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Abstract. Property O for arbitrary complex, Fano manifolds X, is a statement about
the eigenvalues of the linear operator obtained from the quantum multiplication of the
anticanonical class of X. Pasquier listed the non-homogenous horospherical varieties of
Picard rank 1 into five classes. Property O has already been shown to hold for the odd
symplectic Grassmannian which is one class. We will show that Property O holds for two
more classes and an example in a third class of Pasquier’s list. The theory of Perron-
Frobenius reduces our proofs to be graph theoretic.

1. Introduction

The purpose of this paper is to prove that Conjecture O holds for some horospherical
varieties of Picard rank 1. We first consider a more tangible example to build intuition for
the topic and the proof itself.

We call P2 the projective plane. It resembles C2 with an added property that any two
distinct lines will intersect exactly once. The projective plane is defined as

P2 = {[x; y; z]|x, y, z, λ ∈ C, [x; y; z] = [λx;λy;λz], λ 6= 0, x, y, z not all equal to 0}
Lines in P2 have the form aX + bY + cZ = 0. For the sake of clarity we will use the
capitalized coordinates when considering the line in P2 and the lowercase coordinates when
considering the same line in C2. Consider a+ by+ cz = 0 and d+ by+ cz = 0. These lines
in C2 never intersect. However, if we make these lines homogeneous by rewriting them as
aX + bY + cZ = 0 and dX + bY + cZ = 0 in P2, then we can recover the original lines
that were parallel in C2 by setting X = 1. If we project these lines onto a different C2 by
setting Z = 1 instead, we have the equations ax+ by+ c = 0 and dx+ by+ c = 0 which do
intersect at the point (0,− c

b).

Similarly, P1 is called the projective line, and resembles C. Lines in P2 look similar to
P1. There is a natural sequence of embeddings: {pt} ↪→ P1 ↪→ P2, where pt is a point. The
image of pt in P2 is pt and the image of P1 is a hyperplane hp (or line).

We consider the case P2, where [pt], [hp], and [P2] means that we are considering pt, hp,
and P2 as “generally” situated. We will be considering the intersection of these objects
later on, so this throws out fringe cases we’re not interested in. A generally situated point
and line will not intersect, just as two generally situated lines will not overlap entirely. We
also make use of Poincaré duals: [P2]∨ = [pt], [hp]∨ = [hp], [pt]∨ = [P2]. An incomplete
explanation (although sufficient for this example) of Poincaré duals would be “dimensional

This work was done with Lela Bones, Lisa Schneider, and Ryan M. Shifler.

1



2 FOWLER

compliments”. In a 2 dimensional space, the Poincaré dual of a 2 dimensional object would
be a 0 dimensional object, while the Poincaré dual of a 1 dimensional object would remain
a 1 dimensional object.

With this notation, [pt], [hp], and [P2] generate a commutative ring QH∗(P2) called the
quantum cohomology. The operations are ?, which are the “intersections”, and + which
is formal addition. “Intersections” is in quotes because it only partially describes the
operation. For certain cases the intuition of intersections will lead to a correct answer. The
intersection between two generally situated “lines” in P2 is a point, and [hp] ? [hp] = [pt].
The intersection of any object with the entirety of the space it belongs to will be the object
itself, and [P2] ? [hp] = [hp]. This last equation also showcases why [P2] is the identity of ?.

However, problems arise when we consider [hp] ? [pt]. Our intuitive understanding of ? is
insufficient in this case, as the intersection of a generally situated line and point would not
exist. We need a more formal understanding of ? to correct this. We reframe the earlier
equation [P2] ? [hp] = [hp] as [P2] ? [hp] = 1q0[hp]∨ since there is exactly one point (i.e. a
degree 0 curve) that intersects P2 and two general hyperplanes. We recall that 1q0 = 1, and
that [hp]∨ = [hp], and so our earlier claim still holds true. However, this new understanding
allows us to reevaluate [hp] ? [pt]. [hp] ? [pt] = 1q1[pt]∨ since there is exactly one hyperplane
(i.e. a degree 1 curve) that intersects a hyperplane and two points in general position.

Figure 1. An example of [hp] ? [pt] = 1q1[pt]∨

With this new understanding of ? we are able to construct the entire multiplication table
of QH∗(P2).

(1) [P2] ? [P2] = 1q0[pt]∨ = [P2]
(2) [P2] ? [hp] = 1q0[hp]∨ = [hp]
(3) [P2] ? [pt] = 1q0[P2]∨ = [pt]
(4) [hp] ? [hp] = 1q0[P2]∨ = [pt]
(5) [hp] ? [pt] = 1q1[pt]∨ = 1q1[P2]
(6) [pt] ? [pt] = 1q1[hp]∨ = 1q1[hp]

We use q to denote a quantum correction that algebraically accounts for the “fuzziness”
of the intersections described by ?. If we consider deg q = 3 for the case of P2, then the
codimensions will add up in these equations as well.
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We consider the linear operator ĉ1 obtained from the multiplication of the anticanonical
class 3[hp] and setting q = 1.

3[hp] ? [P2] = 3[hp]
3[hp] ? [hp] = 3[pt]
3[hp] ? [pt] = 3[P2]

3[hp]? [pt] [hp] [P2]
[pt] 0 0 3
[hp] 3 0 0
[P2] 0 3 0

The equations on the left are constructed from the multiplication table with q = 1. The
matrix on the right is ĉ1 and it has the characteristic polynomial λ3− 27. This means that

the eigenvalues of ĉ1 are three times the third roots of unity, 3, 3e
2π
3
i, 3e

4π
3
i. The projective

plane P2 is an example of a Fano variety, a specific type of smooth complex projective
algebraic variety, for which Conjecture O holds.

We recall the precise statement of Conjecture O, following [2, section 3]. Let F be a Fano
variety, let K := KF be the canonical line bundle of F , let FD be a fundamental divisor of
F , and let c1(F ) := c1(−K) ∈ H2(F ) be the anitcanonical class. The Fano index of F is
r, where r is the greatest integer such that KF

∼= −rFD. The quantum cohomology ring
(QH∗(F ), ?) is a graded algebra over Z[q], where q is the quantum parameter. Consider
the specialization H•(F ) := QH∗(F )|q=1 at q = 1. The quantum multiplication by the
first Chern class c1(F ) induces an endomorphism ĉ1 of the finite-dimensional vector space
H•(F ):

y ∈ H•(F ) 7→ ĉ1(y) := (c1(F ) ? y)|q=1.

Denote by δ0 := max{|δ| : δ is an eigenvalue of ĉ1}. Then Property O states the follow-
ing:

(1) The real number δ0 is an eigenvalue of ĉ1 of multiplicity one.
(2) If δ is any eigenvalue of ĉ1 with |δ| = δ0, then δ = δ0γ for some r-th root of unity

γ ∈ C, where r is the Fano index of F .

The property O was conjectured to hold for any Fano, complex manifold F by Galkin,
Golyshev, and Iritani in [2]. If a Fano, complex, manifold has Property O then we say that
the space satisfies Conjecture O.

We note that the Fano index of our previous example, P2, is r = 3, and that δ0 = 3. δ0
is an eigenvalue of ĉ1 of multiplicity one, and every other eigenvalue of equal modulus is
three times a third root of unity. So P2 satisfies Conjecture O.

Next we recall the definition of a horospherical variety following [3]. Let G be a complex
reductive group. A G-variety is a reduced scheme of finite type over the field of complex
numbers C, equipped with an algebraic action of G. Let B be a Borel subgroup of G. A
G-variety X is called spherical if X has a dense B-orbit. Let X be a G-spherical variety
and let H be the stabilizer of a point in the dense G-orbit in X. The variety X is called
horospherical if H contains a conjugate of the maximal unipotent subgroup of G contained
in the Borel subgroup B.

Horospherical varieties of Picard rank 1 were classified by Pasquier in [6]. The varieties
are either homogeneous or can be constructed in a uniform way via a triple (Type(G),ωY ,ωZ)
of representation-theoretic data, where Type(G) is the semisimple Lie type of the reductive
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group G and ωY , ωZ are the fundamental weights. See [6, Section 1.3] for details. Pasquier
classified the possible triples in five classes:

(1) (Bn, ωn−1, ωn) with n ≥ 3;
(2) (B3, ω1, ω3);
(3) (Cn, ωm, ωm−1) with n ≥ 2 and m ∈ [2, n];
(4) (F4, ω2, ω3);
(5) (G2, ω1, ω2).

In Propsition 3.6 of [7], Pasquier showed the triples in the above list are Fano varieties.
Conjecture O has already been proved for the homogeneous case by Cheong and Li in [1]
and for case (3), the odd symplectic Grassmannian, by Li, Mihalcea, and Shifler in [4]. We
are now able to state the main theorem:

Theorem 1. If F belongs to the classes (1) for n = 3, (2), (3), and (5) of Pasquier’s list,
then Conjecture O holds for F .

2. Preliminaries

2.1. Quantum Cohomology. The small quantum cohomology is defined as follows.
Let (αi)i be a basis of H∗(F,R) and let (α∨i )i be the dual basis for the Poincaré pairing.
The multiplication is given by

αi ? αj =
∑
d≥0,k

ck,di,j q
dαk

where ck,di,j are the 3-point, genus 0, Gromov-Witten invariants corresponding to rational

curves of degree d intersecting the classes αi, αj , and α∨k . We will make use of the quantum
Chevalley formula which is the multiplication of a hyperplane class hp with another class
aj . The result [3, Theorem 0.0.3] implies that if F belongs to the classes (1) for n = 3, (2),
or (5) of Pasquier’s list, then there is an explicit quantum Chevalley formula. The explicit
quantum Chevalley formula is the key ingredient used to prove Property O holds.

2.2. Sufficient Criterion for Property O to hold. We recall the notion of the
(oriented) quantum Chevalley Bruhat graph of a Fano variety F . The vertices of this graph
are the basis elements αi ∈ H•(F ) := QH∗(F )|q=1. There is an oriented edge αi → αj if the
class αj appears with positive coeffiecient (we consider q > 0) in the quantum Chevalley
multiplication hp ? αi for some hyperplane class hp. The techniques involving Perron-
Frobenius theory used by Li, Mihalcea, and Shifler in [4] and Cheong and Li in [1] imply
the following lemma:

Lemma 1. If the following conditions hold for a Fano variety F :

(1) the matrix representation of ĉ1 is nonnegative,
(2) the quantum Chevalley Bruhat graph of F is strongly connected, and
(3) there exists a cycle of length r, the Fano index, in the quantum Chevalley Bruhat

graph of F ,

then Property O holds for F . We will often refer to Lemma 1 specifically as “the lemma”.
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We refer the reader to [5, section 4.3] for further details on Perron-Frobenius theory.
However, we provide here an explanation for why the lemma implies Conjecture O.

Definition 1. The matrix M is irreducible in the sense that PMP t is never of the form[
B C
0 D

]
for any permutation matrix P , where A,D are square submatrices.

Definition 2. The adjacency matrix A(D) of a directed graph D with n vertices is the
(0, 1)-matrix whose (i, j) entry is 1 if and only if (i, j) is an arc of D. A directed graph
D(X) is said to be associated with a nonnegative matrix X, if the adjacency matrix of
D(X) has the same zero pattern as X.

Lemma 2. A nonnegative martix is irreducible if and only if the associated direct graph
is strongly connected.

Lemma 3. An irreducible nonnegative matrix M has a real positive eigenvalue δ0 such
that δ0 ≥ |δ| for any eigenvalue δ of M .

Lemma 4. Let M be an irreducible n × n matrix with maximal eigenvalue δ0 and index
r. If δ1, δ2, ..., δr are the eigenvalues of M with modulus δ0, then δ1, δ2, ..., δr are equal to
δ0 times the distinct rth roots of unity.

Lemma 5. The index of imprimitivity of an irreducible matrix is equal to the index of
imprimitivity of the associated direct graph.

Then the lemma implies Conjecture O as follows:

(1) Note that by how the QCBG is defined, the QCBG is equivalent to the associated
directed graph of the matrix representation of ĉ1.

(2) The matrix representation of ĉ1 is nonnegative and the quantum Chevalley Bruhat
graph of F is strongly connected together implies that the matrix representation of
ĉ1 is irreducible by Lemma 2. This means that the matrix representation of ĉ1 has
a real positive maximal eigenvalue δ0 by Lemma 3.

(3) Let M be a nonnegative matrix and D be the associated directed graph. The g.c.d.
of the lengths of all cycles in D is called the index of imprimitivity of D, or simply
the index of D. The index of M is the number of eigenvalues of M of modulus δ0,
where δ0 is the maximal eigenvalue of M . We know by Lemma 5 that the index of
D is equal to the index of M .

(4) It is a generally known fact that the Fano index r divides the index of D. However,
as the index of D is the g.c.d. of all cycles in D, the index of D divides r so long as
there is a cycle of length r in D. If there is a cycle in D of length r, then r is equal
to the index of D and M .

(5) The existence of a cycle of length r, the Fano index, in the quantum Chevalley
Bruhat graph of F implies that the index of the matrix representation of ĉ1 is r.
Therefore there are exactly r eigenvalues of the matrix representation of ĉ1 with
modulus equal to δ0 such that these eigenvalues are δ0 times the distinct rth
roots of unity by Lemma 4.

Therefore if the conditions of the lemma hold for a Fano variety F , then F satisfies
Conjecture O. We observe that the conditions of the lemma hold for the example of P2.
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0 0 3
3 0 0
0 0 3


(a) Nonnegative

[P2]

[hp]

[pt]

(b) Strongly connected, r = 3 (c) Eigenvalues plotted on C

We note that while the lemma implies Conjecture O, this is not an iff implication. There
exists a Fano variety where Conjecture O holds but the lemma from before does not apply.
In this case Withrow (2018) calculated the matrix ĉ1 to be

0 2 2 −2 0 0 3 4
3 −1 2 1 2 4 0 3
1 1 −1 −1 0 0 2 0
2 0 1 0 2 2 0 0
0 1 4 0 −1 1 0 2
0 2 0 −1 1 −1 0 0
0 0 2 3 0 1 0 2
0 0 0 0 2 3 2 0


The lemma is generalized in a recent paper by Hu, Ke, Li, and Yang [8] to include some

matrices with negative entries.

3. Checking Property O Holds

Let X be a horospherical variety. We will simplify our notation where the basis of H•(X)
is {ι, hp, αi}i∈I for some finite index set I. Observe by [3] that the anticanonical classes are

c1(X) =

 5[hp] when X is case (1) for n = 3
7[hp] when X is case (2)
4[hp] when X is case (5)

and the Fano indices are

r =

 5 when X is case (1) for n = 3
7 when X is case (2)
4 when X is case (5)

.

The endomorphism ĉ1 acting on the basis elements of H•(X) are determined by the Cheval-
ley formula in the following way:

ĉ1(αi) = 5(hp ? αi)|q=1 when X is case (1) for n = 3,

ĉ1(αi) = 7(hp ? αi)|q=1 when X is case (2), and

ĉ1(αi) = 4(hp ? αi)|q=1 when X is case (5).
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Each of the following three subsections will show that Conjecture O holds for case (1)
for n = 3, case (2), and case (5) of Pasquier’s list, respectively. In each subsection we will
reformulate the quantum Chevalley formulas stated in [3], present the quantum Chevalley
Bruhat graph, and argue that each condition of 1 is satisfied. For each case, we have kept
the same format of the equations presented by Pech et al. with our prescribed basis for
ease of identification for the reader.

3.1. Case (1) for n = 3. We will reformulate the quantum Chevalley formula stated
in [3] using the basis

G := {ι, [hp], α1, α2, · · · , α18}.
Proposition 1. The following equalities hold by [3, Proposition 4.2.1].

ĉ1(ι) = 5[hp]
ĉ1(hp) = 10α1 + 5α2

ĉ1(α1) = 5α3 + 5α4

ĉ1(α2) = 10α3 + 5α5

ĉ1(α3) = 10α6 + 5α7 + 5α8

ĉ1(α4) = 5α6 + 10α7

ĉ1(α5) = 5α8

ĉ1(α6) = 10α9 + 5α10 + 5α11

ĉ1(α7) = 5α10

ĉ1(α8) = 5α11 + 5ι

ĉ1(α9) = 5α12 + 5α13

ĉ1(α10) = 10α13 + 5α14

ĉ1(α11) = 5α12 + 5α14 + 5[hp]
ĉ1(α12) = 5α15 + 5α1

ĉ1(α13) = 5α15 + 5α16

ĉ1(α14) = 5α15 + 5α2

ĉ1(α15) = 5α17 + 5α3

ĉ1(α16) = 5α17 + 5α5

ĉ1(α17) = 5α18 + 5α6 + 5α8

ĉ1(α18) = 5α9 + 5α11 + 10ι

The following is the quantum Chevalley Bruhat graph of the Fano variety X in case (1)
for n = 3.

ι

hp

α1 α2

α3 α4 α5

α6 α7 α8

α9 α10 α11

α12 α13 α14

α15 α16

α17

α18

Figure 3. Class (1) QCBG: strongly connected, cycle of length r = 5.
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Lemma 6. Property O holds when X is case (1) with n = 3 of Pasquier’s list.

Proof. The coefficients that appear in the equations in Proposition 1 are the entries of
the matrix representation of ĉ1. Therefore, the matrix representation of ĉ1 is nonnegative.
The quantum Chevalley Bruhat graph is strongly connected by Figure 3, and the cycle
α18α11α14α15α17α18 has length r = 5. �

This graph is a geometric representation of
Property O. The eigenvalues of
ĉ1(αi) = 5(hp ? αi)|q=1 are plotted on C and
then eigenvalues of equal modulus are con-
nected by lines that form regular polygons.

-10 -5 5 10

-10

-5

5

10

3.2. Case (2). Again, we reformulate the quantum Chavelley formula from [3] using
the basis

G := {ι, [hp], α1, α2, · · · , α12}.

Proposition 2. The following equalities hold by [3, Proposition 4.3.1].

ĉ1(ι) = 7[hp]
ĉ1(hp) = 7α1

ĉ1(α1) = 14α2 + 7α3

ĉ1(α2) = 7α4 + 7α5

ĉ1(α3) = 7α5

ĉ1(α4) = 7α6 + 7α7

ĉ1(α5) = 7α7

ĉ1(α6) = 7α8

ĉ1(α7) = 7α8 + 7α9

ĉ1(α8) = 7α10

ĉ1(α9) = 7α10 + 7ι
ĉ1(α10) = 7α11 + 7[hp]
ĉ1(α11) = 7α12 + 7α1

ĉ1(α12) = 7α2



CONJECTURE O HOLDS FOR SOME HOROSPHERICAL VARIETIES OF PICARD RANK 1 9

The associated quantum Chevalley Bruhat graph is

ι

hp

a1

a3a2

a5a4

a7a6

a9a8

a10

a11

a12

Figure 5. Class (2) QCBG: Strongly connected, cycle of length r = 7.

Lemma 7. Property O holds when X is case (2) of Pasquier’s list.

Proof. The coefficients that appear in the equations in Proposition 2 are the entries of
the matrix representation of ĉ1. Therefore, the matrix representation of ĉ1 is nonnegative.
The quantum Chevalley Bruhat graph is strongly connected by Figure 5, and the cycle
α12α2α4α6α8α10α11α12 has length r = 7. �

This graph is a geometric representation of
Property O. The eigenvalues of
ĉ1(αi) = 7(hp ? αi)|q=1 are plotted on C and
then eigenvalues of equal modulus are con-
nected by lines that form regular polygons.

-10 -5 5 10

-10

-5

5

10
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3.3. Case(5). Again, we reformulate the quantum Chavelley formula from [3] using the
basis

G := {ι, [hp], α1, α2, · · · , α10}.

Proposition 3. The following equalities hold by [3, Proposition 4.5.1].

ĉ1(ι) = 4[hp]
ĉ1(hp) = 12α1 + 4α2

ĉ1(α1) = 8α3 + 4α4

ĉ1(α2) = 4α4

ĉ1(α3) = 12α5 + 4α6

ĉ1(α4) = 4α6 + 4ι

ĉ1(α5) = 4α7 + 4α8

ĉ1(α6) = 8α7 + 4[hp]
ĉ1(α7) = 4α9 + 4α1

ĉ1(α8) = 4α9 + 4α2

ĉ1(α9) = 4α10 + 4α3 + 4α4

ĉ1(α10) = 4α5 + 4α6 + 8ι

The associated quantum Chevalley Bruhat graph is

ι

hp

α1 α2

α3 α4

α5 α6

α7 α8

α9

α10

Figure 7. Class (5) QCBG: Strongly connected, cycle of length r = 4.

Lemma 8. Property O holds when X is case (5) of Pasquier’s list.

Proof. The coefficients that appear in the equations in Proposition 3 are the entries of
the matrix representation of ĉ1. Therefore, the matrix representation of ĉ1 is nonnegative.
The quantum Chevalley Bruhat graph is strongly connected by Figure 7, and the cycle
α10α6α7α9α10 has length r = 4. �
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This graph is a geometric representation of
Property O. The eigenvalues of
ĉ1(αi) = 4(hp ? αi)|q=1 are plotted on C and
then eigenvalues of equal modulus are con-
nected by lines that form regular polygons.

-10 -5 5 10

-10

-5

5

10

Theorem 1 follows from Lemmas 6, 7, and 8.

References

[1] D. Cheong, C. Li, On the Conjecture O of GGI for G/P. Advances in Mathematics, 306 (2017), 704-721.
[2] S. Galkin, V. Golyshev, and H. Iritani, Gamma Classes and Quantum Cohomology of Fano Manifolds:

Gamma Conjectures. Duke Mathematical Journal, 165 (2016) no. 11, 2005-2077.
[3] R. Gonzales, C. Pech, N. Perrin and A. Samokhin, Geometry of Horospherical Varieties of Picard Rank

One, (2018), arXiv:1803.05063.
[4] C. Li, L. Mihalcea, and R. Shifler, Conjecture O Holds for the Odd Symplectic Grassmannian. (2017),

arXiv:1706.00744.
[5] H. Minc. Nonnegative matrices. (1988), Wiley.
[6] B. Pasquier, On Some Smooth Projective Two-orbit Varieties with Picard Number 1. Mathematische

Annalen, 344 (2009) no. 4, 963-987.
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