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Abstract. We use Maya diagrams to refine the criterion by Fulton and Woodward for the
smallest powers of the quantum parameter q that occur in a product of Schubert classes
in the (small) quantum cohomology of partial flags. Our approach using Maya diagrams
yields a combinatorial proof that the minimal quantum degrees are unique for partial flags.
Furthermore, visual combinatorial rules are given to perform precise calculations.

1. Introduction

Let I “ ti0 :“ 0 ă i1 ă i2 ă ¨ ¨ ¨ ă ik ă ik`1 :“ nu. Let Fl :“ FlpI;nq denote the partial
flag given by

FlpI;nq :“ t0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vk Ă Cn : dimVj “ iju.

Let QH˚pFlq be the small quantum cohomology with Schubert classes σw, w P WP . The set
WP is the minimum length coset representative of the associated Weyl group W modded
out by a parabolic P that corresponds to the set I. The set WP is defined in Section 2. We
denote the Poincare dual of σv by σv or σv_ . The small quantum cohomology ring QH˚pFlq
is a graded Zrqs-module. Multiplication is given by

σv ‹ σw “
ÿ

u,dě0

cu,dv_,wq
dσu

where cu,dv_,w is the Gromov-Witten invariant that enumerates the rational curves of degree

d. Given any element τ P QH˚pFlq, we say that qd occurs in τ if the coefficient of qdσw is
not zero for some w P WP .

The purpose of the article is to use Maya diagrams to refine a criterion by Fulton and
Woodward in [FW04] for the smallest powers of the quantum parameter q that occur in a
product of Schubert classes in the (small) quantum cohomology of partial flag. Using the
moment graph, this requires many cases to be checked to find the minimum quantum degree.
Maya diagrams reduce this process to a single calculation. The Maya diagram approach
can be thought of as a generalization of removing rim hooks on the Young Tableau in the
Grassmannian case presented in [BCFF99]. The results in this article are combinatorial
in the sense that we use Maya diagrams to describe the chains in the moment graph that
Fulton and Woodward defined in [FW04] (see Proposition 2.2).

Furthermore, our approach using Maya diagrams yields a combinatorial proof that the
minimal quantum degrees are, in fact, unique for partial flags. With geometric techniques,
Postnikov proved that the minimum quantum degree is unique forG{B in [Pos05b, Corollary
3]. This result was later extended to the general homogeneous space G{P in [BCLM20] also
using geometric techniques. Minimum quantum degrees are also studied in [Pos05a,Buc03,
Yon03,Bel04,Bä22,SW20].

Maya diagrams for partial flags give a characterization of the Bruhat order by slightly
modifying a theorem by Proctor in [Pro82, Theorem 5A] and are stated herein as Proposition
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3.7. Furthermore, the notion of generalized rim hooks is defined in Definition 4.3. With
these two key notions, there is a canonical lower bound for the minimal quantum degrees
as stated in the Lemma 4.18. We then show that this lower bound is achieved in Theorem
6.1. Next, we begin with preliminaries to state and prove our main results. We expect
analogous results to hold for types B, C, and D. Since the Weyl groups are different for each
type, the definition of the Maya diagrams will need to be modified. Next, we begin with
preliminaries to state and prove our main results.

Acknowledgements. I would like to thank Hiroshi Naruse for very useful correspondences.
I would also like to thank the anonymous referees for very useful suggestions.

2. Preliminaries

Let I “ ti0 :“ 0 ă i1 ă i2 ă ¨ ¨ ¨ ă ik ă ik`1 :“ nu. Let Fl :“ FlpI;nq denote the partial
flag given by

FlpI;nq :“ t0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vk Ă Cn : dimVj “ iju.

Consider the root system of type An´1 with positive roots R` “ tel´em : 1 ď l ă m ď nu

and the subset of simple roots ∆ “ tαl :“ el ´ el`1 : 1 ď l ď n ´ 1u. The associated Weyl
group W is Sn. For 1 ď l ď n ´ 1 denote by sl the simple reflection corresponding to the
root el ´ el`1. Each I “ ti0 :“ 0 ă i1 ă i2 ă ¨ ¨ ¨ ă ik ă ik`1 :“ nu determines a parabolic
subgroup PI with the Weyl group WPI

“ ⟨sl : l ‰ ij⟩ generated by reflections with indices
not in I. We will define P :“ PI for notational ease. Let ∆P :“ tαis : is R ti1, ¨ ¨ ¨ , ikuu and
R`

P :“ Span∆P X R`; these are the positive roots of P . Let α P R`zR`
P . Then α ` ∆P is

the sum of simple roots in R`zR`
P given by

α ` ∆P “

k
ÿ

j“1

djpeij ´ eij`1q ` ∆P

For notational ease, we will denote this sum by the k-tuple pd1, d2, ¨ ¨ ¨ , dkq. Let ℓ :W Ñ N
be the length function and denote by WP the set of minimal length representatives of
the cosets of W {WP . The length function descends to W {WP by ℓpuWP q “ ℓpu1q where
u1 P wP is the minimal length representative of the coset uWP . We have a natural ordering
1 ă 2 ă ¨ ¨ ¨ ă n. Since wpik `1q ă ¨ ¨ ¨ ă wpnq are determined, we will identify the elements
of WP with

pwp1q ă ¨ ¨ ¨ ă wpi1q|wpi1 ` 1q ă ¨ ¨ ¨ ă wpi2q| ¨ ¨ ¨ |wpik´1 ` 1q ă ¨ ¨ ¨ ă wpikqq .

Furthermore, there are times in the paper where we need to consider coset representatives
not in WP ; in those instances we write

pwp1q, ¨ ¨ ¨ , wpi1q|wpi1 ` 1q, ¨ ¨ ¨ , wpi2q| ¨ ¨ ¨ |wpik´1 ` 1q, ¨ ¨ ¨ , wpikqq

where the entries between the vertical bars may be interchanged.

2.1. Chains. An edge in the moment graph corresponds to a torus stable curve of a fixed
degree. A chain along those edges corresponds to a torus stable curve where the degree
is the sum of the edge degrees in the chain. So, studying chains in the moment graph
gives us information about curves in the flag variety. Here we will follow the exposition
of [FW04] and specialize to the case of partial flags. We say that two unequal elements v
and w in WP are adjacent if there is a reflection sel´em P W such that w “ vsel´em . The
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reflection el ´ em is the sum of simple reflections in R`zR`
P . That is, if ia´1 ` 1 ď l ď ia

and ib´1 ` 1 ď m ď ib then define

dpv, wq “ el ´ em ` ∆P “ peia ´ eia`1q ` ¨ ¨ ¨ ` peib´1
´ eib´1`1q ` ∆P

“ p

a´1

0, ¨ ¨ ¨ , 0,

b´a

1, ¨ ¨ ¨ , 1,

k`1´b

0, ¨ ¨ ¨ , 0q.

Define a chain C from v to w in WP to be a sequence u0, u1, ¨ ¨ ¨ , ur in WP such that
ui´1 and ui are adjacent for 1 ď i ď r and u0 ď v and w ď ur. We say that the chain
originates at u0 and terminates at ur. For any chain u0, u1, ¨ ¨ ¨ , ur we define the degree
of the chain C, denoted degCpv, wq, to be the sum of the degrees dpui´1, uiq for 1 ď i ď r.
Note that there is a chain of degree 0 between v and w exactly when w ď v.

2.2. Quantum Cohomology. Let QH˚pFlq denote the quantum cohomology ring of Fl.
The Schubert classes σw, w P WP , form a basis. Let σw :“ σ_

w be the Poincare dual of σw
for any w P WP . Take a variable qj for each ij P I with 1 ď j ď k, and let Zrqs be the
polynomial ring with these qj as indeterminates where deg qj “ ij`1 ´ ij´1. For a degree

d “ pd1, ¨ ¨ ¨ , dkq that corresponds to
řk

j“1 djσ
sij P H2pFlq (this is an integral sum of curve

classes), we write qd “ Πk
j“1q

dj
j . The small quantum cohomology ring QH˚pFlq is a graded

Zrqs-module. The multiplication is given by

σv ‹ σw “
ÿ

u,dě0

cu,dv_,wq
dσu

where cu,dv_,w is the Gromov-Witten invariant that enumerates the degree d rational curves.
See [Buc05] for details.

Remark 2.1. The q indeterminates would be q1, ¨ ¨ ¨ , qk with the degree coming from I. So,
different subsets of I with k elements correspond to the same set of indeterminates but
different grading.

2.3. Hecke Product. The purpose of using the Hecke product comes from the work of
Buch and Mihalcea in [BM15]. In particular, they use the Heck product to calculate curve
neighborhoods of Schubert varieties which are the closures of degree d rational curves that
intersect a given Schubert variety. The curve neighborhood behavior is intimately related to
minimum quantum degrees, which motivates the use of Heck products in this manuscript.

The Weyl group W admits a partial order ď given by the Bruhat order. Its covering
relations are given by w ă wsα where α P R` is a root and ℓpwq ă ℓpwsαq. We will use the
Hecke product on the Weyl group W . For a simple reflection si the product is defined by

w ¨ si “

#

wsi if ℓpwsiq ą ℓpwq;

w otherwise.

If v “ si1si2 ¨ ¨ ¨ ¨ ¨ sit then w ¨ v “ w ¨ si1 ¨ si2 ¨ . . . ¨ sit . It is shown in [BM15, Section 3]
that this product is independent of the reduced expression chosen for v. The Hecke product
gives W a structure of an associative monoid; see, e.g., [BM15, §3] for more details. For
any parabolic group P , the Hecke product determines a left action W ˆW {WP Ñ W {WP

defined by

u ¨ pwWP q “ pu ¨ wqWP .

See the paragraph following [BM15, Proposition 3.2].
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2.4. Fulton and Woodward’s formula for minimal quantum degrees. Given any
element τ P QH˚pFlq, we say that qd occurs in τ if the coefficient of qdσw is not zero for
some w. The following result provides an equivalent definition to degrees in terms of chains
in the Bruhat graph.

Proposition 2.2. [FW04, Theorem 9.1] Let v, w P WP , and let d be a degree. The following
are equivalent:

(1) There is a degree c ď d such that qc occurs in σv ‹ σw.
(2) There is a chain of degree c ď d between v and w.

3. Maya Diagrams

In this section, we give the definition of Maya diagrams. Maya diagrams appear in
different contexts. (see, e.g., [DJK`89, LR19, CGUGM2001]). We will also describe the
Bruhat order in terms of Maya diagrams.

Definition 3.1. Let w P WP . The Maya diagram Mw corresponding to w is an pk`1q ˆn
grid with the southwest corner chosen to be p1, 1q box and we index with prows, columnsq.
We place an x in the py, wpiqq position for 1 ď j ď k ` 1, 1 ď i ď ij , and j ď y ď k ` 1.
We color the bottom x of each column black with all other x’s blue. We denote the row
indexed by y as mw

y .

Each row corresponds to an increasing interval in the permutation, and you can read out
the one-line notation by following the black x’s row by row from the bottom.

Example 3.2. The minimal length representatives w “ p1|5 ă 9|10 ă 11|4 ă 6|2 ă 7q and
v “ p2|7 ă 11|10 ă 12|8 ă 9|1 ă 5q corresponds to the Maya diagrams

Mw “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mv “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

In Mw, a black x is placed in the bottom row and the 1st column; two black x’s are placed
in the 2nd row up in the 5th and 9th columns. This corresponds to the 1, 5 and 9 in
w “ p1|5 ă 9|10 ă 11|4 ă 6|2 ă 7q.

Let Mw be the Maya diagram corresponding to w P WP and let 1 ď y ď k. Let
πy :WP Ñ WPiy denote the natural projection. Then Mπypwq is a Maya diagram with two
rows and n columns, with the top row having an x in each position and the bottom row is
mw

y .

Example 3.3.

Mw “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mπ3pwq “
x x x x x x x x x x x x

x x x x x
.
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3.1. Bruhat order with Maya diagrams. We begin the subsection with technical defi-
nitions.

Definition 3.4. Let w, v P WP . LetMw be the Maya diagram that corresponds to w P WP .

(1) Define

fpMw, y, zq :“

#

x y “ j, z “ wpiq, for some i, j with 1 ď i ď ij and 1 ď j ď k ` 1;

0 otherwise
.

(2) Define SypMw, zq :“ #ti : fpMw, y, iq “ x for 1 ď i ď zu.
(3) We say thatMw ď Mv if SypMw, zq ě SypMv, zq for all y and z such that 1 ď z ď n

and 1 ď y ď k ` 1.

Example 3.5. Consider w “ p1|5 ă 9|10 ă 11|4 ă 6|2 ă 7q. Then we have

Mw “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

We are considering the conditions where y “ j, z “ wpiq, for some i, j with 1 ď i ď

ij and 1 ď j ď k ` 1. Here, i1 “ 1, i2 “ 3 and wp2q “ 5. This means the fifth column
is marked with an x in the second row since 1 ď 2 ď i2 but 2 ą i1. Since 1 ď 2 ď ij for
2 ď j ď k` 1, there is an x in the fifth column and jth row for 2 ď j ď k` 1. In particular,
have that fpMw, 3, 5q “ x which corresponds to the x in Mw.

Example 3.6. Recall the Maya diagrams from Example 3.2.

Mw “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mv “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

Next we have a few examples of computations color coordinated to match with the x
that are being counted in the Maya diagrams.

S1pMw, 1q “ 1 ě 0 “ S1pMv, 1q and S3pMw, 9q “ 3 ě 2 “ S3pMv, 9q.

In this example, we have that Mw ď Mv.

Next we present a proposition that relates the Bruhat order onWP with the partial order
on Maya diagrams. This is another way of presenting the result in [Pro82, Theorem 5A].

Proposition 3.7. [Pro82, Theorem 5A] Let w, v P WP . Then w ď v if and only if
Mw ď Mv.

4. Maya diagram combinatorics

In the section, we will give the definition of the generalized rim hook rule and study
chains in terms of Maya diagrams.
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4.1. Generalized rim hook rule. Maya diagrams give a way to see a generalized rim
hook rule. The generalized pa, bq-rim hook connects the combinatorics of the Maya diagram
and Heck product to curves of degree

p

a´1

0, ¨ ¨ ¨ , 0,

b´a

1, ¨ ¨ ¨ , 1,

k`1´b

0, ¨ ¨ ¨ , 0q.

This can be thought of as a generalization of removing rim hooks on Young Tableau in the
Grassmannian case that is presented in [BCFF99]. We now define the generalized rim hook
rule.

Definition 4.1. Let v P WP and letMv be the corresponding Maya diagram. For 1 ď y ď k
define

ϕpMv, yq :“ mintz : fpMv, y, zq “ x and fpMv, y ´ 1, zq “ 0u,

ψpMv, yq :“ maxtz : fpMv, y ` 1, zq “ x and fpMv, y, zq “ 0u.

Example 4.2. Consider the following Maya diagram.

Mv “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

Here ϕpMv, 3q “ 10 and ψpMv, 4q “ 5 where the colors correspond to the x in the definitions
of ϕ and ψ.

Next we define the generalized rim hook rule.

Definition 4.3. Let a, b be such that 1 ď a ă b ď k ` 1, and let Mv be a Maya diagram
for v P WP . We define the generalized pa, bq-rim hook as the Maya diagram obtained by the
following process:

(1) Let Mv
Òa :“ Mv.

(2) For a ď j ď b´1, defineMv
Òj`1 fromMv

Òj by removing the x in position pj, ϕpMv
Òj , jqq.

(3) Let Mv
Ób :“ Mv

Òb.

(4) For b´ 1 ě j ě a, define Mv
Ój from Mv

Ój`1 by adding an x to position pj, ψpMv
Ój , jqq.

(5) The completed generalized pa, bq-rim hook is given by Mv
Óa.

We refer to this process as the pa, bq-rim hook rule.

Definition 4.3 is well-defined since we are ensuring that the number of x’s in each row is
the same at the beginning and the end of the process and that any x, except those in the
top row, has an x above it.

Remark 4.4. The definition 4.3 corresponds to the rim hook for Grassmannians (i.e., the
case k “ 1). See [FW04].

Example 4.5. This example is in the Grassmannian Flpt0 ă 8 ă 12u; 12q with

v “ p1 ă 2 ă 3 ă 5 ă 8 ă 9 ă 11 ă 12q P WP .

Here we will calculate the generalized p1, 2q-rim hook. The symbols Ò and Ó describe the
movement of the x’s.

Mv “
x x x x x x x x x x x x

x x x x x x x x
ÝÑ

x x x x x x x x x Ó x x

Ò x x x x x x x x



7

“
x x x x x x x x x x x x

x x x x x x x x
.

Example 4.6. The following is an example of a generalized p2, 6q-rim hook in

Flpt0 ă 1 ă 3 ă 5 ă 7 ă 9 ă 12u; 12q.

Here v “ p2|3 ă 8|10 ă 12|9 ă 11|1 ă 5q P WP .

Mv “

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

ÝÑ

x x x x x x Ó x x x x x

Ò x x x Ó x x x x x

x Ò x x x x Ó x

x Ò x x x Ó

x Ò x x

x

“

x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

4.2. Chains in terms of Maya diagrams. The first lemma connects the generalized
pa, bq-rim hook rule to the Hecke product and constructs a chain. We will now state a
technical definition before describing Chains in terms of Maya diagrams.

Definition 4.7. We say that two postive roots ea ´ eb, ec ´ ed P R` intersect at most at
an end point if a ă b ď c ă d or c ă d ď a ă b.

Definition 4.8. Let tλqu
q
q“1, tβju

J
j“1 Ă R`. We say that

ř

λq ě
ř

βj if
ř

λq ´
ř

βj is a
non-negative linear combination of positive roots.

Lemma 4.9. Let Mv be a Maya diagram that corresponds to v P WP . Apply the pa, bq-rim

hook rule to Mv and call the resulting Maya diagram Mv1

where v P WP . Then we have
the following:

(1) seia´1`1´eib
“ sia´1`1sia´1`2 ¨ ¨ ¨ sib´2sib´1sib´2 ¨ ¨ ¨ sia´1`2sia´1`1.

(2) v1 “ v ¨ seia´1`1´eib
.

(3) There exists a sequence of positive roots tβju
J
j“1 Ă R` such that

(a) eia´1`1 ´ eib ě
ř

βj;

(b) any two elements of tβju
J
j“1 overlap at most at an end point;

(c) v1 “ vsβ1 . . . sβJ
.

Proof. We will prove each case individually.

(1) This is the result of a direct computation.
(2) First, without loss of generality by re-indexing the word from Part (1), we only need

to consider the case se1´ein “ s1s2 . . . sn´2sn´1sn´2 . . . s2s1. If they exist, find the
smallest indices j1, 1 ď j1 ď n´ 1 and j1

1, 1 ď j1
1 ă n´ 1 such that

(a) ℓpv ¨ s1s2 . . . sj1q ă ℓpv ¨ s1s2 . . . sj1´1q and
(b) ℓpv ¨ s1s2 . . . sn´2sn´1sn´2 . . . sj1

1
q ă ℓpv ¨ s1s2 . . . sn´2sn´1sn´2 . . . sj1

1´1q.
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Case 1: Suppose that j1 exists but j1
1 does not. If j1 “ n ´ 1 then vpnq “ 1. But

this implies ℓpv ¨ s1s2 . . . sn´2sn´1sn´2q ă ℓpv ¨ s1s2 . . . sn´2sn´1q which implies j1
1

exists. So, 1 ď j1 ă n´ 1. Then we have the following

v ¨ se1´en “ v ¨ s1s2 . . . sn´2sn´1sn´2 . . . s2s1

“ v ¨ s1s2 . . . sj1´1sj1`1 . . . sn´2sn´1sn´2 . . . s2s1

“ pv ¨ psj1`1 . . . sn´2sn´1sn´2 . . . sj1`1qq ps1s2 . . . sj1´1sj1sj1´1s2s1q

“

´

v ¨ sej1`1´en

¯ ´

se1´ej1`1

¯

.

Case 2: Suppose that j1 does not exist but j1
1 does. Then we have the following

v ¨ se1´en “ v ¨ s1s2 . . . sn´2sn´1sn´2 . . . s2s1

“ v ¨ s1s2 . . . sn´2sn´1sn´2 . . . sj1
1`1sj1

1´1 . . . s2s1

“

´

v
´

s1s2 . . . sj1
1´1sj1

1
sj1

1´1 . . . s2s1

¯¯

¨ psj1`1 . . . sn´2sn´1sn´2 . . . sj1`1q

“

´

v
´

se1´ej1
1`1

¯¯

¨

´

sej1`1´en

¯

.

Case 3: Suppose that j1 and j1
1 both exist, j1 ą j1

1, and j1 ‰ n´ 1. Then we have
the following

v ¨ se1´en

“ v ¨ s1s2 . . . sn´2sn´1sn´2 . . . s2s1

“ v ¨ s1s2 . . . sj1´1sj1`1 . . . sn´2sn´1sn´2 . . . sj1
1`1sj1

1´1 . . . s2s1

“

´

vs1s2 . . . sj1
1´1sj1

1
sj1

1´1 . . . s2s1

¯

¨

´

sj1
1`1sj1

1`2 . . . sj1´1sj1`1 . . . sn´2sn´1sn´2 . . . sj1
1`1

¯

“

´´

vs1s2 . . . sj1
1´1sj1

1
sj1

1´1 . . . s2s1

¯

¨
`

sj1`1 . . . sn´2sn´1sn´2 . . . sj1`1

˘

¯ ´

sj1
1`1sj1

1`2 . . . sj1´1sj1sj1´1 . . . sj1
1`2sj1

1`1

¯

“

ˆˆ

vse1´e
j1
1

˙

¨

´

sej1`1´en

¯

˙

¨

ˆ

se
j1
1`1

´ej1`1

˙

.

Case 4: Suppose that j1 and j1
1 both exist, j1 ą j1

1, and j1 “ n´ 1. Then we have
the following

v ¨ se1´en “

´

vse1´ej1
1

¯ ´

sej1
1`1´en

¯

.

Case 5: Suppose that j1 and j1
1 both exist, j1 ă j1

1. Then we have the following

v ¨ se1´en “

´´

v ¨ sej1`1´ej1
1`1

¯

¨

´

sej1
1`1´en

¯¯ ´

se1´ej1

¯

.

Case 6: Suppose that j1 and j1
1 both exist and j1 “ j1

1. Then we have the following

v ¨ se1´en “ vsej1`1´en .

A key observation is that the (non-Hecke) permutation multiplication of v by se1´ej1
or se1´ej1

1
appears. Therefore, after iterating using the 6 cases above, the Hecke

product v ¨ se1´en may be written as a (non-Hecke) product of v times reflection
of the form se1´ej1

or se1´ej1
1
re-indexed as appropriate. When chained together,

these reflections correspond to Mv
Òj and Mv

Ój from Definition 4.3. Therefore, v1 “

v ¨ seia´1`1´eib
.

(3) This is an immediate consequence of applying iterations of the 6 cases in Part (2).
The result follows.

□
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Example 4.10. Consider the partial flag variety Flpt0 ă 1 ă 3 ă 5 ă 7 ă 9 ă 12u, 12q. Let
v “ p2|3 ă 8|10 ă 12|9 ă 11|1 ă 5q P WP . Here we will show the application of a p2, 6q´rim
hook to v. The outcome is v ¨se2´e12 by Part (1) of Lemma 4.9. The following is an example
of Part (3) of Lemma 4.9 and the procedure to produce the sequence reflections.

(1) For the first step we have the following two facts.
(a) The number 12 is the biggest number in entries 2 through 12 (recall entries 9

through 12 are suppressed).
(b) The number 3 is the smallest number in an entry before 12 and in entries 2

through 12.
So we will use the reflection se2´e5 to interchange 3 and 12 to find

p2|3, 8|10, 12|9, 11|1, 5qse2´e5 “ p2|12, 8|10, 3|9, 11|1, 5q.

This is viewed visually in terms of Maya diagrams. Here we start by labeling the
black x’s with their initial position reading bottom to top and left to right. In rows
2 through 6, notice that the x (labeled 5) farthest to the right is in the 12th column
and the x (labeled 2) farthest to the left with a label less than 5 is in the third
column. So, we interchange columns 3 and 12 using se2´e5 . The entries x2, x3, x4
are ineligible to be considered in future steps.

x x x x10 x x11x12 x x x x x

x8 x x x9 x x x x x

x x x x6 x x7 x

x x x x4 x5

x x2 x3

x1

se2´e5
ÝÑ

x x x x10 x x11x12 x x x x x

x8 x x x9 x x x x x

x x x x6 x x7 x

x x5 x x4 x

x x3 x2

x1

.

(2) For the second step we have the following two facts.
(a) The number 11 is the biggest number in entries 5 through 12.
(b) The number 3 is the smallest number in an entry before 12 and in entries 5

through 12.
So we will use the reflection se5´e7 to interchange 3 and 11 to find

p2|12, 8|10, 3|9, 11|1, 5qse5´e7 “ p2|12, 8|10, 11|9, 3|1, 5q.

This is viewed visually in terms of Maya diagrams. In rows 2 through 6, notice that
the x (labeled 7) farthest to the right is in the 11th column and the x (labeled 5)
farthest to the left with a label less than 7 is in the 3rd column. So, we interchange
columns 3 and 11 using se5´e7 . The entries x2, x3, x4, x5, x6 are ineligible to be
considered in future steps.

x x x x10 x x11x12 x x x x x

x8 x x x9 x x x x x

x x x x6 x x7 x

x x5 x x4 x

x x3 x2

x1

se5´e7
ÝÑ

x x x x10 x x11x12 x x x x x

x8 x x x9 x x x x x

x x7 x x6 x x x

x x x4 x5 x

x x3 x2

x1

.

(3) For the third step we have the following two facts.
(a) The number 7 is the biggest number in entries 7 through 12.
(b) The number 1 is the smallest number in an entry before 7 and in entries 7

through 12.
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So we will use the reflection se8´e12 to interchange 1 and 7 to find

p2|12, 8|10, 11|9, 3|1, 5qse8´e12 “ p2|12, 8|10, 11|9, 3|7, 5q.

This is viewed visually in terms of Maya diagrams. In rows 2 through 6, notice that
the x (labeled 12) farthest to the right is in the 7th column and the x (labeled 8)
farthest to the left with a label less than 12 is in the 1st column. So, we interchange
columns 1 and 7 using se8´e12 . The entries x2, x3, x4, x5, x6, x9, x10, x11, x12 are
ineligible to be considered in future steps.

x x x x10 x x11x12 x x x x x

x8 x x x9 x x x x x

x x7 x x6 x x x

x x x4 x5 x

x x3 x2

x1

se8´e12
ÝÑ

x12 x x x10 x x11 x x x x x x

x x x9 x8 x x x x x

x x7 x x6 x x x

x x x4 x5 x

x x3 x2

x1

.

(4) For the fourth step we have the following two facts.
(a) The number 7 is the biggest number in entries 7 through 8.
(b) The number 3 is the smallest number in an entry before 7 and in entries 7

through 8.
So we will use the reflection se7´e8 to interchange 3 and 7 to find

p2|12, 8|10, 11|9, 3|7, 5qse7´e8 “ p2|12, 8|10, 11|9, 7|3, 5q.

This is viewed visually in terms of Maya diagrams. In rows 2 through 6, notice that
the x (labeled 8) farthest to the right is in the 7th column and the x (labeled 7)
farthest to the left with a label less than 8 is in the 3rd column. So, we interchange
columns 3 and 7 using se7´e8 . There are no more eligible x to consider in rows 2
through 6.

x12 x x x10 x x11 x x x x x x

x x x9 x8 x x x x x

x x7 x x6 x x x

x x x4 x5 x

x x3 x2

x1

se7´e8
ÝÑ

x12 x x x10 x x11 x x x x x x

x x8 x9 x x x x x x

x x7 x x6 x x x

x x x4 x5 x

x x3 x2

x1

.

Finally observe that v ¨ se2´e12 “ vse2´e5se5´e7se8´e12se7´e8 and e2 ´ e12 “ pe2 ´ e5q `

pe5 ´ e7q ` pe8 ´ e12q ` pe7 ´ e8q.

Lemma 4.11. LetMv be a Maya diagram that corresponds to v P WP . Apply the pa, bq-rim

hook rule to Mv and call the resulting Maya diagram Mv1

where v P WP . Then there is a
chain C originating at v to terminating at v1 such that

degCpv, v1q ď p

a´1

0, ¨ ¨ ¨ , 0,

b´a

1, ¨ ¨ ¨ , 1,

k`1´b

0, ¨ ¨ ¨ , 0q.

Proof. This follows immediately from Part (3) of Lemma 4.9. □

The next two definitions give conditions for when to apply generalized pa, bq-rim hooks
to produce a chain of minimum degree.

Definition 4.12. Let v, w P WP with corresponding Maya diagrams Mv and Mw, respec-
tively. We say that position py, zq in Mv is Bruhat order incompatible with position py, zq

in Mw if SypMv, zq ą SypMw, zq. Similarly, we say that the row mv
y in Mv is Bruhat order
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incompatible with the row mw
y in Mw if SypMv, zq ą SypMw, zq for some 1 ď z ď n. If

SypMv, zq ď SypMw, zq for all 1 ď z ď n, then we say mw
y ď mv

y.

It is important to apply the pa, bq-rim hook to as many rows as possible that are Bruhat
incompatible while not applying it to rows that are Bruhat compatible. This is to reduce
the number of pa, bq-rim hooks needed, so a minimum quantum degree is calculated.

Definition 4.13. Let Mv and Mw be Maya diagrams with v, w P WP , respectively, with
the following properties:

(1) Row mv
j in Mv is Bruhat order incompatible with row mw

j in Mw for a ď j ď b´ 1;

(2) If a ą 1, then mw
a´1 ď mv

a´1.
(3) mw

b ď mv
b .

When the above conditions apply, let Cpa,bq

pv,wq
denote a chain of degree less than or equal

to p

a´1

0, ¨ ¨ ¨ , 0,

b´a

1, ¨ ¨ ¨ , 1,

k`1´b

0, ¨ ¨ ¨ , 0q that originates at v and terminating at v1 where Mv1

is the
result of applying an pa, bq-rim hook rule to Mv.

Example 4.14. Consider the following two Maya diagrams.

Mw “

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mv “

x x x x x x x x x x x x x

x x x x x x x x x

x x! x x x x x

x x! x! x x

x x! x!

x

.

Here row mv
j in Mv is Bruhat order incompatible with row mw

j in Mw for 2 ď j ď 4. Also,
mw

1 ď mv
1 and mw

5 ď mv
5. We use ! to mark the Bruhat order incompatible positions in Mv.

Definition 4.15. Let Mv and Mw be a Maya diagram corresponding to v, w P WP .. Let
v0 :“ v. Let C be a chain in WP in terms of Maya diagrams given by

C :Mv0
Cpa0,b0q

pv0,wq

ÝÑ Mv1
Cpa1,b1q

pv1,wq

ÝÑ Mv2
Cpa2,b2q

pv2,wq

ÝÑ ¨ ¨ ¨
Cpar´1,br´1q

pvr´1,wq

ÝÑ Mvr .

Define CompyC to be the yth component of
r´1
ÿ

j“0

deg Cpaj ,bjq

pvj ,wq
.

The next definition is necessary to state a Lemma 4.18 which states a lower bound for
the minimal degrees of chains connecting v to w.

Definition 4.16. Let Mv and Mw be a Maya diagram corresponding to v, w P WP .. Let
1 ď y ď k and let πy : WP Ñ WPiy be the natural projection where Piy is the maximal
parabolic subgroup associated with iy. Let v0 :“ v. Define degypv, wq to be the smallest
integer such that there is a chain in terms of Maya diagrams given by

Cpyq :Mπypv0q
Cp1,2q

pπypv0q,πypwqq

ÝÑ Mπypv1q
Cp1,2q

pπypv1q,πypwqq

ÝÑ ¨ ¨ ¨

Cp1,2q

pπypvdegypv,wq´1q,πypwqq

ÝÑ M
πypvdegypv,wqq

has the propertyMπypvjq ğ Mπypwq for 1 ď j ď degypv, wq´1 andM
πypvdegypv,wqq

ě Mπypwq.

In Definition 4.16, this is a chain of two-row May diagrams where the bottom row cor-
responds to the y-th row of the original Maya diagram. This corresponds to a minimum
quantum degree calculation in the Grassmannian case Flpt0 ă iy ă nu;nq..
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Example 4.17. See Example 4.5 for an example of a chain in Definition 4.16.

Lemma 4.18. Let Mv and Mw be Maya diagrams corresponding to v, w P WP .. Let C be
any chain from v to w. Then

pdeg1pv, wq, ¨ ¨ ¨ , degkpv, wqq ď degCpv, wq.

Proof. If not, then for some y, degypv, wq is not the smallest integer such that there is a
chain in terms of Maya diagrams given by

Cpyq :Mπypv0q
Cp1,2q

pπypv0q,πypwqq

ÝÑ Mπypv1q
Cp1,2q

pπypv1q,πypwqq

ÝÑ ¨ ¨ ¨

Cp1,2q

pπypvdegypv,wq´1q,πypwqq

ÝÑ M
πypvdegypv,wqq

has the property Mπypvjq ğ Mπypwq for 1 ď j ď degypv, wq ´ 1 and M
πypvdegypv,wqq

ě

Mπypwq. □

5. Maya diagrams and the Bruhat order

It is not clear that degypv, wq and the yth component of
řr´1

j“0 deg C
paj ,bjq

pvj ,wq
are equal. This

is because generalized pa, bq-rim hooks do not necessarily remove the first x in a row and
place an x in the last open position in a particular row. We use Lemmas 5.1, 5.2, and 5.4
to address this question. The next lemma addresses the Bruhat compatibility of adding an
x to a row when applying a generalized pa, bq-rim hook rule.

Lemma 5.1. Let Mv and Mw be a Maya diagram corresponding to v, w P WP .. Consider

Mv
Cpa,bq

pv,wq
ÝÑ Mv1

.

Consider the yth rows where a ď y ď b ´ 1. Suppose that the new x in mv1

y that is not in

mv
y is in position py, z0q. It follows that SypMv1

, zq ď SypMw, zq for all z ě z0.

Proof. For a contradiction, assume that SypMv1

, zq ą SypMw, zq for some z ě z0. Then, by
the generalized pa, bq-rim hook rule, we must have

Sy`1pMv1

, zq “ SypMv1

, zq ` piy`1 ´ iyq.

Also,

SypMw, zq ` piy`1 ´ iyq ě Sy`1pMw, zq.

It follows that Sy`1pMv1

, zq ą Sy`1pMw, zq.. Therefore, SbpM
v1

, zq ą SbpM
w, zq by re-

peating the previous argument. This is a contradiction since mv1

b ě mw
b . It follows that

SypMv1

, zq ď SypMw, zq for z ě z0. □

The next lemma addresses the Bruhat compatibility of not necessarily removing the first
x in a row when applying a generalized pa, bq-rim hook rule.

Lemma 5.2. Let Mv and Mw be a Maya diagram corresponding to v, w P WP .. Consider

Mv
Cpa,bq

pv,wq
ÝÑ Mv1

.

Consider the yth rows where a ď y ď b´ 1. Suppose that the x in mv
y that is not in mv1

y is

in position py, z0q. It follows that SypMv1

, zq ď SypMw, zq for all z ă z0.
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Proof. If a “ 1 then fpMv, y, zq “ 0 for all z ă z0. So, S1pMv1

, zq ď S1pMw, zq for all
z ă z0.

Suppose a ą 1 and z ă z0. By the definition of Cpa,bq

pv,wq
, we know that Sa´1pMv, zq ď

Sa´1pMw, zq. It must be true that SypMv1

, zq “ Sa´1pMv, zq since no x is added or removed
from the y-th row that is before the position py, z0q. Also, observe that SypMw, zq increases
as y increases. Therefore,

SypMv1

, zq “ Sa´1pMv, zq ď Sa´1pMw, zq ď SypMw, zq.

The result follows. □

Example 5.3. Consider the following two Maya diagrams.

Mw “

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mv “

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

Then we have the following where ! indicates the Bruhat order incompatible positions
and Ò and Ó describe the movement of the x’s for when a (2,5)-rim hook is applied. The
entries in brown are Bruhat compatible with Mw by Lemma 5.1 and the entries in purple
are Bruhat compatible with Mw by Lemma 5.2.

Mv “

x x x x x x x x x x x x x

x x x x x x x x x

x x! x x x x x

x x! x! x x

x x! x!

x

p2,5q-rim hook
ÝÑ

x x x x x x x x x x x x x

x x x Ó x x x x x

x Ò x x x x Ó x

x Ò x x x Ó

x Ò x x

x

.

We use Lemmas 5.1 and 5.2 to produce the inequality stated in the next lemma.

Lemma 5.4. Let Mv and Mw be a Maya diagram corresponding to v, w P WP and assume
that degypv, wq ą 0. Let v0 :“ v. Let C be a chain in WP in terms of Maya diagrams given
by

C :Mv0
Cpa0,b0q

pv0,wq

ÝÑ Mv1
Cpa1,b1q

pv1,wq

ÝÑ Mv2
Cpa2,b2q

pv2,wq

ÝÑ ¨ ¨ ¨
Cpar´1,br´1q

pvr´1,wq

ÝÑ Mvr

where Mvj ğ Mw for 1 ď j ď r ´ 1 and Mvr ě Mw. It follows that CompyC ď degypv, wq.

The strategy of the proof of Lemma 5.4 is to show that if the number of pa, bq-rim
hooks applied to the yth row of a Maya diagram is equal to degypv, wq (as in Definition
4.16), then the corresponding rows are Bruhat compatible. Furthermore, since the rows are
Bruhat compatible, there is no need to apply another pa, bq-rim hook to that row, which
gives degypv, wq as an upper bound to the number of pa, bq-rim hooks needed to apply to
the yth row.

Proof. Let Mv and Mw be a Maya diagram corresponding to v, w P WP and assume that
degypv, wq ą 0. Let v0 :“ v. Let 1 ď D ď r be such that C˚ is a chain in WP in terms of
Maya diagrams given by

C˚ :Mv0
Cpa0,b0q

pv0,wq

ÝÑ Mv1
Cpa1,b1q

pv1,wq

ÝÑ Mv2
Cpa2,b2q

pv2,wq

ÝÑ ¨ ¨ ¨
C

paD´1,bD´1q

pvD´1,wq

ÝÑ MvD
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where CompyC˚ ď degypv, wq. If m
vj
y ě mw

y for some 1 ď j ď D ´ 1, then we are done

since another pa, bq-rim hook will not be applied to the yth row. Suppose m
vj
y ğ mw

y for
1 ď j ď D ´ 1 and CompyC˚ “ degypv, wq. Our aim is to show that mvD

y ě mw
y .

Suppose that the x in m
vD´1
y that is not in mvD

y is in position py, z0q and that the new

x in mvD
y that is not in m

vD´1
y is in position py, z1q. By Lemmas 5.1 and 5.2, if z ď z0 or

z1 ď z then SypMvD , zq ď SypMw, zq.
Let z0 ă z1 ă z1.. Let Cpyq be a chain in terms of Maya diagrams given by

Cpyq :Mπypv0q
Cp1,2q

pπypv0q,πypwqq

ÝÑ Mπypv1q
Cp1,2q

pπypv1q,πypwqq

ÝÑ ¨ ¨ ¨

Cp1,2q

pπypvdegypv,wq´1q,πypwqq

ÝÑ M
πypvdegypv,wqq

.

where Mπypvjq ğ Mπypwq for 1 ď j ď degjpv, wq ´ 1 and M
πypvdegypv,wqq

ě Mπypwq. In
the chain C˚ the number of x’s in row y removed before z0 is degypv, wq and they are
replaced behind z1. Similarly, in the chain Cpyq the number of x’s in row 1 removed
before z0 is degypv, wq and they are replaced behind z1. This implies SypMvD , z1q “

S1pM
πypvdegypv,wqq

, z1q. Then

SypMvD , z1q “ S1pM
πypvdegypv,wqq

, z1q ď S1pMπypwq, z1q “ SypMw, z1q.

Therefore, mvD
y ě mw

y .
The result follows since y R tai, ai ` 1, ¨ ¨ ¨ , bi ´ 1u for D ď i ď r ´ 1 (that is, we do not

apply another pa, bq-rim hook to the yth row). □

6. Main Result

We arrive at our main theorem by observing that degypv, wq is bounded above and below
by CompyC as stated in Theorem 6.1. We provide an example of calculating the minimum
quantum degree using Maya diagrams in Example 6.2 and state a chain that yields a curve
of minimum degree.

Theorem 6.1. Let Mv and Mw be a Maya diagram corresponding to v, w P WP .. Let
v0 :“ v. Let C be the chain in WP in terms of Maya diagrams given by

C :Mv0
Cpa0,b0q

pv0,wq

ÝÑ Mv1
Cpa1,b1q

pv1,wq

ÝÑ Mv2
Cpa2,b2q

pv2,wq

ÝÑ ¨ ¨ ¨
Cpar´1,br´1q

pvr´1,wq

ÝÑ Mvr

where Mvj ğ Mw for 1 ď j ď r ´ 1 and Mvr ě Mw. Then

pdeg1pv, wq, ¨ ¨ ¨ ,degkpv, wqq “

r´1
ÿ

j“0

deg Cpaj ,bjq

pvj ,wq
.

Proof. First note that C exists since repeated applications of generalized pa, bq-rim hooks
result in a Maya diagram corresponding to the longest element in WP . By Lemma 5.4,
CompyC ď degypv, wq. By Lemma 4.18 we have that degypv, wq ď CompyC. Then
CompyC ď degypv, wq ď CompyC. The result follows. □
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Example 6.2. Here we give an example of Theorem 6.1. Consider the following two Maya
diagrams.

Mw “

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

and Mv “

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

Then we have the following where ! indicate the Bruhat order incompatible positions and
Ò and Ó describe the movement of the x’s.

x x x x x x x x x x x x x

x x x x x x x x x

x x! x x x x x

x x! x! x x

x x! x!

x

p2,5q-rim hook
ÝÑ

x x x x x x x x x x x x x

x x x Ó x x x x x

x Ò x x x x Ó x

x Ò x x x Ó

x Ò x x

x

“

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x! x

x

p2,3q-rim hook
ÝÑ

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x Ó x

x Ò x x

x

“

x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x

x x x

x

.

Thus the minimum quantum degree that appears in σv ‹ σw is

p0, 1, 1, 1, 0q ` p0, 1, 0, 0, 0q “ p0, 2, 1, 1, 0q.

Following the process in Example 4.10, the precise chain to describe this curve is given
by

vse2´e5se5´e7se8´e9se7´e8se3´e5 .
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