POSITIVITY DETERMINES THE QUANTUM COHOMOLOGY OF THE ODD SYMPLECTIC GRASSMANNIAN OF LINES

RYAN M. SHIFLER

Abstract

Let IG $:=\mathrm{IG}(2,2 n+1)$ denote the odd symplectic Grassmannian of lines which is a horospherical variety of Picard rank 1 . The quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IG})$ has negative structure constants. For $n \geqslant 3$, we give a positivity condition that implies the quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IG})$ is the only quantum deformation of the cohomology ring $\mathrm{H}^{*}(\mathrm{IG})$ up to the scaling of the quantum parameter. This is a modification of a conjecture by Fulton.

1. Introduction

Let $\mathrm{IG}:=\operatorname{IG}(2,2 n+1)$ denote the odd symplectic Grassmannian of lines which is a horospherical variety of Picard rank 1. This is the parameterization of two dimensional subspaces of $\mathbb{C}^{2 n+1}$ that are isotropic with respect to a general skew-symmetric form. The quantum cohomology ring ($\mathrm{QH}^{*}(\mathrm{IG}), \star$) is a graded algebra over $\mathbb{Z}[q]$ where q is the quantum parameter and $\operatorname{deg} q=2 n$. The ring has a Schubert basis given by $\left\{\tau_{\lambda}: \lambda \in \Lambda\right\}$ where
$\Lambda:=\left\{\left(\lambda_{1}, \lambda_{2}\right): 2 n-1 \geqslant \lambda_{1} \geqslant \lambda_{2} \geqslant-1, \lambda_{1}>n-2 \Rightarrow \lambda_{1}>\lambda_{2}\right.$, and $\left.\lambda_{2}=-1 \Rightarrow \lambda_{1}=2 n-1\right\}$.
We will often write τ_{i} in place of $\tau_{(i, 0)}$. We define $|\lambda|=\lambda_{1}+\lambda_{2}$ for any $\lambda \in \Lambda$. Then $\operatorname{deg}\left(\tau_{\lambda}\right)=|\lambda|$. The ring multiplication is given by $\tau_{\lambda} \star \tau_{\mu}=\sum_{\nu, d} c_{\lambda, \mu}^{\nu, d} q^{d} \tau_{\nu}$ where $c_{\lambda, \mu}^{\nu, d}$ is the degree d Gromov-Witten invariant of $\tau_{\lambda}, \tau_{\mu}$, and the Poicaré dual of τ_{ν}. Unlike the homogeneous G / P case, the Gromov-Witten invariants may be negative. For example, in $\operatorname{IG}(2,5)$, we have

$$
\tau_{(3,-1)} \star \tau_{(3,-1)}=\tau_{(3,1)}-q \text { and } \tau_{(2,1)} \star \tau_{(3,-1)}=-\tau_{(3,2)}+q \tau_{1} .
$$

The quantum Pieri rule has only non-negative coefficients and is stated in Proposition 2.2. See [Pec13, MS19, GPPS19] for more details on IG.

Definition 1.1. For any given collection of constants $\left\{a_{\mu} \in \mathbb{Q}: \mu \in \Lambda\right\}$, a quantum deformation with the corresponding basis $\left\{\sigma_{\lambda}: \lambda \in \Lambda\right\}$ is defined as a solution to the following system:

$$
\tau_{\lambda}=\sigma_{\lambda}+\sum_{j \geqslant 1}\left(\sum_{|\mu|+2 n j=|\lambda|} a_{\mu} q^{j} \sigma_{\mu}\right), \lambda \in \Lambda .
$$

Remark 1.2. It is always possible to re-scale the quantum parameter q by a positive factor $\alpha>0$, or equivalently, multiply each Gromov-Witten invariant $c_{\lambda, \mu}^{\nu, d}$ by α^{-d}. We only consider the $\alpha=1$ case in this manuscript.

To contextualize the significance of quantum deformations we review the following conjecture by Fulton for Grassmannians and its extension to a more general case by Buch and Wang in [BW21, Conjecture 1].

[^0]Conjecture 1. Let $X=G / P$ be any flag variety of simply laced Lie type. Then the Schubert basis of $\mathrm{QH}^{*}(X)$ is the only homogeneous $\mathbb{Q}[q]$-basis that deforms the Schubert basis of $H^{*}(X, \mathbb{Q})$ and multiplies with non-negative structure constants.

This conjecture is shown to hold for any Grassmannian and a few other examples in [BW21]. Li and Li proved the result for symplectic Grassmannians $\operatorname{IG}(2,2 n)$ with $n \geqslant 3$ in [LL23]. The condition that the root system of G be simply laced is necessary since the conjecture fails to hold for the Lagrangian Grassmannian $\operatorname{IG}(2,4)$ as shown in [BW21, Example 6]. However, this conjecture is not applicable to $\operatorname{IG}(2,2 n+1)$ since negative coefficients appear in quantum products for any n. We are able to modify the positivity condition on Fulton's conjecture to arrive at a uniqueness result for quantum deformations.
Definition 1.3. For $\operatorname{IG}(2,2 n+1)$ we will use $\left({ }^{* *}\right)$ to denote the condition that the coefficients of the quantum multiplication of $\sigma_{(1,1)}$ and any σ_{μ} in the basis $\left\{\sigma_{\lambda}: \lambda \in \Lambda\right\}$ are polynomials in q with non-negative coefficients.

We are ready to state the main result.
Theorem 1.4. Let $n \geqslant 3$. Suppose that $\left\{\sigma_{\lambda}: \lambda \in \Lambda\right\}$ is a quantum deformation of the Schubert basis $\left\{\tau_{\lambda}: \lambda \in \Lambda\right\}$ of $\mathrm{QH}^{*}(\mathrm{IG})$ such that Condition $\left({ }^{* *}\right)$ holds. Then $\tau_{\lambda}=\sigma_{\lambda}$ for all $\lambda \in \Lambda$.
Remark 1.5. The methods used in this manuscript are motivated by those of Li and Li in [LL23]. In particular, multiplication by $\tau_{(1,1)}$, which is not a generator, is all that we use to establish the uniqueness of the quantum deformation.

In Section 2 we prove the main result for the $|\lambda|<2 n$ case, state the quantum Pieri rule, and give identities for later in the paper; in Section 3 we prove the main result for the $|\lambda|=2 n$ case; and in Section 4 we prove the main result for the $|\lambda|>2 n$ case. Theorem 1.4 follows from Propositions 2.1, 3.1, and 4.2.

Acknowledgements. I would like to thank an anonymous referee for identifying a gap in the argument for the $|\lambda|>2 n$ case. I would also like to thank Leonardo Mihalcea for a very useful conversation.

2. Preliminaries

We begin the section with a proposition that reduces the number of possible quantum deformations that we need to check. This is accomplished by using the grading. The proposition also states our main result for the $|\lambda|<2 n$ case.

Proposition 2.1. We have the following results.
(1) We have that $\tau_{\lambda}=\sigma_{\lambda}+\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}$.
(2) If $|\lambda|<2 n$ then $\tau_{\lambda}=\sigma_{\lambda}$.

Proof. The first part follows since $|\lambda| \leqslant \operatorname{dim}(\operatorname{IG}(2,2 n+1)=4 n-3<4 n=2 \operatorname{deg} q$ for any $\lambda \in \Lambda$. The second part follows immediately from the grading.

Next we state the quantum Pieri rule for $\operatorname{IG}(2,2 n+1)$.
Proposition 2.2. [Pec13, Theorem 1] The quantum Pieri rule.

$$
\tau_{1} \star \tau_{a, b}= \begin{cases}\tau_{a+1, b}+\tau_{a, b+1} & \text { if } a+b \neq 2 n-3 \text { and } a \neq 2 n-1, \\ \tau_{a, b+1}+2 \tau_{a+1, b}+\tau_{a+2, b-1} & \text { if } a+b=2 n-3, \\ \tau_{2 n-1, b+1}+q \tau_{b} & \text { if } a=2 n-1 \text { and } 0 \leqslant b \leqslant 2 n-3, \\ \tau_{2 n-1} & a=2 n-1 \text { and } b=-1, \\ q\left(\tau_{2 n-1,-1}+\tau_{2 n-2}\right) & a=2 n-1 \text { and } b=2 n-2 .\end{cases}
$$

$$
\tau_{1,1} \star \tau_{a, b}= \begin{cases}\tau_{a+1, b+1} & \text { if } a+b \neq 2 n-4,2 n-3 \text { and } a \neq 2 n-1 \\ \tau_{a+2, b}+\tau_{a+1, b+1} & \text { if } a+b=2 n-4 \text { or } 2 n-3 \\ q \tau_{b+1} & \text { if } a=2 n-1 \text { and } b \neq 2 n-3 \\ q\left(\tau_{2 n-1,-1}+\tau_{2 n-2}\right) & a=2 n-1 \text { and } b=2 n-3\end{cases}
$$

Lemma 2.3. We have the following identities.
(1) Let $t \leqslant n-2$. Then

$$
\sigma_{(t, t)}=\tau_{(t, t)}=\Pi_{i=1}^{t} \tau_{(1,1)}=\Pi_{i=1}^{t} \sigma_{(1,1)}
$$

(2) Let $|\lambda| \geqslant 2 n$ and $t:=2 n-\lambda_{1}$.
(a) If $\lambda_{2}+t \neq 2 n-2$. Then

$$
\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\lambda}=q \tau_{\left(\lambda_{2}+t\right)}
$$

(b) If $\lambda_{2}+t=2 n-2$. Then

$$
\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\lambda}=q \tau_{(2 n-1,-1)}+q \tau_{(2 n-2)}
$$

(3) We have that

$$
\Pi_{i=1}^{n-1} \tau_{(1,1)}=\tau_{(n, n-2)}
$$

(4) If $2 t+|\mu| \leqslant 2 n-3$ and $t \leqslant n-2$ then

$$
\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\mu}=\tau_{\left(\mu_{1}+t, \mu_{2}+t\right)}
$$

(5) If $2 t+|\mu|=2 n-2$ or $2 n-1$ and $t \leqslant n-2$ then

$$
\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\mu}=+\tau_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\tau_{\left(\mu_{1}+t, \mu_{2}+t\right)}
$$

Proof. Part (1) is clear since $2 t \leqslant 2 n-4$. For Part (2), $\tau_{(1,1)} \star \tau_{(t-1, t-1)} \star \tau_{\lambda}=\tau_{(1,1)} \star$ $\tau_{\left(2 n-1, \lambda_{2}+t-1\right)}=q \tau_{\left(\lambda_{2}+t\right)}$ or $\tau_{(1,1)} \star \tau_{(t-1, t-1)} \star \tau_{\lambda}=\tau_{(1,1)} \star \tau_{\left(2 n-1, \lambda_{2}+t-1\right)}=q \tau_{(2 n-1,-1)}+$ $q \tau_{(2 n-2)}$. For Part (3), $\tau_{(1,1)} \star \Pi_{i=1}^{n-2} \tau_{(1,1)}=\tau_{(1,1)} \star \tau_{(n-2, n-2)}=\tau_{(n, n-2)}$. Part (4) is clear. For Part (5), we have $\tau_{(1,1)} \star\left(\Pi_{i=1}^{t-1} \tau_{(1,1)}\right) \star \tau_{\mu}=\tau_{(1,1)} \star \tau_{\left(\mu_{1}+t-1, \mu_{2}+t-1\right)}=\tau_{\left(\mu_{1}+t, \mu_{2}+t\right)}+$ $\tau_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}$. This completes the proof.

3. The $|\lambda|=2 n$ CASE

In this section we will assume that $|\lambda|=2 n$. The main proposition of this section is stated next.

Proposition 3.1. Let $|\lambda|=2 n$. If $\tau_{\lambda}=\sigma_{\lambda}+a q$ and Condition (**) holds then $\tau_{\lambda}=\sigma_{\lambda}$.
Proof. By Proposition 2.1 it must be the case that $\tau_{\lambda}=\sigma_{\lambda}+a q$. We show $a \leqslant 0$ in two parts. Lemma 3.2 considers the $\lambda_{1} \geqslant n+2$ case and Lemma 3.3 considers the $\lambda=(n+1, n-1)$ case. We show $a \geqslant 0$ in Lemma 3.4 as a straightforward application of the quantum Pieri rule. This completes the proof.

Lemma 3.2. Let $|\lambda|=2 n$ and $\lambda_{1} \geqslant n+2$. If $\tau_{\lambda}=\sigma_{\lambda}+a q$ and Condition (**) holds then $a \leqslant 0$.

Proof. Let $t:=2 n-\lambda_{1} \leqslant n-2$. Note that $t+\lambda_{1}=2 n$. Then we have the following by multiplying $\sigma_{\lambda}=\tau_{\lambda}-a q$ by $\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right)$ and using Part (1) of Lemma 2.3.

$$
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\lambda}=\tau_{(t, t)} \star \tau_{\lambda}-a \sigma_{(t, t)} q
$$

By Part (2) of Lemma 2.3 we have $\tau_{(t, t)} \star \tau_{\lambda}=q \tau_{\left(\lambda_{2}+t\right)}=q \sigma_{\left(\lambda_{2}+t\right)}$. So,

$$
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\lambda}=q \sigma_{\left(\lambda_{2}+t\right)}-a \sigma_{(t, t)} q
$$

It follows from Condition $\left({ }^{* *}\right)$ that $a \leqslant 0$.

We will now prove $a \leqslant 0$ for the $\lambda=(n+1, n-1)$ case.
Lemma 3.3. Let $\lambda=(n+1, n-1)$. If $\tau_{\lambda}=\sigma_{\lambda}+a q$ and Condition $\left.{ }^{* *}\right)$ holds then $a \leqslant 0$.
Proof. Recall from Part (3) of Lemma 2.3 that $\Pi_{i=1}^{n-1} \tau_{(1,1)}=\tau_{(n, n-2)}$ and from Part (2) of Lemma 2.3 we have that $\left(\Pi_{i=1}^{n-1} \tau_{(1,1)}\right) \star \tau_{\lambda}=q \tau_{(2 n-1,-1)}+q \tau_{(2 n-2)}$. Multiplying $\sigma_{\lambda}=\tau_{\lambda}-a q$ by $\left(\Pi_{i=1}^{n-1} \sigma_{(1,1)}\right)$ and substituting in the identities yields

$$
\begin{aligned}
\left(\Pi_{i=1}^{n-1} \sigma_{(1,1)}\right) \star \sigma_{\lambda} & =\left(\Pi_{i=1}^{n-1} \tau_{(1,1)}\right) \star \tau_{\lambda}-a\left(\Pi_{i=1}^{n-1} \tau_{(1,1)}\right) q \\
& =q \tau_{(2 n-1,-1)}+q \tau_{(2 n-2)}-a q \tau_{(n, n-2)} \\
& =q \sigma_{(2 n-1,-1)}+q \sigma_{(2 n-2)}-a q \sigma_{(n, n-2)}
\end{aligned}
$$

It follows from Condition (${ }^{* *}$) that $a \leqslant 0$.
We conclude the section by showing that $a \geqslant 0$ in the next lemma.
Lemma 3.4. Let $|\lambda|=2 n$. If $\tau_{\lambda}=\sigma_{\lambda}+a q$ and Condition (${ }^{* *}$) holds then $a \geqslant 0$.
Proof. Let $\lambda^{j}=(n+1+j, n-1-j)$ for all $j=0,1,2, \ldots, n-2$. Assume that $\tau_{\lambda^{j}}=\sigma_{\lambda^{j}}+a_{j} q$. Then for all $0 \leqslant j \leqslant n-2$ it follows from the quantum Pieri rule that $\tau_{(1,1)} \star \tau_{(n+j, n-2-j)}=$ $\tau_{\lambda^{j}}$. Since $\tau_{(n+j, n-2-j)}=\sigma_{(n+j, n-2-j)}$ by Part (2) of Lemma 2.1, we have that

$$
\sigma_{(1,1)} \star \sigma_{(n+j, n-2-j)}=\tau_{(1,1)} \star \tau_{(n+j, n-2-j)}=\tau_{\lambda^{j}}=\sigma_{\lambda^{j}}+a_{j} q
$$

It follows from Condition (${ }^{* *}$) that $a_{j} \geqslant 0$ for all $j=0, \cdots, n-2$.

4. The $|\lambda|>2 n$ CASE

In this section we will assume that $|\lambda|>2 n$. Recall that by Proposition 2.1 it must be the case that $\tau_{\lambda}=\sigma_{\lambda}+\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}$.

Lemma 4.1. Let $|\lambda|>2 n$. If $\tau_{\lambda}=\sigma_{\lambda}+\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}$ and Condition (${ }^{* *}$) holds then $a_{\mu} \leqslant 0$ or there is a μ^{\prime} such that $a_{\mu}+a_{\mu^{\prime}} \leqslant 0$.
Proof. If $|\lambda|>2 n$ then $\lambda_{1} \geqslant n+1$. Let $t:=2 n-\lambda_{1} \leqslant n-1$. Let $A(\lambda)=\sigma_{\lambda_{2}+t}$ if $\lambda_{2}+t \neq 2 n-2$ and $A(\lambda)=\sigma_{(2 n-1,-1)}+\sigma_{(2 n-2)}$ if $\lambda_{2}+t=2 n-2$. We will multiply $\sigma_{\lambda}=\tau_{\lambda}-\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}$ by $\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right)$. By Part (2) of Lemma 2.3 we have that $\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\lambda}=q A(\lambda)$. Since $\lambda_{2}+t<\lambda_{1}+t=2 n$, we have that

$$
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\lambda}=q A(\lambda)-\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star\left(\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}\right) .
$$

Next observe that $2 t+|\mu|=2 t+|\lambda|-2 n=2 n-\lambda_{1}+\lambda_{2} \leqslant 2 n-1$. So, one of the following must occur:

- If $2 t+|\mu| \leqslant 2 n-3$ then by Part (4) of Lemma 2.3 we have

$$
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\mu}=\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\mu}=\tau_{\left(\mu_{1}+t, \mu_{2}+t\right)}=\sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}
$$

- If $2 t+|\mu|=2 n-1$ or $2 n-2$ then by Part (5) of Lemma 2.3 we have

$$
\begin{aligned}
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\mu} & =\left(\Pi_{i=1}^{t} \tau_{(1,1)}\right) \star \tau_{\mu}=\tau_{\left(\mu_{1}+t, \mu_{2}+t\right)}+\tau_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)} \\
& =\sigma_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)} .
\end{aligned}
$$

Then $P:=\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{\lambda}$ equals the following where terms are omitted when they do not satisfy the ring grading.

$$
\begin{aligned}
P & =q A(\lambda)-\left(\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu| \leqslant 2 n-3}} a_{\mu} q \sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right)-\left(\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu|=2 n-1}} a_{\mu} q\left(\sigma_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right)\right) \\
& -\left(\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu|=2 n-2}} a_{\mu} q\left(\sigma_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\sigma_{\left.\left(\mu_{1}+t, \mu_{2}+t\right)\right)}\right) .\right.
\end{aligned}
$$

We have the following two equalities that will be used to precisely write the summations for the $2 t+|\mu|=2 n-1$ and $2 t+|\mu|=2 n-2$ cases.

$$
\begin{gathered}
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{(2 n-1-2 t-i, i)}=\sigma_{(2 n-t-i, t-1+i)}+\sigma_{(2 n-1-t-i, t+i)} \text { for } 0 \leqslant i<n-1-t . \\
\left(\Pi_{i=1}^{t} \sigma_{(1,1)}\right) \star \sigma_{(2 n-2-2 t-i, i)}= \begin{cases}\sigma_{(2 n-1-t-i, t-1+i)}+\sigma_{(2 n-2-t-i, t+i)} & : 0 \leqslant i<n-1-t \\
\sigma_{(n, n-2)} & : i=n-1-t .\end{cases}
\end{gathered}
$$

To simplify notation we will let $a_{i}=a_{(2 n-1-2 t-i, i)}$ and $b_{i}=a_{(2 n-2-2 t-i, i)}$ for $0 \leqslant i \leqslant n-1-t$. Then we have the following identities.

$$
\begin{aligned}
\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu|=2 n-1}} a_{\mu} q\left(\sigma_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right) & =\sum_{i=0}^{n-1-t} a_{i} q\left(\sigma_{(2 n-t-i, t-1+i)}+\sigma_{(2 n-1-t-i, t+i)}\right) . \\
\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu|=2 n-2}} a_{\mu} q\left(\sigma_{\left(\mu_{1}+t+1, \mu_{2}+t-1\right)}+\sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right) & =\left(\sum_{i=0}^{n-2-t} b_{i} q\left(\sigma_{(2 n-1-t-i, t-1+i)}+\sigma_{(2 n-2-t-i, t+i)}\right)\right) \\
& +b_{n-1-t} \sigma_{(n, n-2)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
P & =q A(\lambda)-\left(\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu| \leqslant 2 n-3}} a_{\mu} q \sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right)-\left(\sum_{i=0}^{n-1-t} a_{i} q\left(\sigma_{(2 n-t-i, t-1+i)}+\sigma_{(2 n-1-t-i, t+i)}\right)\right) \\
& -\left(\sum_{i=0}^{n-2-t} b_{i} q\left(\sigma_{(2 n-1-t-i, t-1+i)}+\sigma_{(2 n-2-t-i, t+i)}\right)\right)-b_{n-1-t} \sigma_{(n, n-2)} .
\end{aligned}
$$

Reorganizing the second two sums yields the following equation.

$$
\begin{aligned}
P & =q A(\lambda)-\left(\sum_{\substack{|\mu|+2 n=|\lambda| \\
2 t+|\mu| \leqslant 2 n-3}} a_{\mu} q \sigma_{\left(\mu_{1}+t, \mu_{2}+t\right)}\right) \\
& -a_{0} q \sigma_{(2 n-t, t-1)}-\left(\sum_{i=0}^{n-2-t}\left(a_{i}+a_{i+1}\right) q \sigma_{(2 n-1-t-i, t+i)}\right)-a_{n-1-t} q \sigma_{(n+1, n-2)} \\
& -b_{0} q \sigma_{(2 n-1-t, t-1)}-\left(\sum_{i=0}^{n-2-t}\left(b_{i}+b_{i+1}\right) q \sigma_{(2 n-2-t-i, t+i)}\right) .
\end{aligned}
$$

When $|\mu|+2 n=|\lambda|$ and $2 t+|\mu| \leqslant 2 n-3$, we have that $a_{\mu} \leqslant 0$ by Condition (**). In the remaining cases, notice by Condition $\left(^{* *}\right)$ that $a_{i}+a_{i+1} \leqslant 0$ or $b_{i}+b_{i+1} \leqslant 0$ for all $0 \leqslant i \leqslant n-2-t$. The result follows.

Proposition 4.2. Let $|\lambda|>2 n$. If $\tau_{\lambda}=\sigma_{\lambda}+\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}$ and Condition (**) holds then $a_{\mu}=0$.
Proof. We proceed by induction. Suppose $\tau_{\lambda}=\sigma_{\lambda}$ for all $|\lambda| \leqslant s$ where $s \geqslant 2 n$. Consider $|\lambda|=s+1$. Since $|\lambda| \geqslant 2 n+1$ for $|\lambda|=s+1$, and by an application of the quantum Pieri rule, we have that $\tau_{(1,1)} \star \tau_{\left(\lambda_{1}-1, \lambda_{2}-1\right)}=\tau_{\lambda}$. Observe that $\tau_{\left(\lambda_{1}-1, \lambda_{2}-1\right)}=\sigma_{\left(\lambda_{1}-1, \lambda_{2}-1\right)}$ by the inductive hypothesis. Then

$$
\sigma_{(1,1)} \star \sigma_{\left(\lambda_{1}-1, \lambda_{2}-1\right)}=\tau_{(1,1)} \star \tau_{\left(\lambda_{1}-1, \lambda_{2}-1\right)}=\tau_{\lambda}=\sigma_{\lambda}+\sum_{|\mu|+2 n=|\lambda|} a_{\mu} q \sigma_{\mu}
$$

So, $a_{\mu} \geqslant 0$ by Condition ${ }^{(* *)}$. By Lemma 4.1, either $a_{\mu} \leqslant 0$ or there is a μ^{\prime} such that $a_{\mu}+a_{\mu^{\prime}} \leqslant 0$. In either case, this implies $a_{\mu}=0$ since $a_{\mu} \geqslant 0$ and $a_{\mu^{\prime}} \geqslant 0$. The result follows.

References

[BW21] Anders S. Buch and Chengxi Wang, Positivity determines the quantum cohomology of Grassmannians, Algebra and Number Theory 15 (2021), no. 6, 1505-1521.
[GPPS19] Richard Gonzalez, Clélia Pech, Nicolas Perrin, and Alexander Samokhin, Geometry of horospherical varieties of Picard rank one, International Mathematics Research Notices (2019).
[LL23] Yan Li and Zhenye Li, On a conjecture of Fulton on isotropic Grassmannians, Birational Geometry, Kähler-Einstein Metrics and Degenerations, 2023, pp. 567-580.
[MS19] Leonardo C. Mihalcea and Ryan M. Shifler, Equivariant quantum cohomology of the odd symplectic Grassmannian, Mathematische Zeitschrift 291 (2019), no. 3-4, 1569-1603.
[Pec13] Clelia Pech, Quantum cohomology of the odd symplectic Grassmannian of lines, Journal of Algebra 375 (2013), 188-215.

Department of Mathematical Sciences, Henson Science Hall, Salisbury University, SalisBURY, MD 21801

Email address: rmshifler@salisbury.edu

[^0]: 2010 Mathematics Subject Classification. Primary 14N35; Secondary 14N15, 14M15.

