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Abstract. Let IG :“ IGp2, 2n`1q denote the odd symplectic Grassmannian of lines which
is a horospherical variety of Picard rank 1. The quantum cohomology ring QH˚

pIGq has
negative structure constants. For n ě 3, we give a positivity condition that implies the
quantum cohomology ring QH˚

pIGq is the only quantum deformation of the cohomology
ring H˚

pIGq up to the scaling of the quantum parameter. This is a modification of a
conjecture by Fulton.

1. Introduction

Let IG :“ IGp2, 2n ` 1q denote the odd symplectic Grassmannian of lines which is a
horospherical variety of Picard rank 1. This is the parameterization of two dimensional
subspaces of C2n`1 that are isotropic with respect to a general skew-symmetric form. The
quantum cohomology ring pQH˚pIGq, ‹q is a graded algebra over Zrqs where q is the quantum
parameter and deg q “ 2n. The ring has a Schubert basis given by tτλ : λ P Λu where

Λ :“ tpλ1, λ2q : 2n´1 ě λ1 ě λ2 ě ´1, λ1 ą n´2 ñ λ1 ą λ2, and λ2 “ ´1 ñ λ1 “ 2n´1u.

We will often write τi in place of τpi,0q. We define |λ| “ λ1 ` λ2 for any λ P Λ. Then

degpτλq “ |λ|. The ring multiplication is given by τλ ‹ τµ “
ř

ν,d c
ν,d
λ,µq

dτν where cν,dλ,µ is

the degree d Gromov-Witten invariant of τλ, τµ, and the Poicaré dual of τν . Unlike the
homogeneous G{P case, the Gromov-Witten invariants may be negative. For example, in
IGp2, 5q, we have

τp3,´1q ‹ τp3,´1q “ τp3,1q ´ q and τp2,1q ‹ τp3,´1q “ ´τp3,2q ` qτ1.

The quantum Pieri rule has only non-negative coefficients and is stated in Proposition 2.2.
See [Pec13,MS19,GPPS19] for more details on IG.

Definition 1.1. For any given collection of constants taµ P Q : µ P Λu, a quantum defor-
mation with the corresponding basis tσλ : λ P Λu is defined as a solution to the following
system:

τλ “ σλ `
ÿ

jě1

¨

˝

ÿ

|µ|`2nj“|λ|

aµq
jσµ

˛

‚, λ P Λ.

Remark 1.2. It is always possible to re-scale the quantum parameter q by a positive factor

α ą 0, or equivalently, multiply each Gromov-Witten invariant cν,dλ,µ by α´d. We only

consider the α “ 1 case in this manuscript.

To contextualize the significance of quantum deformations we review the following con-
jecture by Fulton for Grassmannians and its extension to a more general case by Buch and
Wang in [BW21, Conjecture 1].
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Conjecture 1. Let X “ G{P be any flag variety of simply laced Lie type. Then the
Schubert basis of QH˚pXq is the only homogeneous Qrqs-basis that deforms the Schubert
basis of H˚pX,Qq and multiplies with non-negative structure constants.

This conjecture is shown to hold for any Grassmannian and a few other examples in
[BW21]. Li and Li proved the result for symplectic Grassmannians IGp2, 2nq with n ě 3
in [LL23]. The condition that the root system of G be simply laced is necessary since
the conjecture fails to hold for the Lagrangian Grassmannian IGp2, 4q as shown in [BW21,
Example 6]. However, this conjecture is not applicable to IGp2, 2n ` 1q since negative
coefficients appear in quantum products for any n. We are able to modify the positivity
condition on Fulton’s conjecture to arrive at a uniqueness result for quantum deformations.

Definition 1.3. For IGp2, 2n ` 1q we will use (**) to denote the condition that the coef-
ficients of the quantum multiplication of σp1,1q and any σµ in the basis tσλ : λ P Λu are
polynomials in q with non-negative coefficients.

We are ready to state the main result.

Theorem 1.4. Let n ě 3. Suppose that tσλ : λ P Λu is a quantum deformation of the
Schubert basis tτλ : λ P Λu of QH˚pIGq such that Condition (**) holds. Then τλ “ σλ for
all λ P Λ.

Remark 1.5. The methods used in this manuscript are motivated by those of Li and Li in
[LL23]. In particular, multiplication by τp1,1q, which is not a generator, is all that we use to
establish the uniqueness of the quantum deformation.

In Section 2 we prove the main result for the |λ| ă 2n case, state the quantum Pieri
rule, and give identities for later in the paper; in Section 3 we prove the main result for the
|λ| “ 2n case; and in Section 4 we prove the main result for the |λ| ą 2n case. Theorem
1.4 follows from Propositions 2.1, 3.1, and 4.2.

Acknowledgements. I would like to thank an anonymous referee for identifying a gap in
the argument for the |λ| ą 2n case. I would also like to thank Leonardo Mihalcea for a very
useful conversation.

2. Preliminaries

We begin the section with a proposition that reduces the number of possible quantum
deformations that we need to check. This is accomplished by using the grading. The
proposition also states our main result for the |λ| ă 2n case.

Proposition 2.1. We have the following results.

(1) We have that τλ “ σλ `
ř

|µ|`2n“|λ| aµqσµ.

(2) If |λ| ă 2n then τλ “ σλ.

Proof. The first part follows since |λ| ď dimpIGp2, 2n ` 1q “ 4n ´ 3 ă 4n “ 2 deg q for any
λ P Λ. The second part follows immediately from the grading. □

Next we state the quantum Pieri rule for IGp2, 2n ` 1q.

Proposition 2.2. [Pec13, Theorem 1] The quantum Pieri rule.

τ1 ‹ τa,b “

$

’

’

’

’

&

’

’

’

’

%

τa`1,b ` τa,b`1 if a ` b ‰ 2n ´ 3 and a ‰ 2n ´ 1,
τa,b`1 ` 2τa`1,b ` τa`2,b´1 if a ` b “ 2n ´ 3,
τ2n´1,b`1 ` qτb if a “ 2n ´ 1 and 0 ď b ď 2n ´ 3,
τ2n´1 a “ 2n ´ 1 and b “ ´1,
qpτ2n´1,´1 ` τ2n´2q a “ 2n ´ 1 and b “ 2n ´ 2.
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τ1,1 ‹ τa,b “

$

’

’

&

’

’

%

τa`1,b`1 if a ` b ‰ 2n ´ 4, 2n ´ 3 and a ‰ 2n ´ 1,
τa`2,b ` τa`1,b`1 if a ` b “ 2n ´ 4 or 2n ´ 3,
qτb`1 if a “ 2n ´ 1 and b ‰ 2n ´ 3,
qpτ2n´1,´1 ` τ2n´2q a “ 2n ´ 1 and b “ 2n ´ 3.

Lemma 2.3. We have the following identities.

(1) Let t ď n ´ 2. Then

σpt,tq “ τpt,tq “ Πt
i“1τp1,1q “ Πt

i“1σp1,1q.

(2) Let |λ| ě 2n and t :“ 2n ´ λ1.
(a) If λ2 ` t ‰ 2n ´ 2. Then

`

Πt
i“1τp1,1q

˘

‹ τλ “ qτpλ2`tq.

(b) If λ2 ` t “ 2n ´ 2. Then
`

Πt
i“1τp1,1q

˘

‹ τλ “ qτp2n´1,´1q ` qτp2n´2q.

(3) We have that
Πn´1

i“1 τp1,1q “ τpn,n´2q.

(4) If 2t ` |µ| ď 2n ´ 3 and t ď n ´ 2 then
`

Πt
i“1τp1,1q

˘

‹ τµ “ τpµ1`t,µ2`tq.

(5) If 2t ` |µ| “ 2n ´ 2 or 2n ´ 1 and t ď n ´ 2 then
`

Πt
i“1τp1,1q

˘

‹ τµ “ `τpµ1`t`1,µ2`t´1q ` τpµ1`t,µ2`tq.

Proof. Part (1) is clear since 2t ď 2n ´ 4. For Part (2), τp1,1q ‹ τpt´1,t´1q ‹ τλ “ τp1,1q ‹

τp2n´1,λ2`t´1q “ qτpλ2`tq or τp1,1q ‹ τpt´1,t´1q ‹ τλ “ τp1,1q ‹ τp2n´1,λ2`t´1q “ qτp2n´1,´1q `

qτp2n´2q. For Part (3), τp1,1q ‹ Πn´2
i“1 τp1,1q “ τp1,1q ‹ τpn´2,n´2q “ τpn,n´2q. Part (4) is clear.

For Part (5), we have τp1,1q ‹
`

Πt´1
i“1τp1,1q

˘

‹ τµ “ τp1,1q ‹ τpµ1`t´1,µ2`t´1q “ τpµ1`t,µ2`tq `

τpµ1`t`1,µ2`t´1q. This completes the proof. □

3. The |λ| “ 2n case

In this section we will assume that |λ| “ 2n. The main proposition of this section is
stated next.

Proposition 3.1. Let |λ| “ 2n. If τλ “ σλ ` aq and Condition (**) holds then τλ “ σλ.

Proof. By Proposition 2.1 it must be the case that τλ “ σλ`aq. We show a ď 0 in two parts.
Lemma 3.2 considers the λ1 ě n ` 2 case and Lemma 3.3 considers the λ “ pn ` 1, n ´ 1q

case. We show a ě 0 in Lemma 3.4 as a straightforward application of the quantum Pieri
rule. This completes the proof. □

Lemma 3.2. Let |λ| “ 2n and λ1 ě n ` 2. If τλ “ σλ ` aq and Condition (**) holds then
a ď 0.

Proof. Let t :“ 2n ´ λ1 ď n ´ 2. Note that t ` λ1 “ 2n. Then we have the following by
multiplying σλ “ τλ ´ aq by

`

Πt
i“1σp1,1q

˘

and using Part (1) of Lemma 2.3.
`

Πt
i“1σp1,1q

˘

‹ σλ “ τpt,tq ‹ τλ ´ aσpt,tqq.

By Part (2) of Lemma 2.3 we have τpt,tq ‹ τλ “ qτpλ2`tq “ qσpλ2`tq. So,
`

Πt
i“1σp1,1q

˘

‹ σλ “ qσpλ2`tq ´ aσpt,tqq.

It follows from Condition (**) that a ď 0. □
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We will now prove a ď 0 for the λ “ pn ` 1, n ´ 1q case.

Lemma 3.3. Let λ “ pn ` 1, n ´ 1q. If τλ “ σλ ` aq and Condition (**) holds then a ď 0.

Proof. Recall from Part (3) of Lemma 2.3 that Πn´1
i“1 τp1,1q “ τpn,n´2q and from Part (2) of

Lemma 2.3 we have that
`

Πn´1
i“1 τp1,1q

˘

‹τλ “ qτp2n´1,´1q `qτp2n´2q. Multiplying σλ “ τλ ´aq

by
`

Πn´1
i“1 σp1,1q

˘

and substituting in the identities yields
`

Πn´1
i“1 σp1,1q

˘

‹ σλ “
`

Πn´1
i“1 τp1,1q

˘

‹ τλ ´ a
`

Πn´1
i“1 τp1,1q

˘

q

“ qτp2n´1,´1q ` qτp2n´2q ´ aqτpn,n´2q

“ qσp2n´1,´1q ` qσp2n´2q ´ aqσpn,n´2q.

It follows from Condition (**) that a ď 0. □

We conclude the section by showing that a ě 0 in the next lemma.

Lemma 3.4. Let |λ| “ 2n. If τλ “ σλ ` aq and Condition (**) holds then a ě 0.

Proof. Let λj “ pn`1`j, n´1´jq for all j “ 0, 1, 2, ..., n´2. Assume that τλj “ σλj `ajq.
Then for all 0 ď j ď n´ 2 it follows from the quantum Pieri rule that τp1,1q ‹ τpn`j,n´2´jq “

τλj . Since τpn`j,n´2´jq “ σpn`j,n´2´jq by Part (2) of Lemma 2.1, we have that

σp1,1q ‹ σpn`j,n´2´jq “ τp1,1q ‹ τpn`j,n´2´jq “ τλj “ σλj ` ajq.

It follows from Condition (**) that aj ě 0 for all j “ 0, ¨ ¨ ¨ , n ´ 2. □

4. The |λ| ą 2n case

In this section we will assume that |λ| ą 2n. Recall that by Proposition 2.1 it must be
the case that τλ “ σλ `

ř

|µ|`2n“|λ| aµqσµ.

Lemma 4.1. Let |λ| ą 2n. If τλ “ σλ `
ř

|µ|`2n“|λ| aµqσµ and Condition (**) holds then

aµ ď 0 or there is a µ1 such that aµ ` aµ1 ď 0.

Proof. If |λ| ą 2n then λ1 ě n ` 1. Let t :“ 2n ´ λ1 ď n ´ 1. Let Apλq “ σλ2`t if
λ2 ` t ‰ 2n ´ 2 and Apλq “ σp2n´1,´1q ` σp2n´2q if λ2 ` t “ 2n ´ 2. We will multiply

σλ “ τλ ´
ř

|µ|`2n“|λ| aµqσµ by
`

Πt
i“1τp1,1q

˘

. By Part (2) of Lemma 2.3 we have that
`

Πt
i“1τp1,1q

˘

‹ τλ “ qApλq. Since λ2 ` t ă λ1 ` t “ 2n, we have that

`

Πt
i“1σp1,1q

˘

‹ σλ “ qApλq ´
`

Πt
i“1σp1,1q

˘

‹

¨

˝

ÿ

|µ|`2n“|λ|

aµqσµ

˛

‚.

Next observe that 2t` |µ| “ 2t` |λ| ´ 2n “ 2n´ λ1 ` λ2 ď 2n´ 1. So, one of the following
must occur:

‚ If 2t ` |µ| ď 2n ´ 3 then by Part (4) of Lemma 2.3 we have
`

Πt
i“1σp1,1q

˘

‹ σµ “
`

Πt
i“1τp1,1q

˘

‹ τµ “ τpµ1`t,µ2`tq “ σpµ1`t,µ2`tq.

‚ If 2t ` |µ| “ 2n ´ 1 or 2n ´ 2 then by Part (5) of Lemma 2.3 we have
`

Πt
i“1σp1,1q

˘

‹ σµ “
`

Πt
i“1τp1,1q

˘

‹ τµ “ τpµ1`t,µ2`tq ` τpµ1`t`1,µ2`t´1q

“ σpµ1`t`1,µ2`t´1q ` σpµ1`t,µ2`tq.
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Then P :“
`

Πt
i“1σp1,1q

˘

‹σλ equals the following where terms are omitted when they do not
satisfy the ring grading.

P “ qApλq ´

¨

˚

˚

˝

ÿ

|µ|`2n“|λ|

2t`|µ|ď2n´3

aµqσpµ1`t,µ2`tq

˛

‹

‹

‚

´

¨

˚

˚

˝

ÿ

|µ|`2n“|λ|

2t`|µ|“2n´1

aµq
`

σpµ1`t`1,µ2`t´1q ` σpµ1`t,µ2`tq

˘

˛

‹

‹

‚

´

¨

˚

˚

˝

ÿ

|µ|`2n“|λ|

2t`|µ|“2n´2

aµq
`

σpµ1`t`1,µ2`t´1q ` σpµ1`t,µ2`tq

˘

˛

‹

‹

‚

.

We have the following two equalities that will be used to precisely write the summations
for the 2t ` |µ| “ 2n ´ 1 and 2t ` |µ| “ 2n ´ 2 cases.

`

Πt
i“1σp1,1q

˘

‹ σp2n´1´2t´i,iq “ σp2n´t´i,t´1`iq ` σp2n´1´t´i,t`iq for 0 ď i ă n ´ 1 ´ t.

`

Πt
i“1σp1,1q

˘

‹ σp2n´2´2t´i,iq “

#

σp2n´1´t´i,t´1`iq ` σp2n´2´t´i,t`iq : 0 ď i ă n ´ 1 ´ t

σpn,n´2q : i “ n ´ 1 ´ t.

To simplify notation we will let ai “ ap2n´1´2t´i,iq and bi “ ap2n´2´2t´i,iq for 0 ď i ď n´1´t.
Then we have the following identities.

ÿ

|µ|`2n“|λ|

2t`|µ|“2n´1

aµq
`

σpµ1`t`1,µ2`t´1q ` σpµ1`t,µ2`tq

˘

“

n´1´t
ÿ

i“0

aiq
`

σp2n´t´i,t´1`iq ` σp2n´1´t´i,t`iq

˘

.

ÿ

|µ|`2n“|λ|

2t`|µ|“2n´2

aµq
`

σpµ1`t`1,µ2`t´1q ` σpµ1`t,µ2`tq

˘

“

˜

n´2´t
ÿ

i“0

biq
`

σp2n´1´t´i,t´1`iq ` σp2n´2´t´i,t`iq

˘

¸

` bn´1´tσpn,n´2q.

It follows that

P “ qApλq ´

¨

˚

˚

˝

ÿ

|µ|`2n“|λ|

2t`|µ|ď2n´3

aµqσpµ1`t,µ2`tq

˛

‹

‹

‚

´

˜

n´1´t
ÿ

i“0

aiq
`

σp2n´t´i,t´1`iq ` σp2n´1´t´i,t`iq

˘

¸

´

˜

n´2´t
ÿ

i“0

biq
`

σp2n´1´t´i,t´1`iq ` σp2n´2´t´i,t`iq

˘

¸

´ bn´1´tσpn,n´2q.
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Reorganizing the second two sums yields the following equation.

P “ qApλq ´

¨

˚

˚

˝

ÿ

|µ|`2n“|λ|

2t`|µ|ď2n´3

aµqσpµ1`t,µ2`tq

˛

‹

‹

‚

´ a0qσp2n´t,t´1q ´

˜

n´2´t
ÿ

i“0

pai ` ai`1qqσp2n´1´t´i,t`iq

¸

´ an´1´tqσpn`1,n´2q

´ b0qσp2n´1´t,t´1q ´

˜

n´2´t
ÿ

i“0

pbi ` bi`1qqσp2n´2´t´i,t`iq

¸

.

When |µ| ` 2n “ |λ| and 2t ` |µ| ď 2n ´ 3, we have that aµ ď 0 by Condition (**). In
the remaining cases, notice by Condition (**) that ai ` ai`1 ď 0 or bi ` bi`1 ď 0 for all
0 ď i ď n ´ 2 ´ t. The result follows. □

Proposition 4.2. Let |λ| ą 2n. If τλ “ σλ `
ř

|µ|`2n“|λ| aµqσµ and Condition (**) holds

then aµ “ 0.

Proof. We proceed by induction. Suppose τλ “ σλ for all |λ| ď s where s ě 2n. Consider
|λ| “ s ` 1. Since |λ| ě 2n ` 1 for |λ| “ s ` 1, and by an application of the quantum Pieri
rule, we have that τp1,1q ‹ τpλ1´1,λ2´1q “ τλ. Observe that τpλ1´1,λ2´1q “ σpλ1´1,λ2´1q by the
inductive hypothesis. Then

σp1,1q ‹ σpλ1´1,λ2´1q “ τp1,1q ‹ τpλ1´1,λ2´1q “ τλ “ σλ `
ÿ

|µ|`2n“|λ|

aµqσµ.

So, aµ ě 0 by Condition (**). By Lemma 4.1, either aµ ď 0 or there is a µ1 such that
aµ ` aµ1 ď 0. In either case, this implies aµ “ 0 since aµ ě 0 and aµ1 ě 0. The result
follows. □
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