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Abstract. Let F be a Fano variety and let QH˚pF q be the quantum cohomology ring of
F . The quantum multiplication by a basis element σ of H˚pF q induces an endomorphism
σ̂ of the finite-dimensional vector space QH˚pF q|q“1 specialized at q “ 1. We study this
operator for partial flags, isotropic Grassmannians in types BCD, and for the full flag
of type G2. We discuss Frobenius-Perron dimension and state related conjectures. We
give a numerical check that a conjecture by Galkin holds. It states that the largest real
eigenvalue of the endomorphism ĉ1 induced by the first Chern class is greater than or equal
to dimF+1 with equality if and only if F “ Pn´1.

1. Introduction

The purpose of this paper is to outline a series of conjectures related to Frobenius-Perron
dimension on the quantum cohomology ring, specialized at q “ 1, of a homogeneous space
and provide a numerical check of a conjecture by Galkin [Gal]. These conjectures are
supported by experimental calculations. The particular homogeneous spaces that we will
study are partial flags in Type A; isotropic Grassmannians in Types BCD; and the full
flag for G2. The study of Galkin’s lower bound recently motivated a generalized notion
of Frobenius-Perron dimension for certain free Z-module of infinite rank [LSYZ]. We first
state the main objects of interest.

Let F be a Fano manifold (we will consider the case F “ G{P throughout the paper). The
quantum cohomology ring pQH˚pF q, ‹q is a graded algebra over Zrqs, where q is the quantum
parameter. The parameter q “ pq1, q2, ¨ ¨ ¨ , qsq. Consider the specialization H‚pF q :“
QH˚pF q|q“1 at q “ 1 (here we mean qi “ 1 for all i). The quantum multiplication by the
class α P QH˚pF q induces an endomorphism α̂ of the finite-dimensional vector space H‚pF q:

y P H‚pF q ÞÑ α̂pyq :“ pα ‹ yq|q“1.

We first discuss Frobenius-Perron dimension.

1.1. Frobenius-Perron Dimension. In this manuscript we will explore the notion of
Frobenius-Perron dimension for quantum cohomology rings of homogeneous spaces special-
ized at q “ 1. The notion of Frobenius-Perron dimension is motived by that of index of
subfactor [Jon83]. It was first defined as functions with certain properties [FK93]. The the-
ory of Frobenius-Perron dimensions for general fusion rings and categories was developed
by Etingof, Nikshych, and Ostrick [ENO05].

We will follow [EGNO15]. Let A be a unital Z`-ring of finite rank. This means that A
is a free finitely generated abelian group with basis tβiuiPI with a unital associative ring
structure such that βiβj “

ř

k c
r
i,jβr with cri,j P Z` and β0 “ 1 for some element 0 P I.

Each βi induces a linear operator β̂i : AÑ A; γ ÞÑ βi ¨ γ. Let ρpβ̂iq of β̂i be defined by

ρpβ̂iq “ maxt|c| : c is an eigenvalue of β̂iu P Rě0.
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It is know by Perron-Frobenius Theory of non-negative matrices that ρpβ̂iq is an eigenvalue.
We will now define Frobenius-Perron dimension of A.

Definition 1.1. Let A be a Z`-ring of finite rank. The function FPdim “ FPdimA,

FPdim : AÑ C; FPdim

˜

ÿ

i

aiβi

¸

:“
ÿ

i

aiρpβ̂iq,

is called the Frobenius-Perron dimension of A.

The function FPdim : A Ñ C is a ring homomorphism in the case that A is transitive1

and unital. We do not approach the question of whether or not H‚pG{P q is transitive in
this manuscript.

Question 1.2. We will explore the following questions.

(1) Is FPdim : H‚pG{P q Ñ C a ring homomorphism?
(2) Can FPdimpσwq be expressed as a transcendental function for all σw P H

‚pG{P q?

The questions are answered by [Rie01] for the Grassmannian Grpm,nq. The bases el-
ements tσλu of H‚pGrpm,nqq are Schubert classes and are indexed (by codimension) by
partitions of the form pn ´m ě λ1 ě ¨ ¨ ¨ ě λk ě 0q. Indeed, the linear operators σ̂λ on
H‚pGrpm,nqq can be simultaneously diagonalized (with respect to a common basis tσIu
therein).

Let Flpa;nq be the partial flag, IGpn, 2nq be the Lagrangian Grassmannian, and OGpn, 2n`
1q be the maximal orthogonal Grassmannian. It is known from [Rie01, Che17, CH] that

(1) FPdimpσλq “
Πpi,jqPλ sinppm´ i` jqπnq

Πpi,jqPλ sinppλi ` λtj ´ i´ j ` 1qπnq
for Grpm,nq;

(2) FPdimpσp1qq “ 2
´1
n`1 sin

ˆ

π

2pn` 1q

˙´1

for IGpn, 2nq;

(3) FPdimpσp1qq “
2

1
n

2
sin

´ π

2n

¯´1
for OGpn, 2n` 1q.

Observe that FPdim can be considered as a single variable function of n in the cases listed
above (e.g. m is fixed in the Grpm,nq case). Moreover, each function of n extends to a
transcendental function on R`.

Very little is known in other cases. Quantum cohomology rings are usually considered on
a case-by-case basis since they are not functorial. The novelty of this paper is that we plot
FPdim as a function of n (with all other parameters fixed) to see that it’s reasonable to
conjecture that the function extends to a transcendental function on R`. This is motivated
by the work in [ESS`, LSYZ]. We are ready to state our main conjecture pertaining to
Frobenius-Perron dimension.

Conjecture 1. Let X P tFlpa;nq,OGpm, 2n` 1q, IGpm, 2nq,OGpm, 2n` 2qu and consider
FPdimpσ̂λq where λ is an element of the appropriate index set.

(1) The function FPdim : H‚pXq Ñ C a ring homomorphism;
(2) When considered as a function of n, FPdimpσλq extends to a transcendental function

on R`;
(3) The number FPdimpσλq can be expressed as a transcendental function;

1The ring A is transitive when, for any j, r, there exits an i such that cri,j ą 0.
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(a) FPdimpσp1qq of IGp2, 2nq for 3 ď n ď 50.
(b) fkpxq “

2´
1

2x`1´2 sin
´

kπ
2p2x´2q

¯

sin
´

π
2p2x`1´2q

¯

Figure 1. The shape of the function fkpxq is reasonably correct, however,
it does not match the calculate eigenvalues.

(4) In particular, FPdimpσλq is a product and quotient of the transcendental functions

2

´

1
g1

¯

, sin

ˆ

mπ

g2

˙

, sin

ˆ

π

g3

˙

where g1, g2, g3 are functions of λ, a, m, and n.

We expand on Conjecture 1 in Section 3. The Appendix (See 5) contains examples of
FPdim plotted as a function of n for partial flags and isotropic Grassmannians of Types
BCD.

Example 1.3. Figures 1 gives a first example and the graph of a function using the tran-
scendental functions listed in Conjecture 1.

Next we will discussion Galkin’s lower bound conjecture in the context of Frobenius-
Perron dimension.

1.2. Galkin Lower Bound Conjecture. We next recall the precise statements of the
conjecture by Galkin, following [Gal] and [GGI16, §3]. Let K :“ KF be the canonical
bundle of F and let c1pF q :“ c1p´Kq P H

2pF q be the anticanonical class. The quantum
multiplication by the first Chern class c1pF q induces an endomorphism ĉ1 of the finite-
dimensional vector space H‚pF q. Galkin’s lower bound conjecture [Gal] states the following:

FPdimpc1q ě dimC F ` 1 with equality if and only if F “ PN .

The conjecture was verified for the Grassmannian [ESS`], Lagrangian and Orthogonal
Grassmannian [CH], del Pezzo surfaces (implicitly calculated)[HKLY], projective complete
intersections [Ke], and the Cayley Grassmannian [BM].

In Section 4 we state the cases where Galkin’s lower bound conjecture has been checked
for partial flags, isotropic Grassmannians in types BCD. We also prove the conjecture for
the full flag of Type G2.
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1.3. Computational tools. For computations we use a Maple program written by Buch
(see [Buc]) and a program written in Python (see [War]). Buch’s program calculates the
quantum cohomology ring for Grassmannians in Types ABCD and with little effort one
can also compute Frobenius-Perron dimension. The program written in Python is for doing
computations for partial flag varieties.

Acknowledgements

The first named author would like to thank Leonardo Mihalcea and Changzheng Li for
useful discussions and collaborations on related projects. We would like thank Anders Buch
for writing the Maple progam Quantum Calculator and making it publicly available. We
would also like to thank Joseph Anderson for useful discussions in software implementation.

2. Preliminaries

Let X “ G{P . The small quantum cohomology is defined as follows. Let pσwq be a basis
for the cohomology ring H˚pXq and let pσ_w qi be the dual basis for the Poincaré pairing.
The multiplication is given by

σw ‹ σv “
ÿ

dě0,k

ck,di,j q
dσu

where cu,dw,v are the 3-point, genus 0, Gromov-Witten invariants corresponding to rational
curves of degree d intersection the classes σw, σv, and σ_u . We will state the quantum
Chevalley formula for partial flag varieties and the quantum Pieri formula of isotropic
Grassmannians of Types BCD and for the full flag in Type G2.

2.1. Partial flag varieties. We will follows the exposition of [Buc05, Buc15]. Let n be a
positive integer. Given a strictly increasing sequence of integers a “ pa1 ă a2 ă ¨ ¨ ¨ ă akq
with a1 ą 0 and ak ă n, we let Flpa;nq be the variety of partial flags Va1 Ă Va2 Ă ¨ ¨ ¨ Ă
Vak Ă Cn where dimVaj “ aj . For convenience we set a0 “ 0 and ak`1 “ n. The dimension

of Flpa;nq is equal to
řk
i“1 aipai`1 ´ aiq.

2.1.1. Quantum cohomology of partial flag varieties. Let Sn be the group of permutations of
n elements. The Schubert varieties in Flpa;nq are indexed by the set Sn{Wa, where Wa Ă Sn
is the subgroup generated by the simple transpositions si “ pi, i ` 1q for i R ta1, ¨ ¨ ¨ , aku.
Let Snpaq Ă Sn denote the set of permutations whose descent positions are contained in the
set ta1, a2, ¨ ¨ ¨ , aku. These permutations are the shortest representatives for the elements
of Sn{Wa.

The Schubert classes σ
paq
w form a basis for the cohomology ring H˚pFlpa;nqq. Let w0 “

n ¨ ¨ ¨ 21 is the longest permutation in Sn, and wa is the longest permutation in the subgroup
Wa Ă Sn. That is, wapjq “ ai ` ai`1 ` 1´ j for ai ă j ď ai`1.

Let q1, ¨ ¨ ¨ , qk be independent variables and write Zrqs “ Zrq1, ¨ ¨ ¨ , qks. The (small)
quantum cohomology ring QH˚pFlpa;nqq is a Zrqs-algebra, which is a Zrqs-module is free

with a basis of quantum Schubert classes σ
paq
w .

Multiplication is defined by the formula

σpaqu ¨ σpaqv “
ÿ

w,d

cw
_,d

u,v qdσpaqw
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where the sum is over all w P Snpaq and the multidegrees d, and qd “ qd11 q
d2
2 ¨ ¨ ¨ q

dk
k . The

ring QH˚pIFpa;nqq has a natural grading where the degree of σ
paq
w is the length `pwq, while

each variable qi has degree ai`1 ´ ai´1.

2.1.2. Quantum Chevalley Formula. We will now introduce additional notation to state the
Chevalley formula for Flpa;nq. Let pi, jq denote the transposition interchanging i and j.

Definition 2.1. Consider the simple reflection α “ sr. For permutations u and w we write
u

α
Ñ w if there exists integers b and c such that

(1) b ď r ă c;
(2) w “ upb, cq;
(3) `pupb, cqq “ `puq ` 1.

We call a sequence d “ pd1, ¨ ¨ ¨ , dkq of non-negative integers a Pieri sequence with maxi-
mum position j, if pd1, ¨ ¨ ¨ , djq is weakly increasing, pdj , ¨ ¨ ¨ , dkq is weakly decreasing, and
if we set d0 “ dk`1 “ 0 then |di ´ di`1| ď 1 for 0 ď i ď k.

Let d be a non-zero Pieri sequence with maximum position j of value 1 where the first
1 appears in position r1 and the last 1 appears in position r2. Let w0paq be the longest

element in Sn. The define sd P Sn to be sd :“ w0w
paq
0 par1 , ar2 ` 1q.

Theorem 2.2 (Quantum Chevalley formula). Let α “ saj and u P Snpaq be permutations.
Then

σpaqα ¨ σpaqu “
ÿ

w

σpaqw `
ÿ

w

qdσpaqw

where the first sum is over w such that u
α
Ñ w and the second sum is over w such that

usdWa “ wWa and `puWaq ` 1 “ `pusdWaq `

k
ÿ

i“1

dipai`1 ´ ai´1q.

2.2. Type B Grassmannian.

2.3. Notation. We follow the exposition of [BKT09] to state the Pieri formulas in Types
BCD. Let the set of k-strict partitions be denoted by

Ppk, nq :“ tpn` k ě λ1 ě ¨ ¨ ¨ ě λm ě 0q : λj ě k ùñ λj`1 ă λju

Let λ be a k-strict partition. Let |λ| “
ř

λi and `pλq be the number of nonzero parts. We
will say that the box in row r and column c of λ is k-related to the box in row r1 and column
c1 if |c´ k ´ 1| ` r “ |c1 ´ k ´ 1| ` r1.

Definition 2.3. For any two k-strict parition λ and µ, we have the relation λ Ñ µ if µ
can be obtained by removing a vertical strip from the first k columns of λ and adding a
horizontal strip to the result, so that

(1) if one of the first k columns of µ has the same number of boxes as the same column
of λ, then the bottom box of this column is k-related to at most one box of µzλ;

(2) if a column of µ has fewer boxes than the same column of λ, then the removed boxes
and the bottom box of µ in this column much each be k-related to exactly one box of
µzλ, and these boxes of µzλ much all lie in the same row.

If λÑ µ, we let A be the set of boxes µzλ in columns k ` 1 through k ` n which are not
mentioned in (1) or (2). Then define Npλ, µq to be the number of connected components of
A which do not have a box in column k ` 1. Here two boxes are connected if they share at
least a vertex.
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Let P 1pk, n` 1q be the set of ν P Ppk, n` 1q such that `pvq “ n` 1´ k, 2k ď ν1 ď n` k
and the number of boxes in the second column of ν is at most ν1 ´ 2k ` 1. For any
ν P P 1pk, n` 1q, we let ν̃ P Ppk, nq be the partition obtained by removing the first row of ν
as well as n` k ´ ν1 boxes from the first column. That is,

ν̃ “ pν2, ν3, ¨ ¨ ¨ , νrq

where r “ ν1 ´ 2k ` 1. Finally, let λ P Ppk, nq and define by λ˚ “ pλ2, λ3, ¨ ¨ ¨ q.

2.4. Quantum cohomology of OGpn´ k, 2n` 1q. Consider the vector space V – C2n`1

and a nondegenerate form symmetric bilinear form on V . For each m “ n´ k ă n, the odd
orthogonal Grassmannian OGpm, 2n` 1q parameterizes m-dimensional isotropic subspaces
in V . The algebraic variety has dimension dim OGpm, 2n` 1q “ 2mpn´mq `mpm` 1q{2.
Moreover, the Schubert classes σλ are indexed by the set of k-strick partitions in Ppk, nq
and form a Z-basis for the cohomology ring H˚pOGpm, 2n`1qq. The quantum cohomology
ring QH˚pOGpm; 2n ` 1qq has a natural grading where the degree of σλ is the length |λ|,
the variable q has degree 2n´m.

Theorem 2.4 (Quantum Pieri Formula). For any k-strict partition λ P Ppk, nq and integer
p P r1, n` ks, we have

σp ‹ σλ “
ÿ

λÑµ

2N
1pλ,µqσµ `

ÿ

λÑν

2N
1pλ,νqσν̃q `

ÿ

λ˚Ñρ

2N
1pλ˚,ρqσρ˚q

2

in the quantum cohomology ring QH˚pOGpn ´ k, 2n ` 1qq. The first sum is classical; the
second sum is over ν P P 1pk, n ` 1q with λ Ñ ν and |ν| “ |λ| ` p; the third sum is empty
unless λ1 “ n`k, and over ρ P Ppk, nq such that ρ1 “ n`k, λ˚ Ñ ρ, and |ρ| “ |λ|´n´k`p;
and N 1pλ, µq “ Npλ, µq if p ď k and N 1pλ, µq “ Npλ, µq ´ 1 if p ą k.

2.5. Type C Grassmannian. Fix a vector space V – C2n with a non-degenerate skew-
symmetric bilinear form p, q, and fix a non-negative integer m ď n. Let IGpm, 2nq param-
etrize m-dimensional isotropic subspaces of V . The dimension of this algebraic varieties is
dim IGpm, 2n`1q “ 2mpn´mq`mpm`1q{2 (The same as OGpm, 2n`1q. Let k “ n´m.
Moreover, the Schubert classes σλ are indexed by the set of k-strick partitions in Ppk, nq
and form a Z-basis for the cohomology ring H˚pIGpm, 2nqq. The quantum cohomology ring
QH˚pIGpm; 2nqq has a natural grading where the degree of σλ is the length |λ|, the variable
q has degree 2n` 1´m when m ă n and degree 2n when m “ n.

Theorem 2.5 (Quantum Pieri Formula). For any k-strict partition λPpk, nq and integer
p P r1, n` ks, we have

σp ‹ σλ “
ÿ

λÑµ

2Npλ,µqσµ `
ÿ

λÑν

2Npλ,νq´1σν˚q

in the quantum cohomology ring of IGpn´k, 2nq. The first sum is over partitions µ P Ppk, nq
such that |µ| “ |λ|`p, and the second sum is over partitions ν P Ppk, n`1q with |ν| “ |λ|`p
and ν1 “ n` k ` 1.

2.6. Type D Grassmannian. We consider the even orthogonal Grassmannian OGpm, 2n`
2q, which parametrizes the m-dimensional isotropic subspaces in a vector space V – C2n`1

with a nondegenerate symmetric bilinear form. The dimension of this algebraic varieties is
dim OGpm, 2n` 2q “ 2mpn` 1´mq `mpm´ 1q{2.

Let k “ n`1´m. To any k-strict partition λ P Ppk, nq we associate a number in t0, 1, 2u
called the type of λ, denote typepλq. If λ has no part equal to k, then we set typepλq “ 0;
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otherwise we have typepλq “ 1 or typepλq “ 2. Define P̃pk, nq to be the k-strict partitions
λ P Ppk, nq of all three types.

Moreover, the Schubert classes σλ are indexed by the set of k-strick partitions in P̃pk, nq
and form a Z-basis for the cohomology ring H˚pOGpm, 2n`2qq. The quantum cohomology
ring QH˚pOGpm; 2n ` 2qq has a natural grading where the degree of σλ is the length |λ|.
For notation when typepλ ‰ 0, we will say that σpλq corresponds to the case typepλq “ 1
and σ1pλq corresponds to the case typepλq “ 2 . the variable q has degree 2n` 1´m.

Given a k-strict partition λ, we say that the box in row r and column c of λ is k1-related
to the box in row r1 and column c1 if |c ´ p2k ` 1q{2| ` r “ |c1 ´ p2k ` 1q{2| ` r1. Using
this convention, the relation λÑ µ is defined as in Definition 2.3, with the added condition
that typepλq ` typepµq ‰ 3.

Let gpλ, µq be the number of columns of µ among the first k which do not have more
boxes than the corresponding columns of λ, and

hpλ, µq “ gpλ, µq `maxttypepλq, typepµqu.

If p ‰ k, then set δλµ “ 1. If p “ k and N 1pλ, µq ą 0, then set

δλµ “ λ1λµ “ 1{2,

while N 1pλ, µq “ 0 define δλµ “ 1 if hpλ, µq is odd, otherwise δλµ “ 0. Likewise, define
δ1λµ “ 1 if hpλ, µq is even, otherwise δ1λµ “ 0.

Let P̃ 1pk, n ` 1q be the set of ν P P̃pk, n ` 1q such that `pνq “ n ` 2 ´ k, 2k ´ 1 ď
ν1 ď n ` k, and the number of boxes in the second column of ν is at most ν1 ´ 2k ` 2.
For any ν P P̃ 1pk, n ` 1q, we let ν̃ “ pν2, ν3, ¨ ¨ ¨ , νrq where r “ ν1 ´ 2k ` 1. Moreover, we
have typepṽq “ typepvq, if typepvq “ 0, otherwise typepṽq “ 3 ´ typepvq. Finally, for any

λ P P̃pk, nq, we define λ˚ with typepλ˚q “ typepλq by λ˚ “ pλ2, λ3, ¨ ¨ ¨ q.

Theorem 2.6 (Quantum Pieri Formula). For any k-strict partition λ P P̃pk, nq and integer
p P r1, n` ks, we have

σp ‹ σλ “
ÿ

λÑµ

δλµ2N
1pλ,µqσµ `

ÿ

λÑν

δλν2N
1pλ,νqσν̃ `

ÿ

λ˚Ñρ

δλ˚ρ2
N 1pλ˚,ρqσρ˚q

2

in the quantum cohomology ring of QH˚pOGpn ` 1 ´ k, 2n ` 2qq. Here the first sum is

overall µ P P̃pk, nq with λ Ñ µ and |µ| “ |λ| ` p; the second sum is over ν P P̃ 1pk, n ` 1q
with λ Ñ ν and |ν| “ |λ| ` p; and the third sum is empty unless λ1 “ n ` k, and over

ρ P P̃pk, nq such that ρ1 “ n`k, λ˚ Ñ ρ, and |ρ| “ |λ|´n´k`p. Also,N 1pλ, µq “ Npλ, µq
if p ď k and N 1pλ, µq “ Npλ, µq ´ 1 if p ą k. Furthermore, the product σ1k ‹ σλ is obtained
by replacing δ with δ1 throughout.

2.7. Type G2 flag. Let FlG denote the flag of type G2. The dimension of FlG “ 6. The
Weyl group of G2 indexed by elements of the dihedral group with 12 elements. That is, the
Schubert classes σw are indexed by reduced words w P

〈
s1, s2 : s21 “ s22 “ 1, ps1s2q

6 “ 1
〉

and
form a Z-basis for the cohomology ring H˚pFlGq. The quantum cohomology ring QH˚pFlGq
has two quantum parameters q1 and q2 and the degree of both is equal to 2. Next we state
the quantum Chevalley formula.
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w σw ‹ σs1 σw ‹ σs2
s1 σs2s1 ` q1 σs1s2 ` σs2s1
s2 σs1s2 ` σs2s1 3σs1s2 ` q2
s1s2 σs1s2s1 ` σs2s1s2 2σs2s1s2 ` q2σs1
s2s1 2σs1s2s1 ` q1σs2 3σs1s2s1 ` σs2s1s2
s1s2s1 σs2s1s2s1 ` q1σs1s2 ` q1q2 σs1s2s1s2 ` 2σs2s1s2s1 ` q1q2
s2s1s2 σs2s1s2s1 ` 2σs1s2s1s2 3σs1s2s1s2 ` q2σs2s1
s1s2s1s2 σs1s2s1s2s1 ` σs2s1s2s1s2 σs2s1s2s1s2 ` q2σs1s2s1
s2s1s2s1 σs1s2s1s2s1 ` q1σs2s1s2 ` q1q2σs2 σs2s1s2s1s2 ` 3σs1s2s1s2s1 ` q1q2σs2
s1s2s1s2s1 q1σs1s2s1s2 ` q1q2σs1s2 σw0 ` q1q2σs1s2
s2s1s2s1s2 σw0 ` q1q

2
2 q2σs2s1s2s1 ` 2q1q

2
2

w0 “ s1s2s1s2s1s2 q1σs2s1s2s1s2 ` q1q2ss2s1s2 ` q1q
2
2σs1 q2σs1s2s1s2s1 ` q1q2σs2s1s2 ` 2q1q

2
2σs1

3. On Frobenius-Perron Dimension

3.1. Is FPdim : H‚pG{P q Ñ C a ring homomorphism? We can make some progress
toward answering Question 1.2. Let X P tFlpa, nq,OGpm, 2n ` 1q, IGpm, 2nq,OGpm, 2n `
2qu. We can better understand FPdimpσw ` σvq and FPdimpσwσvq by considering σ̂w ` σ̂v
and σ̂wσ̂v. We begin with a well-known elementary result.

Lemma 3.1. Any two diagonalizable endomorphisms of the finite vector space V are si-
multaneously diagonalizable if and only they commute.

Consider σw, σv P H‚pG{P q, the linear operators they induce, and assume they are
diagonalizable. There exists a P such that σ̂w “ PD1P

´1 and σ̂v “ PD2P
´1 where D1

and D2 are diagonalizable. Then we have that

σ̂wσ̂v “ PD1D2P
´1

σ̂w ` σ̂v “ P pD1 `D2qP
´1.

It then suffices to show that the numbers FPdimpσwq and FPdimpσwq are in the same
entry of D1 and D2, respectively. Thus, one needs to better understand how eigenvalues
correspond to eigenvectors. We can reframe the point of view of the question “Is FPdim :
H‚pG{P q Ñ C a ring homomorphism?” We do this with the next conjecture.

Conjecture 2. Let tσwu Ă H‚pXq be the Schubert basis and let λw :“ FPdimpσwq.

(1) Each eigenvalue of σ̂w has multiplicity one for each w (i.e. σ̂w is diagonalizable);
(2) Let Eλw be the eigenspace corresponding to σ̂w and the eigenvalue λw. Then Eλw “

Eλv for any w, v.

This subsection considered the ring homomorphism point of view to understand Frobenius-
Perron dimension. In the next subsection we will consider extending FPdim to a real valued
function to better understand its behavior.

3.2. FPdim as a real function. In this subsection we will expand on the second and
third part of Conjecture 1. Consider the function

Fm,σpnq :“ FPdimpσq

where X P tOGpm, 2n` 1q, IGpm, 2nq,OGpm, 2n` 2qu and σ P H‚pXq is a Schubert class.
For the case of the partial flags Flpa;nq consider

Fa,σpnq :“ FPdimpσq.
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For notational ease we will use F instead of Fm,σ or Fa,σ. Recall the following Conjecture
from the introduction.

Conjecture 3. For any X P tFlpa, nq,OGpm, 2n` 1q, IGpm, 2nq,OGpm, 2n` 2qu the func-
tion F pnq extends to a second transcendental function F pxq : R` Ñ R.

Remark 3.2. A word of warning! In the Grassmannian case Grpm,nqp“ Flpm;nqq it was
proven in [LSYZ] that F pnq is strictly increasing for x ąM for some M and concave down
for x ą N for some N . It’s tempting to make the same conjecture for partial flags when one
considers the included graphics in Figure 3. However, we do not have enough evidence to
make a similar claim for partial flags. Indeed, consider Flp1, 5;nq and σs1 P H

‚pFlp1, 5;nqq.
Here F p16q “ 1.56234... ą F p20q “ 1.56086.... Thus we omit Flpa, nq from our next
Conjecture.

Our numerical results do support the following conjecture.

Conjecture 4. For any X P tOGpm, 2n` 1q, IGpm, 2nq,OGpm, 2n` 2qu

(1) The limit lim
xÑ8

F pxq exists;

(2) The function F pxq is concave up for x ąM for some M .

The study of Frobenius-Perron dimension for H‚pF q where F is a Fano variety is related
to previous work understanding Galkin’s lower bound conjecture.

4. On Galkin’s lower bound

In this section we will state all the case where we have verified that Galkin’s Lower Bound
Conjecture holds. We begin by stating the first Chern classes of each homogeneous space
that we are considering.

Lemma 4.1. The first Chern classes are

c1pIFpa;nqq “

k
ÿ

i“1

deg qiσ
paq
sai
“

k
ÿ

i“1

pai`1 ´ ai´1qσ
paq
sai

c1pOGpm, 2n` 1qq “ p2n´mqσp1q

c1pIGpm, 2nqq “ p2n` 1´mqσp1q

c1pOGpm, 2n` 2qq “ p2n` 1´mqσp1q

c1pFlGq “ 2σs1 ` 2σs2 .

Let H‚pIFpa, nqq “ QH˚pIFpa, nqq|q“1 and ĉ1pIFpa, nqq : H‚pIFpa, nqq Ñ H‚pIFpa, nqq be
defined by

y P H‚pIFpa, nqq ÞÑ ĉ1pyq :“ pc1pIFpa, nqq ‹ yq|q“1.

The matrix representation of linear operator ĉ1pF q are known to be irreducible when F “
G{P (e.g. see [CL17]).

Proposition 4.2. Using numerical calculations we have that Galkin’s Lower Bound
Conjecture holds

(1) For numerous cases of partial flags IFpa;nq;
(2) For OGpm, 2n` 1q where

(a) m “ 2, 2 ď n ď 50;
(b) m “ 3, 3 ď n ď 20;
(c) m “ 4, 4 ď n ď 10;

(3) For IGpm, 2nq where
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(a) deg q ¨ FPdimpσp1qq ´ dim IGp2, 2nq ´ 1 (b) deg q ¨ fkpnq ´ dim IGp2, 2nq ´ 1

Figure 2. This is an example that the conjecture about the transcendental
function given in subfigure 1b are coherent with the calculations for checking
Galkin’s Lower Bound Conjecture.

(a) m “ 2, 2 ď n ď 50;
(b) m “ 3, 3 ď n ď 20;
(c) m “ 4, 4 ď n ď 10;

(4) For OGpm, 2n` 2q where
(a) m “ 2, 2 ď n ď 50;
(b) m “ 3, 3 ď n ď 20;
(c) m “ 4, 4 ď n ď 10.

(5) In Type G2, the largest real eigenvalue of c1pFlGq is approximately 10.6012 ą 7.

The computations for partial flags were performed by a program written in Python. See
[War]. The computations for isotropic Grassmannians in Types BCD where performed in
a program written by Buch in Maple. See [Buc].

More can be said beyond the numerical calculations. Consider the function

Rmpnq :“ FPdimpc1pXqq ´ dimX ´ 1

where X P tOGpm, 2n` 1q, IGpm, 2nq,OGpm, 2n` 2qu.
For notational ease we will use R instead of Rm. Our numerical results support the

following conjecture:

Conjecture 5. For any X P tOGpm, 2n`1q, IGpm, 2nq,OGpm, 2n`2qu the function Gpnq
extends to a second differentiable function Rpxq : R` Ñ R;

(1) The limit lim
xÑ8

Rpxq exists;

(2) The function Rpxq is concave down for x ąM for some M .

See Figure 2a for an example.
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5. Appendix

Here we provide examples of plots of Frobenius-Perron Dimension (vertical axis) as n
(horizontal axis) ranges for Flpa;nq,OGpk, 2n` 1q, IGpk, 2nq,OGpk, 2n` 2q.

(a) FPdimpσs2q of Flp2, 4;nq for 5 ď n ď 12. (b) FPdimpσs4q of Flp2, 4;nq for 5 ď n ď 12.

Figure 3. Here we connect the points by a line to help with the visualization.
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(a) FPdimpσp2,1qq of IGp2, 2nq for 3 ď n ď 25. (b) FPdimpσp1qq of IGp3, 2nq for 4 ď n ď 25.

Figure 4. IGpm, 2nq

(a) FPdimpσp1qq of OGp2, 2n` 1q for 3 ď n ď 25.(b) FPdimpσp2,1qq of OGp2, 2n`1q for 3 ď n ď 25.

Figure 5. OGp2, 2n` 1q

(a) FPdimpσp1qq of OGp2, 2n` 2q for 3 ď n ď 25.(b) FPdimpσp2,1qq of OGp2, 2n`2q for 3 ď n ď 25.

Figure 6. OGp2, 2n` 2q
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