚pOFq, we say that qd occurs in τ if the coefficient of qdσw is not zero for
some w. The following result provides an equivalent definition to degrees in terms of chains
in the Bruhat graph.

Proposition 4.1. [FW04, Theorem 9.1] Let v, w P WP , and let d be a degree. The following
are equivalent:

(1) There is a degree c ď d such that qc occurs in σv ‹ σw.
(2) There is a chain of degree c ď d between v and w.

5. Maya diagrams

In this section, we will define Maya diagrams and give an associated characterization of
the Bruhat order.

Definition 5.1. Let w P WP . The Maya diagram Mw corresponding to w is a 3 ˆ n grid
with the southwest corner chosen to be the box p1, 1q and we index with prows, columnsq.
We place an x in the pj, wpiqq position when wpiq ď n and i ď j ď 2. We place an ‚ in the
pj, wpiqq position when wpiq ě n and i ď j ă 2. Each box in the top row contains an x. We
denote the row indexed by y as mw

y .

Example 5.2. The minimal length representatives w “ p3|1q and v “ p2̄|3q correspond to
the Maya diagrams

Mw “

x x x x x

x x

x

and Mv “

x x x x x

‚ x

‚

.
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Let Mw be the Maya diagram corresponding to w P WP and let 1 ď y ď 2. Let
πy : WP Ñ WPy denote the natural projection. Then Mπypwq is a Maya diagram with two
rows and n columns, with the top row having an x in each position and the bottom row is
mw

y .

Example 5.3. We have the following.

Mw “

x x x x x

‚ x

‚

,Mπ1pwq “
x x x x x

‚
, and Mπ2pwq “

x x x x x

‚ x
.

5.1. Bruhat order with Maya diagrams. We begin the subsection with technical defi-
nitions.

Definition 5.4. Let w, v P WP . LetMw be the Maya diagram that corresponds to w P WP .

(1) Define

fpMw, y, zq :“

$

’

&

’

%

x z “ wpiq ď n for all 1 ď i ď y;

‚ z “ wpiq ě n for all 1 ď i ď y;

0 otherwise;

.

(2) Define SypMw, zq :“ #ti : fpMw, y, iq P tx, ‚u for 1 ď i ď zu.
(3) We say Mw ď Mv if SypMw, zq ě SypMv, zq for all y and z such that 1 ď z ď 1̄

and 1 ď y ď 2.
(4) Let y P t1, 2u. We say Mπypwq ď Mπypwq if SypMw, zq ě SypMv, zq for all z such

that 1 ď z ď 1̄.

Example 5.5. Consider w “ p2̄|3q. Then we have

Mw “

x x x x x

‚ x

‚

.

We have fpMw, 2, 2̄q “ 2, fpMw, 2, 3q “ 1, and fpMw, 1, 3q “ 0.

Example 5.6. Recall the Maya diagrams from Example 5.2.

Mw “

x x x x x

x x

x

and Mv “

x x x x x

‚ x

‚

.

Next we have a few examples of computations color coordinated to match with the x
that are being counted in the Maya diagrams.

S1pMw, 5q “ 1 ě 0 “ S1pMv, 5q and S2pMw, 3̄q “ 2 ě 1 “ S2pMv, 3̄q.

In this example, we have Mw ď Mv.

Next, we present a proposition that relates the Bruhat order in WP with the partial
order in Maya diagrams. This is another way of presenting the result in [Pro82, Theorem
5BC].

Proposition 5.7. [Pro82, Theorem 5BC] Let w, v P WP . Then w ď v if and only if
Mw ď Mv.
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6. Rim hook rules

In this section, we will define four rim hook rules corresponding to degrees p1, 0q, p0, 1q,
p1, 1q, and p1, 2q. These rules are the main tools for calculating minimum quantum degrees
and proving their uniqueness. These rules correspond to the curve neighborhood calcula-
tions in [BM15].

6.1. p1, 0q-rim hook rule. Let v “ pj|kq P WP . If j ą k then the p1, 0q-rim hook rule is

not defined. If j ă k then the p1, 0q-rim hook rule is defined by pj|kq
p1,0q
ÝÑ pk|jq.

Example 6.1. We have the following example.

x x x x x

x x

x

p1,0q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ

x x x x x

x x

x

.

6.2. p0, 1q-rim hook rule. Let v “ pj|kq P WP ztpj|kq : k “ 1̄u. Then the p0, 1q-rim hook

rule is defined by pj|kq
p0,1q
ÝÑ pj|k˚q where k˚ “ maxtvp2q, vp3q, ¨ ¨ ¨ , vp3̄qu. In terms of Maya

diagrams, the p0, 1q-rim hook of Mv is found using the following algorithm. First, note that
if the leftmost box in the second row is ‚, then the rim hook rule is not defined.

Algorithm 1 p0, 1q-rim hook rule

If the leftmost box in the second row is ‚ and the leftmost box in the first row is empty
or if the two leftmost entries of the second row are both ‚, then the p0, 1q-rim hook rule
is not defined.
(1) Place a ‚ in the leftmost unoccupied box in the second row.
(2) Remove the other x or ‚ in the second row that has an empty box below it in the
first row.

Example 6.2. We have the following example.

x x x x x

x x

x

p0,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ

x x x x x

x ‚

x

.

6.3. p1, 1q-rim hook rule. Let v “ pj|kq P W pztp1̄|kq, p2̄|1̄q : k ď 2̄u, j˚ “ maxtvp1q, vp2qu

and k˚ “ maxtvp3q, vp4q, ¨ ¨ ¨ , vp3qu. Define j˚˚ “ maxtj˚, k˚u and k˚˚ “ mintj˚, k˚u.

Then pj|kq
p1,1q
ÝÑ pj˚˚, k˚˚q. In terms of Maya diagrams, the p1, 1q-rim hook of Mv is found

with the following algorithm. First, note that if the two leftmost entries in the second row
are ‚, then the rim hook rule is not defined.

Algorithm 2 p1, 1q-rim hook rule

If the two leftmost entries of the second row are both ‚ or if the leftmost entry in the
first row is ‚, then the p1, 1q-rim hook rule is not defined.
(1) Delete the entry in the first row.
(2) Put a ‚ in the leftmost empty box on the second row.
(3) If there is an x in the second row, then delete the leftmost x. If there is no x in the
second row, delete the right most ‚.
(4) Place a ‚ in the first row under the leftmost ‚ in the second row.
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Example 6.3. Next, we will provide three examples of applying the p1, 1q-rim hook rule to
a Maya diagram.

x x x x x

x x

x

step 1
ÝÝÝÝÑ

x x x x x

x x
step 2
ÝÝÝÝÑ

x x x x x

x ‚ x

step 3
ÝÝÝÝÑ

x x x x x

‚ x
step 4
ÝÝÝÝÑ

x x x x x

‚ x

‚

.

x x x x x

x ‚

‚

step 1
ÝÝÝÝÑ

x x x x x

x ‚
step 2
ÝÝÝÝÑ

x x x x x

x ‚ ‚

step 3
ÝÝÝÝÑ

x x x x x

‚ ‚
step 4
ÝÝÝÝÑ

x x x x x

‚ ‚

‚

.

x x x x x

‚ ‚

‚

step 1
ÝÝÝÝÑ

x x x x x

‚ ‚
step 2
ÝÝÝÝÑ

x x x x x

‚ ‚ ‚

step 3
ÝÝÝÝÑ

x x x x x

‚ ‚
step 4
ÝÝÝÝÑ

x x x x x

‚ ‚

‚

.

6.4. p1, 2q-rim hook rule. Let v “ pj|kq P WP . Then the p1, 2q-rim hook rule is defined
by one of the following cases.

(1) pj|kq
p1,2q
ÝÑ p2|1q when j “ 1.

(2) pj|kq
p1,2q
ÝÑ p1|2q when j ą 1.

Example 6.4. We have the following example.

x x x x x

x x

x

p1,2q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ

x x x x x

‚ ‚

‚

.

7. Additional Preliminary results with rim hook rules

The main results for this section connect the pa, bq-rim hook rules to degree pa, bq-chains
in an explicit way. These results help control the combinatorics associated to minimum
degree calculations. We begin with a technical definition.

Definition 7.1. Let tλqu
Q
q“1, tβju

J
j“1 Ă R`. We say that

ř

λq ě
ř

βj if
ř

λq ´
ř

βj is a
non-negative linear combination of positive roots.

Lemma 7.2. Let Mv be a Maya diagram that corresponds to v P WP . Let pa, bq P

tp1, 0q, p0, 1q, p1, 1q, p1, 2qu. Apply the pa, bq-rim hook rule to Mv and call the resulting
Maya diagram Mvpa,bq where vpa,bq P WP . Then there exists a sequence of positive roots

tβju
J
j“1 Ă R` such that

(1) pa, bq ě
ř

β_
j .

(2) vpa,bq “ vsβ1sβ2 . . . sβJ
.
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Proof. The proof is constructive, so we produce a sequence of positive roots for each possible
case. If pa, bq “ p1, 0q then p1q and p2q are both clear.

Suppose pa, bq “ p0, 1q. Since v P WP , one of the following must occur: If v “ p1̄|kq with
k ă 2̄ then vpa,bq “ vst2`t3 . If v “ pj|kq with j, k ă 1̄ then vpa,bq “ vst2`t3 . If v “ pk|1̄q then

vpa,bq is not defined. If v “ p1̄|2̄q then vpa,bq is not defined.

Suppose pa, bq “ p1, 1q. Since v P WP then one of the following must occur: If v “ pj|kq

with j, k ă 1̄ then vpa,bq “ vst1`t3 . If v “ pj|1̄q with j ă 2̄ then vpa,bq “ st1´t2st2`t3 . If

v “ p1̄|kq then vpa,bq is not defined. If v “ p2̄|1̄q then vpa,bq is not defined.

Suppose pa, bq “ p1, 2q. Since v P WP , then one of the following must occur: If v “ p1|2q

or v “ p2|1q then vpa,bq “ vst1`t2 . If v “ p1|2̄q or v “ p2|1̄q then vpa,bq “ vst1´t2st2 . If v “ p2̄|1q

then vpa,bq “ vst2st1´t2 . If v “ p1̄|2q then vpa,bq “ vst2 . If v “ p2̄|1̄q then vpa,bq “ vst1´t2 . If

v “ p1̄|2̄q then vpa,bq “ v. If v “ p1|kq with 2̄ ą k ą 2 then vpa,bq “ vst1`t3st2´t3 . If v “ pk|1q

with 2̄ ą k ą 2 then vpa,bq “ vst2`t3st1´t3 . If v “ p1̄|kq with 2̄ ą k ą 2 then vpa,bq “ vst2`t3 .

If v “ pk|1̄q with 2̄ ą k ą 2 then vpa,bq “ vst1´t2st2`t3 . If v “ p2|kq with 2̄ ą k ą 2

then vpa,bq “ vst1`t3st2´t3 . If v “ pk|2q with 2̄ ą k ą 2 then vpa,bq “ vst2`t3st1´t2st2´t3 . If

v “ p2̄|kq with 2̄ ą k ą 2, then vpa,bq “ vst2`t3st1´t2 . If v “ pk|2̄q with 2̄ ą k ą 2, then

vpa,bq “ vst1`t3 . If v “ pj|kq with 2̄ ą j, k ą 2, then vpa,bq “ vst1`t3st2`t4 . This completes
the proof. □

As an immediate consequence of Lemma 7.2 we have the following proposition.

Proposition 7.3. Let Mv be a Maya diagram that corresponds to v P WP . Apply the pa, bq-
rim hook rule to Mv and call the resulting Maya diagram Mvpa,bq where v P WP . Then there
is a chain C originating at v and terminating at vpa,bq such that degCpv, vpa,bqq ď pa, bq.

8. Minimum Quantum Degree Calculations

In this section, we prove the main result. The theorems are broken down by Bruhat
compatibility in each row of Maya diagrams through natural projections πy. Theorem 8.2
handles the case where both rows are compatible in the Bruhat order. Theorem 8.3 is
the case where only the first row is not compatible in the Bruhat order. Theorem 8.4 is
the case where the second row is not compatible in the Bruhat order. Theorem 8.5 is the
case where neither row is compatible in the Bruhat order. It is important to note that in
Theorem 8.5 the choice of whether to use the p1, 1q-rim hook or the p1, 2q-rim hook needs
to be made, which distinguishes this work from the results in [Shi25]. We begin with a
technical definition.

Definition 8.1. Define tl,muŸtj, ku to mean that mintl,mu ď mintj, ku and maxtl,mu ď

maxtj, ku.

Theorem 8.2. Suppose that we have two Maya diagrams with Mw ď Mv. Then d “ p0, 0q

is the unique smallest d such that qd occurs in the quantum product σv ‹ σw.

Proof. This is clear. □

Theorem 8.3. Suppose that there are two Maya diagrams Mw and Mv where Mπ1pwq ę

Mπ1pvq but Mπ2pwq ď Mπ2pvq. Then d “ p1, 0q is the unique smallest d such that qd occurs
in the quantum product σv ‹ σw.

Proof. Suppose v “ pj|kq and w “ pl|mq. This means j ă l and tl,mu Ÿ tj, ku. Assume
k ă j, then k ă j ă l. If l ă m, then tl,mu Ž tj, ku as m ą j and l ą k. If m ă k,
then tl,mu Ž tj, ku as m ă k ă j ă l. Thus, j ă k and l,m ă k for tl,mu Ÿ tj, ku. One
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element of tl,mu must be less than j, but j ă l, so m ă j and m ă j ă l ă k is the only
possible ordering. Applying d “ p1, 0q to Mv, pj|kq Ñ pj˚|k˚q where j˚ is the maximum
element of tj, ku. As shown above j˚ “ k ą l and Mw ă Mv. Finally, note that the chain
corresponding to the rim hook cannot be degree 0. This completes the proof. □

Theorem 8.4. Suppose that two Maya diagrams Mw and Mv where Mπ2pwq ę Mπ2pvq but
Mπ1pwq ď Mπ1pvq.

(1) If Mv p0,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp0,1q with Mw ď Mvp0,1q then d “ p0, 1q is the unique

smallest d such that qd occurs in the quantum product σv ‹ σw.

(2) If Mv p0,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp0,1q

p0,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp0,2q with Mw ę Mvp0,1q and Mw ď

Mvp0,2q then d “ p0, 2q is the unique smallest d such that qd occurs in the quantum
product σv ‹ σw.

Proof. This a direct consequence of Proposition 4.1 and Proposition 7.3 after noting the
chains corresponding to each rim hook cannot be degree 0. This completes the proof. □

Theorem 8.5. Suppose that two Maya diagrams Mw and Mv where Mπ2pwq ę Mπ2pvq and
Mπ1pwq ę Mπ1pvq.

(1) If Mv p1,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp1,1q with Mw ď Mvp1,1q then d “ p1, 1q is the unique

smallest d such that qd occurs in the quantum product σv ‹ σw.

(2) If Mv p1,1q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp1,1q and Mv p1,2q´rim hook

ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp1,2q with Mw ę Mvp1,1q

and Mw ď Mvp1,2q then d “ p1, 2q is the unique smallest d such that qd occurs in
the quantum product σv ‹ σw.

(3) If Mv p1,2q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp1,2q

p1,0q´rim hook
ÝÝÝÝÝÝÝÝÝÝÝÑ Mvp2,2q with Mw ę Mvp1,2q and Mw ď

Mvp2,2q then d “ p2, 2q is the unique smallest d such that qd occurs in the quantum
product σv ‹ σw.

Proof. For this proof we must use care since Proposition 7.3 indicates that the application
of the pa, bq-rim hook guarantees a chain of at most degree pa, bq originating at v and
terminating at vpa,bq.

We consider part (1). A chain from v to w in WP of degree p1, 0q does not exist since

Mπ2pwq ę Mπ2pvs1q. Likewise, a chain from v to w in WP of degree p0, 1q does not exist

since Mπ2pwq ę Mπ2pvst2˘tkq for an 3 ď k ď n. By Proposition 7.3 the result for part (1)
follows.

For part (2) note that the work for the proof of part (1) eliminates the possibility that no
chain from v to w of degree p1, 0q or p0, 1q exists. By the proof of Lemma 7.2 we have the
following: If v “ pj|kq with j, k ă 1̄ then vpa,bq “ vst1`t3 ; if v “ pj|1̄q with j ă 2̄ then vpa,bq “

st1´t2st2`t3 ; if v “ p1̄|kq then vpa,bq is not defined; if v “ p2̄|1̄q then vpa,bq is not defined.

Notice that t1 ` t3 is the maximal root of the set tα P R` | α_ ` ∆_
P “ α_

1 ` α_
2 ` ∆_

P u,
see Definition 7.1, and t1 ` t3 “ pt1 ´ t2q ` pt2 ` t3q. Therefore, there is no chain from v to
w of degree p1, 1q. In the cases where the p1, 1q-rim hook does not exist, a chain from v to
the longest permutation p1̄|2̄q is reached with a chain of degree p0, 1q, p1, 0q, or p0, 0q. By
Proposition 7.3 the result for part (2) follows.

For part (3) first observe that vp1,1q ď vp1,2q. If Mw ę Mvp1,2q then it must be the case

that vp1,2q “ p2̄|1̄q and w “ p1̄|2̄q. So, only a p1, 0q-rim hook may be applied and the result
follows. □
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We conclude with a corollary that states which degrees appear as minimum degrees in
quantum products.

Corollary 8.6. For any v, w P WP , the unique minimum quantum degree that occurs in
the quantum product σv ‹ σw must be in set tp0, 0q, p1, 0q, p0, 1q, p1, 1q, p1, 2q, p0, 2q, p2, 2qu.

Proof. For any v note that vp1,2q “ p1̄|2̄q or p2̄|1̄q. In the second case, note that pvp1,2qqp1,0q “

p1̄|2̄q. That is, no degree larger than p2, 2q may appear as a minimum quantum degree. The
degrees p2, 0q and p2, 1q will not appear as minimum quantum degrees because vp1,0qs1 ă

vp1,0q and vp1,1qs1 ă vp1,1q. The result follows. □
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