POSITIVITY DETERMINES THE QUANTUM COHOMOLOGY OF THE
ODD SYMPLECTIC GRASSMANNIAN OF LINES

RYAN M. SHIFLER

ABSTRACT. Let IG := IG(2,2n+1) denote the odd symplectic Grassmannian of lines which
is a horospherical variety of Picard rank 1. The quantum cohomology ring QH*(IG) has
negative structure constants. For n > 3, we give a positivity condition that implies the
quantum cohomology ring QH*(IG) is the only quantum deformation of the cohomology
ring H*(IG) up to the scaling of the quantum parameter. This is a modification of a
conjecture by Fulton.

1. INTRODUCTION

Let IG := IG(2,2n + 1) denote the odd symplectic Grassmannian of lines which is a
horospherical variety of Picard rank 1. This is the parameterization of two dimensional
subspaces of C2"*! that are isotropic with respect to a general skew-symmetric form. The
quantum cohomology ring (QH*(IG), *) is a graded algebra over Z[q]| where ¢ is the quantum
parameter and deg g = 2n. The ring has a Schubert basis given by {7 : A € A} where

A= {()\1,A2) 2n—1=2X M =2X=-1, A{>n—-2= X > X, and o = =1 = A\ = 277,—1}.

We will often write 7; in place of 7(; ). We define [A\| = A1 + g for any A € A. Then
deg(7x) = [A|. The ring multiplication is given by 7\ » 7, = 3, cz’iqdﬂ, where ci’i is
the degree d Gromov-Witten invariant of 7y, 7,, and the Poicaré dual of 7,. Unlike the
homogeneous G/P case, the Gromov-Witten invariants may be negative. For example, in

IG(2,5), we have

T(3,-1) * T(3,—1) = T(3,1) — ¢ and T(3.1) * T(3,—1) = —T(3,2) + ¢71.

The quantum Pieri rule has only non-negative coefficients and is stated in Proposition 2.2.
See [Pec13,MS19, GPPS19] for more details on IG.

Definition 1.1. For any given collection of constants {a, € Q : p € A}, a quantum defor-
mation with the corresponding basis {o) : A € A} is defined as a solution to the following
system:

T,\=0>\+Z Z aqua# ,AEA.
J21 \|pl+2nj=|Al

Remark 1.2. Tt is always possible to re-scale the quantum parameter g by a positive factor
a > 0, or equivalently, multiply each Gromov-Witten invariant ci’i by o~ We only

consider the a = 1 case in this manuscript.

To contextualize the significance of quantum deformations we review the following con-
jecture by Fulton for Grassmannians and its extension to a more general case by Buch and
Wang in [BW21, Conjecture 1].
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Conjecture 1. Let X = G/P be any flag variety of simply laced Lie type. Then the
Schubert basis of QH*(X) is the only homogeneous Q|q]-basis that deforms the Schubert
basis of H*(X,Q) and multiplies with non-negative structure constants.

This conjecture is shown to hold for any Grassmannian and a few other examples in
[BW21]. Li and Li proved the result for symplectic Grassmannians 1G(2,2n) with n > 3
in [LL23]. The condition that the root system of G be simply laced is necessary since
the conjecture fails to hold for the Lagrangian Grassmannian 1G(2,4) as shown in [BW21,
Example 6]. However, this conjecture is not applicable to IG(2,2n + 1) since negative
coefficients appear in quantum products for any n. We are able to modify the positivity
condition on Fulton’s conjecture to arrive at a uniqueness result for quantum deformations.

Definition 1.3. For IG(2,2n + 1) we will use (**) to denote the condition that the coef-
ficients of the quantum multiplication of o(; ;) and any o, in the basis {o) : A € A} are
polynomials in ¢ with non-negative coefficients.

We are ready to state the main result.

Theorem 1.4. Let n = 3. Suppose that {o) : A € A} is a quantum deformation of the
Schubert basis {1y : A € A} of QH*(IG) such that Condition (**) holds. Then T\ = oy for
all A € A.

Remark 1.5. The methods used in this manuscript are motivated by those of Li and Li in
[LL23]. In particular, multiplication by 7(; 1), which is not a generator, is all that we use to
establish the uniqueness of the quantum deformation.

In Section 2 we prove the main result for the |\| < 2n case, state the quantum Pieri
rule, and give identities for later in the paper; in Section 3 we prove the main result for the
|A| = 2n case; and in Section 4 we prove the main result for the |A\| > 2n case. Theorem
1.4 follows from Propositions 2.1, 3.1, and 4.2.

Acknowledgements. 1 would like to thank an anonymous referee for identifying a gap in
the argument for the |A| > 2n case. I would also like to thank Leonardo Mihalcea for a very
useful conversation.

2. PRELIMINARIES

We begin the section with a proposition that reduces the number of possible quantum
deformations that we need to check. This is accomplished by using the grading. The
proposition also states our main result for the || < 2n case.

Proposition 2.1. We have the following results.
(1) We have that T = o) + Z|u|+2n:|>\| auqoy,.
(2) If |\| < 2n then T\ = o).

Proof. The first part follows since || < dim(IG(2,2n + 1) = 4n — 3 < 4n = 2deg g for any
A € A. The second part follows immediately from the grading. g

Next we state the quantum Pieri rule for IG(2,2n + 1).
Proposition 2.2. [Pecl3, Theorem 1] The quantum Pieri rule.

Ta+1,b + Tab+1 ifa+b#2n—3 and a # 2n — 1,
Taptl + 2Taq1p + Tag2p—1  ifa+b=2n—3,

TL*Tab = 3 Ton—1b+1 + qTh ifa=2n—1and 0 <b<2n—3,
Ton—1 a=2n—1and b= —1,

q(Ton—1,-1 + T2n—2) a=2n—1 and b =2n — 2.



Ta+1,b+1 ifa+b#2n—4,2n—3 anda # 2n — 1,
= Tat2d + Tat1,p4+1 ifa+b=2n—4 or2n — 3,
117 Yab qTh11 ifa=2n—1 and b # 2n — 3,

q(Ton—1,-1 + Ton—2) a=2n—1and b=2n— 3.

Lemma 2.3. We have the following identities.
(1) Lett <n—2. Then

Ott) = T(tt) = Hf:ﬁ(l,l) = Hg:lo-(l,l)-
(2) Let |\ = 2n and t :=2n — \;.
(a) If Ao +1 # 2n — 2. Then
(o1 7(1,1)) * T = 470 )
(b) If \a+t =2n—2. Then

(Hﬁle(l,l)) * T\ = (T(2n—1,—1) T 4T(2n—2)-
(3) We have that
H?:_llT(Ll) = T(nn—2)-
(4) If 2t + |u| < 2n — 3 and t < n — 2 then
(H§=17—(1a1)) * i = T(uytt,patt):
(5) If 2t + |u| =2n— 2 or2n—1 and t < n — 2 then
(H§:17'(1,1)) * Ty = T +t4+1,p0+t—1) T (1 +t,pa+t)-

Proof. Part (1) is clear since 2t < 2n — 4. For Part (2), 7(1,1) * T—1,0-1) * TA = T(1,1) *
T2n—1 2+t—1) = 4T(Aa+t) OF T(1,1) * T(t—14t—1) * TA = T(1,1) * T(2n—1, a+t—1) = 4T(2n-1,-1) T
qT(2n—2)- For Part (3), 71 1) * H;‘Z_ET(M) = T(1,1) * Tn—2,n—2) = T(nn—2)- Part (4) is clear.
For Part (5), we have 7(; ;) * (Hf;iqm)) * Ty = T(L0) * T t—lpoti—1) = T(ui+tpa+t) +

T(u1+t+1,us+¢—1)- Lhis completes the proof.

3. THE |\| = 2n CASE

In this section we will assume that |A\| = 2n. The main proposition of this section is
stated next.

Proposition 3.1. Let |\| = 2n. If 7\ = o) + aq and Condition (**) holds then T = oy.

Proof. By Proposition 2.1 it must be the case that 7\ = o) +agq. We show a < 0 in two parts.
Lemma 3.2 considers the A\; = n + 2 case and Lemma 3.3 considers the A = (n +1,n — 1)
case. We show a > 0 in Lemma 3.4 as a straightforward application of the quantum Pieri
rule. This completes the proof. O

Lemma 3.2. Let |\| = 2n and \; = n + 2. If 7\ = ox + aq and Condition (**) holds then
a < 0.

Proof. Let t := 2n — Ay < n — 2. Note that ¢ + \;y = 2n. Then we have the following by
multiplying o) = 7 — aq by (ngla(l,l)) and using Part (1) of Lemma 2.3.

(H§:10(1,1)) *OXN= T(tt) * TA — A0 ()]
By Part (2) of Lemma 2.3 we have 7(; ) * Tx = qT(ny4+t) = q0(rg+t)- SO,

(Ii—10(1,1)) * Ox = 40 (rs 1) — AT (1,1) -
It follows from Condition (**) that a < 0. O
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We will now prove a < 0 for the A = (n + 1,n — 1) case.
Lemma 3.3. Let A\ = (n+1,n—1). If 7\ = o) + aq and Condition (**) holds then a < 0.

Proof. Recall from Part (3) of Lemma 2.3 that H?:_llT(Ll) = T(n,n—2) and from Part (2) of
Lemma 2.3 we have that (H?:]IT(LD) *TA = qT(2n—1,-1) T qT(2n—2)- Multiplying o\ = 7\ —ag
by (H?;lla(m)) and substituting in the identities yields

(Mloan) xon = (5ra) »m—a (IG5 700) ¢

= (4T(2n-1,-1) T 4T(2n—2) — Q4T (n,n—2)
= q0(2p—1,—1) T 40(2p—2) — G0 (1, n—2)-

It follows from Condition (**) that a < 0. O

We conclude the section by showing that a > 0 in the next lemma.
Lemma 3.4. Let |A| = 2n. If T\ = o) + aq and Condition (**) holds then a > 0.

Proof. Let M = (n+1+j,n—1—7) forallj =0,1,2,...,n—2. Assume that 7; = 0y, +a;q.
Then for all 0 < j < n—2 it follows from the quantum Pieri rule that 7(; 1) * T(y45,n—2—j) =
Tyi- SINCe T4 jn—2—j) = O(n+jn—2—j) by Part (2) of Lemma 2.1, we have that

T(11) * O(ntjn—2-5) = T(11) * Tn+jm—2-5) = TN = On + 454

It follows from Condition (**) that a; > 0 for all j =0,--- ,n —2. O

4. THE |\| > 2n CASE

In this section we will assume that |A| > 2n. Recall that by Proposition 2.1 it must be
the case that 7, = oy + Z\uH?n:MI a,qoy,.

Lemma 4.1. Let [A| > 2n. If 7a = ox + 2,100y @40 and Condition (**) holds then
ay < 0 or there is a i’ such that a, + a,y < 0.

Proof. If |\| > 2n then \y > n+ 1. Let t := 2n — A1 < n—1. Let A(\) = oy,4¢ if
A2+t # 2n —2 and A(\) = 0(2p-1,-1) + Oan—2) if A2 +t = 2n — 2. We will multiply
o\ = TA — Z|M|+2n=l>\| a,qo, by (HleT(Ll)). By Part (2) of Lemma 2.3 we have that
(Hf-:lT(Ll)) * T\ = qA()N). Since Ay +t < A1 + ¢t = 2n, we have that

(nglo'(l,l)) *ON = qA()\) - (H§:10(1,1)) * Z a,qoy,
|| +2n=|A|

Next observe that 2t + |u| = 2t + |A\| — 2n = 2n — A\ + A2 < 2n — 1. So, one of the following
must occur:

o If 2t + |pu] < 2n — 3 then by Part (4) of Lemma 2.3 we have
(Wicao1n) * 0 = (TaaT(1,1) * T = Tt st) = OGu i s)-
o If 2t + || = 2n — 1 or 2n — 2 then by Part (5) of Lemma 2.3 we have

t t
(Hz‘:ﬂ’(l,l)) *Op = (Hz':lT(Ll)) * T = T(pa+tpa+t) T T(un+t+1,pa+t—1)

O(pn+t+1,p0+t—1) T O (pg +t,po+t)-
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Then P := (ngla(l,l)) * o) equals the following where terms are omitted when they do not
satisfy the ring grading.

P = qA(N) - Z Apqo (py+t,po+t) | — Z anq (U(H1+t+1,u2+t—1) + U(u1+t,u2+t))
|| +2n=|A| || +2n=|Al
2t+|p|<2n—3 2t+|p|=2n—1

- Z ang (U(m 1l pott—1) T Oy +t,uz+t))
lul+2n=I)|
2+ |p|=2n—2

We have the following two equalities that will be used to precisely write the summations

for the 2t + |u| = 2n — 1 and 2t + |u| = 2n — 2 cases.

(Hlea(l,l)) * O(2n—1-2t—iyi) = O@n—t—it—1+i) T O@n—1—t—it+q) for 0 St <n—1—4¢

T@n—1—t—it—1+i) T O@n-2—t—it+i) 0t <n—1-—1

I _ * O (2n—2-2—ii) =
( 1_10'(1,1)) 0 (2n—2—2t—i,i) {J(n,n—Q) i— 11—t

To simplify notation we will let a; = a(2,,—1-2¢—i ) and b; = a2, 2944 for 0 <i < n—1—1.
Then we have the following identities.

n—1—t
Z auq (U(M1+t+17uz+t—l) + O—(M1+t7/i2+t)) aiq (U(Qn—t—i,t—l-'ri) + U(?n—l—t—i,t+i)) .
|l +2n=|A| i=0
2t+|pu|=2n—1
n—2—t
Z auq (U(u1+t+1,uz+t—1) + J(u1+1t,u2+t)) = Z biq (U(2n—1—t—i,t—1+i) + U(2n—2—t—i,t+i))
|l +2n=(|A| i=0
2t+|pu|=2n—2

+ bn—l—tg(n,an) .

It follows that

n—1—t
P = qA()\) - Z g0 (uy+t,us+t) | — < aiq (U(2n—t—z‘,t—1+i) + U(2n—1—t—i,t+i))>

|pl+2n=[Al
2t+|pu|<2n—3

n—2—t
- ( Z biq (U(Qn—l—t—i,t—1+i) + U(zn—z—t—i,t+i))> - bnflfto'(n,n—Z)'
i=0

1=0
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Reorganizing the second two sums yields the following equation.

P = qA()‘) - 2 Qg0 (uy+t,us+t)
|l +2n=|A|
2t+|p|<2n—3
n—2—t
— @090 (2n—tt—1) — Z (ai+ai+1)q0(2n—1—t—i,t+i) — n—1-t90 (n+1,n—2)
ln02 t
— boqoan—1-t4-1) — Z (bi + bi+1)q0 (2n—2—t—it+i)

When |u| + 2n = |A| and 2t + |,u| < 2n — 3, we have that a, < 0 by Condition (**). In
the remaining cases, notice by Condition (**) that a; + a;+1 < 0 or b; + b;41 < 0 for all
0 <i<n—2-—t. The result follows. O

Proposition 4.2. Let [A| > 2n. If Ty = ox + 2,120 |5 @ud0u and Condition (**) holds
then a, = 0.

Proof. We proceed by induction. Suppose 7y = o for all |[\| < s where s = 2n. Consider
|A| = s+ 1. Since |A| = 2n + 1 for |\| = s + 1, and by an application of the quantum Pieri
rule, we have that 7(; 1) * 7\, —1,3,-1) = Tx- Observe that 7\, —123,-1) = 0\ —1,0,—1) by the
inductive hypothesis. Then

O(1,1) * O\ —1,h2—1) = T(L,1) * T\ —1,Ao—1) = TA = O\ + Z auqoy.
|| +2n=[A|

So, a, = 0 by Condition (**). By Lemma 4.1, either a, < 0 or there is a p' such that
ay + a, < 0. In either case, this implies a, = 0 since a;, > 0 and a, > 0. The result
follows. O
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