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Abstract. The odd symplectic Grassmannian IG :“ IGpk, 2n ` 1q parametrizes k di-
mensional subspaces of C2n`1 which are isotropic with respect to a general (necessarily
degenerate) symplectic form. The odd symplectic group acts on IG with two orbits, and IG
is itself a smooth Schubert variety in the submaximal isotropic Grassmannian IGpk, 2n`2q.
We use the technique of curve neighborhoods to prove a Chevalley formula in the equi-
variant quantum cohomology of IG, i.e. a formula to multiply a Schubert class by the
Schubert divisor class. This generalizes a formula of Pech in the case k “ 2, and it gives
an algorithm to calculate any multiplication in the equivariant quantum cohomology ring.

1. Introduction

Let E :“ C2n`1 be an odd-dimensional complex vector space and 1 § k § n`1. An odd-
symplectic form ! on E is a skew-symmetric bilinear form with kernel of dimension 1. The
odd-symplectic Grassmannian IG :“ IGpk,Eq parametrizes k-dimensional linear subspaces
of E which are isotropic with respect to !. One can find vector spaces F Ä E Ä rE such that
dimF “ 2n, dim rE “ 2n ` 2, the restriction of ! to F is non-degenerate, and ! extends to
a symplectic form (hence non-degenerate) on rE. Then the odd-symplectic Grassmannian
is an intermediate space

(1) IGpk ´ 1, F q Ä IGpk,Eq Ä IGpk, rEq,
sandwiched between two symplectic Grassmannians. This and the more general “odd-
symplectic partial flag varieties” have been studied by Mihai [28] and Pech [38]. In par-
ticular, Mihai showed that IGpk,Eq is a smooth Schubert variety in IGpk, rEq, and that it
admits an action of Proctor’s odd-symplectic group Sp2n`1 (see [39]). If k ‰ n ` 1 then the
odd-symplectic group acts on IGpk,Eq with 2 orbits, and the closed orbit can be identified
with IGpk ´ 1, F q. If k “ 1 then IGp1, Eq “ PpEq and if k “ n ` 1 then IGpn ` 1, Eq is
isomorphic to the Lagrangian Grassmannian IGpn, F q.

In this paper we are concerned with the study of the quantum cohomology ring QH˚
T

pIGq
of the odd-symplectic Grassmannians, and its T -equivariant version, where T is the max-
imal torus in Sp2n`1. Since IG is a Schubert variety in the symplectic Grassmannian

IGpk, rEq it follows that the (equivariant) fundamental classes of those Schubert varieties
Xpuq Ä IGpk, rEq included in IG form a basis for the (co)homology ring H˚pIGq; we call
this the Schubert basis. This implies that the graded algebra QH˚

T

pIGq has a Schubert basis
rXpuqs

T

over H˚
T

pptqrqs, indexed by a particular subset of Schubert classes in the quantum
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cohomology of QH˚
T

pIGpk, rEqq. There are Schubert multiplication formulas in QH˚
T

pIGq,
rXpuqs

T

‹ rXpvqs
T

“
ÿ

w,d

cw,d

u,v

qdrXpwqs
T

,

where cw,d

u,v

are the (equivariant) Gromov-Witten (GW) invariants for rational curves of
degree d in IG, and q is the quantum parameter.

Our main result is a combinatorial formula for the multiplication rXpuqs
T

‹ rDs
T

of any
Schubert class by the Schubert divisor class rDs

T

. This is called the (equivariant, quantum)
Chevalley formula. Before stating this formula explicitly, we discuss its significance.

It has been known at least since Knutson and Tao’s famous paper [21] that, despite
the fact that the Schubert divisor does not generate the cohomology ring, the equivariant
Chevalley formula gives a triangular system of equations calculating the Schubert structure
constants.1 Knutson and Tao worked in the geometric context of the (ordinary) equivariant
cohomology of the Grassmannian, and they used previous work of Okounkov-Olshanski
[35, 36] and Molev-Sagan [34] who studied a certain deformation of Schur polynomials,
called factorial Schur functions. This system was extended to the equivariant quantum
cohomology ring of flag manifolds in [30, 32] and very recently to quantum K theory [4],
but in these cases it is no longer triangular. In this paper we further extend these results
to the case of odd-symplectic Grassmannians: we use the Chevalley formula to obtain an
algorithm for calculating any structure constant cw,d

u,v

; see theorem 12.2 below. Its corollary
1.2, stated in the next section, makes precise the sense in which this formula determines
the ring structure.

The Chevalley formula technique was previously used to solve several cases of the Gi-
ambelli problem: find a presentation of the (equivariant, quantum) cohomology ring by
generators and relations, then identify the polynomials which represent Schubert classes;
see e. g. [40] for more on the history of this problem. Such results were obtained for the
equivariant quantum cohomology ring of the Grassmannian [33], of the orthogonal and La-
grangian Grassmannians [19], and of the equivariant cohomology of non-maximal isotropic
Grassmannians [41]. Although we do not pursue this application in this note, we believe
that the Chevalley technique will be a key ingredient. A third application, for which we
dedicate the paper [25] joint with C. Li, is to verify Galkin, Golyshev and Iritani’s Conjec-
ture O [10,13] for the odd-symplectic Grassmannians. This uses the explicit combinatorial
formulation of the Chevalley formula.

1.1. Statement of results. To state the Chevalley formula, we need to introduce a variant
of k-strict partitions of Buch, Kresch and Tamvakis [7]. This variant was used by Pech in
[37] to study the ordinary cohomology ring of IG, and the quantum cohomology ring of
IGp2, Eq in [38].

A partition p�1 • �2 • ¨ ¨ ¨ • �
k

q is pn ´ kq-strict if �
j

° n ´ k implies �
j

° �
j`1. Let

⇤ be the set of pn ´ kq-strict partitions p2n ` 1 ´ k • �1 • ¨ ¨ ¨ • �
k

• ´1q such that if
�
k

“ ´1 then �1 “ 2n ` 1 ´ k. For each � P ⇤ there is a Schubert variety in Xp�q Ä IG of
codimension |�| :“ �1 ` . . . ` �

k

. If �1 “ 2n ` 1 ´ k and �
k

• 0 then let

�˚ “ p�2 • �3 • ¨ ¨ ¨ • �
k

• 0q.
If �1 † 2n ` 1 ´ k or �

k

“ ´1 then �˚ does not exist. If �1 “ 2n ` 1 ´ k and �2 “ 2n ´ k
then let

�˚˚ “ p�1 • �3 • ¨ ¨ ¨ • �
k

• ´1q.
1This can be explained by using that the localized equivariant cohomology is generated by divisors; see

[4, §5].
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If �2 † 2n´k then �˚˚ does not exist. With this notation, the Schubert divisor isD “ Xp1q.
Theorem 1.1 (Quantum Chevalley formula). Let � P ⇤. Then the following holds in the
equivariant quantum cohomology ring QH˚

T

pIGpk,C2n`1q:
rXp1qs

T

‹ rXp�qs
T

“ Classical Part ` qrXp�˚qs
T

` qrXp�˚˚qs
T

.(2)

The terms involving �˚ or �˚˚ are omitted if the corresponding partitions do not exist. The
classical part consists of terms which do not involve q, and it is combinatorially explicit; see
Theorem 11.7 below.

This recovers Pech’s results in [38] for the non-equivariant ring QH˚pIGp2, Eqq and it
verifies a conjecture for QH˚pIGp3, Eqq stated in [37]. It is an easy exercise to check that
for k “ 1 one obtains the quantum Chevalley formula in QH˚

T

pP2nq and that for k “ n ` 1
it recovers the Chevalley formula for the Lagrangian Grassmannian IGpn, F q from [8, 23].
As we mentioned above, the Chevalley multiplication yields an algorithm to calculate any
equivariant GW invariant cw,d

u,v

, see §12 below. Its immediate corollary is:

Corollary 1.2. Let pA,`, ˝q be a graded, commutative, H˚
T

pptqrqs-algebra, with a H˚
T

pptqrqs-
basis ta

�

u
�P⇤. Assume that the grading is the same as the one for the equivariant quantum

ring QH˚
T

pIGq, and assume that the Chevalley rule (2) holds in the basis ta
�

u. Then the
isomorphism of H˚

T

pptq-modules A Ñ QH˚
T

pIGpk, 2n ` 1qq sending a
�

fiÑ rXp�qs
T

is an
isomorphism of algebras.

The proof of Theorem 1.1 is based on the analysis of curve neighborhoods of Schubert
varieties [5, 9]. Let d P H2pIGq be an e↵ective degree and let M

d

:“ M0,2pIG, dq be the
Kontsevich moduli space of stable maps [12] equipped with evaluation maps ev1, ev2 :
M

d

Ñ IG. To a closed subvariety ⌦ Ä IG one can associate its Gromov-Witten variety
GW

d

p⌦q :“ ev´1
1 p⌦q and its curve neighborhood

�
d

p⌦q :“ ev2pGW
d

p⌦qq Ä IG;

see §6 below. The notion of curve neighborhoods is closely related to quantum cohomology.
Roughly, let Xp�q Ä IG be a Schubert variety, and let �

d

pXp�qq “ �1 Y �2 Y . . . Y �
k

be
the decomposition of the curve neighborhood into irreducible components. By the divisor
axiom, any component �

i

of “expected dimension” will contribute to the quantum product
rXp1qs

T

‹ rXp�qs
T

with d ¨ m
i

¨ qdr�
i

s
T

, where m
i

is the degree of ev2 : GW
d

pXpuqq Ñ
�
d

pXp�qq over the given component. Therefore the main task is to find the components �
i

of expected dimension, and calculate the associated multiplicities m
i

. It was proved in [9]
that for homogeneous spaces the curve neighborhoods of Schubert varieties are irreducible
and that all the multiplicities m

i

“ 1. But IG is no longer homogeneous, and one easily
finds reducible curve neighborhoods. Nevertheless, we proved that for any Schubert variety
Xp�q, the only curve neighborhoods �

d

pXp�qq of expected dimension are those when d “ 1
and Xp�q is included in the closed Sp2n`1-orbit of IG. In this case

�1pXp�qq “ Xp�1q Y Xp�2q,
and the components of the expected dimension correspond respectively to the partitions
�˚,�˚˚ from Theorem 1.1 above. (But it may happen, for instance, that Xp�1q does not
have expected dimension, in which case �˚ does not exist.) We refer to Theorems 7.1 and
9.2 for precise statements. Furthermore, the morphism ev2 : GW1pXp�qq Ñ �1pXp�qq is
birational over the relevant components, thus all multiplicities m

i

“ 1. This is achieved
in sections 8 and 9 by using a rather delicate analysis of the space of lines in IG. In the
course of the proof we showed that each orbit of Sp2n`1 in IG contributes with at most
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one component to the curve neighborhood. It is tempting to conjecture that this pattern
extends at least to the odd-symplectic partial flag varieties.

Besides reducibility of curve neighborhoods of Schubert varieties, it is also worth point-
ing out another di↵erence between the (quantum) cohomology of odd-symplectic Grass-
mannians and that of flag manifolds. Many arguments in the Gromov-Witten theory of
homogeneous spaces rely on the Kleiman-Bertini transversality theorem, which makes the
GW invariants enumerative. Variants of this theorem exist for varieties with a group act-
ing with finitely many orbits (see e.g. [15]). But the lack of a transitive group action
implies that occasionally cycles in IG cannot be translated to general position, and that
it is possible that certain Schubert multiplications might be non-e↵ective. Indeed, Pech
found Pieri-type multiplications, both in ordinary and in quantum cohomology of IGp2, Eq,
which yield negative structure constants cw,d

u,v

. For more such examples, equivariant or not,
see the table for QH˚

T

pIGp2,C5qq in §13, and the remark 11.9 below. We partially circum-
vented the non-transversality problem by employing the aforementioned technique of curve
neighborhoods.

1.2. Organization of the paper. The sections 2-5 are dedicated to recalling the basic
definitions and the relevant facts on (equivariant) quantum cohomology. In section 6 we
discuss curve neighborhoods of Schubert varieties. The main result is Theorem 6.6 about
estimates on the dimension of curve neighborhoods. This is then used in section 7 to prove
the vanishing of many GW invariants. In sections 8 we study the moduli space of lines
on IG; our main result is Corollary 8.7 where we prove that if ⌦ is a Schubert variety
included in the closed orbit then the GW variety GW1p⌦q, has two irreducible, generically
reduced components. This result is used in Section 9 to obtain similar results about the
curve neighborhood �1p⌦q. In section 10 we prove birationality results and use this to
calculate all the non-vanishing equivariant GW invariants which appear in the Chevalley
formula; see Theorem 10.1 and Corollary 10.2. In section 11 we re-interpret all results in
terms of k-strict partitions, and obtain the statement of Theorem 1.1 above. The algorithm
to calculate the full multiplication table in QH˚

T

pIGq is presented in section 12. Section 13
includes examples of products in QH˚

T

pIGp2,C5qq and QH˚
T

pIGp3,C7qq.
Acknowledgements. We would like to thank Dan Orr and Mark Shimozono for discussions

and valuable suggestions and to Pierre-Emmanuel Chaput, Changzheng Li, and Nicolas
Perrin for discussions and collaborations on related projects. Special thanks are due to
Anders Buch for encouragement and interest in this project.

2. Preliminaries

2.1. The odd symplectic group. We recall next the definition and basic properties of
odd symplectic flag manifolds, following Mihai’s paper [28]; see also [29, 38]. Let E be a
complex vector space of dimension dimCE “ 2n ` 1, and let ! be an odd-symplectic form
on E, i.e. bilinear, skew-symmetric, with kernel of dimension 1. The odd symplectic group
is the subgroup of GLpEq which preserves this symplectic form:

Sp2n`1pEq :“ tg P GLpEq : !pg.u, g.vq “ !pu, vq,@u, v P Eu.
It will be convenient to extend the form ! to a nondegenerate symplectic form r! on an even
dimensional space rE Å E, and to identify E Ä rE with a coordinate hyperplane C2n`1 Ä
C2n`2. For that, let te1, . . . , en`1, e

n`1, . . . , e2̄, e1̄u be the standard basis of rE :“ C2n`2,
where ī “ 2n`3´ i. Set |i| “ minti, īu, and consider r! to be the nondegenerate symplectic
form on rE defined by

r!pe
i

, e
j

q “ �
i,j̄

for all 1 § i § j § 1̄.
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The form r! restricts to the degenerate symplectic form ! on E :“ C2n`1 “ he1, e2, ¨ ¨ ¨ , e2n`1i
such that the kernel ker! is generated by e1. Then

!pe
i

, e
j

q “ �
i,j̄

for all 1 § i § j § 2̄.

Let F Ä E denote the 2n dimensional vector space with basis te2, e3, ¨ ¨ ¨ , e2n`1u. Since
F X ker! “ p0q it follows that ! restricts to a nondegenerate form on F . Let Sp2npF q and
Sp2n`2p rEq denote the symplectic groups which preserve respectively the symplectic form
!|F and r!. Then with respect to the decomposition E “ F ‘ ker! the elements of the
odd-symplectic group Sp2n`1pEq are matrices of the form

Sp2n`1pEq “
"ˆ

� a
0 S

˙
: � P C˚, a P C2n, S P Sp2npF q

*
.

The symplectic group Sp2npF q embeds naturally into Sp2n`1pEq by � “ 1 and a “ 0, but

Sp2n`1pEq is not a subgroup of Sp2n`2p rEq.2 Mihai showed in [28, Prop. 3.3] that there is a

surjection P Ñ Sp2n`1pEq where P Ä Sp2n`2p rEq is the parabolic subgroup which preserves
ker!, and the map is given by restricting g fiÑ g|E . Then the Borel subgroup B2n`2 Ä
Sp2n`2p rEq of upper triangular matrices restricts to the (Borel) subgroup B Ä Sp2n`1pEq.
Similarly, the maximal torus T2n`2 :“ tdiagpt1, ¨ ¨ ¨ , t

n`1, t
´1
n`1, ¨ ¨ ¨ , t´1

1 q : t1, ¨ ¨ ¨ , t
n`1 P

C˚u Ä B2n`2 restricts to the maximal torus

T “ tdiagpt1, ¨ ¨ ¨ , t
n`1, t

´1
n`1, ¨ ¨ ¨ , t´1

2 q : t1, ¨ ¨ ¨ , t
n`1 P C˚u Ä B.

2.2. The odd symplectic flag varieties. Let 1 § i1 † . . . † i
r

§ n ` 1. The odd
symplectic flag variety IFpi1, . . . , ir;Eq consists of flags of linear subspaces F

i1 Ä . . . Ä
F
i

k

Ä E such that dimF
i

j

“ i
j

and F
i

j

is isotropic with respect to the symplectic form

!. The inclusion E Ä rE makes it a closed subvariety of the (even) symplectic flag variety
IFpi1, . . . , ir; rEq which consists of similar flags of subspaces, isotropic with respect to the
symplectic form r!. The latter is a homogeneous space for Sp2n`2p rEq. In fact, the inclusions

F Ä E Ä rE realize the odd-symplectic flag variety as an intermediate variety between two
consecutive symplectic flag varieties:

IFpi1 ´ 1, . . . , i
r

´ 1;F q Ä IFpi1, . . . , ir;Eq Ä IFpi1, . . . , ir; rEq,
where the flags in IFpi1 ´ 1, . . . , i

r

´ 1;F q are isotropic with respect to !|F . If r “ 1 then
we obtain the sequence of inclusions of Grassmannians shown in equation (1). There is a
natural embedding of the odd symplectic flag variety as a closed subvariety of the type A
partial flag variety Flpi1, . . . , ir;Eq which parametrizes flags of given dimensions in E. It
turns out that IFpi1, . . . , ir;Eq is a smooth subvariety of Flpi1, . . . , ir;Eq of codimension
i

r

pi
r

´1q
2 ; see [28, Prop. 4.1] for details. The odd-symplectic group acts on IFpi1, . . . , ir;Eq,

but the action is no longer transitive. The next result, due to Mihai (see [28, Propositions
5 and 6] describes the orbits of this action.

Proposition 2.1. The odd symplectic group Sp2n`1pEq acts on IFpi1, ¨ ¨ ¨ , i
r

;Eq with r ` 1
orbits if i

r

† n ` 1 and r orbits if i
r

“ n ` 1. The orbits are:

O
j

“ tV
i1 Ä ¨ ¨ ¨ Ä V

i

r

Ä E : e1 P V
i

j

, e1 R V
i

j´1u for all 1 § j § r

and O
r`1 “ tV

i1 Ä ¨ ¨ ¨ Ä V
i

r

Ä E : e1 R V
i

r

u if i
r

† n ` 1,

2However, Gelfand and Zelevinsky [14] defined another group ÄSp2n`1 closely related to Sp2n`1 such that

Sp2n Ä ÄSp2n`1 Ä Sp2n`2.
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where by convention V
i0 “ p0q. The only closed orbit is O1, and it may be naturally identified

to IFpi1 ´ 1, . . . , i
r

´ 1;F q.
In particular, for 1 § k § n the odd symplectic group Sp2n`1pEq acts on the odd sym-

plectic Grassmannian IGpk,Eq with two orbits

X
c

“ tV P IGpk,Eq : e1 P V u the closed orbit

X˝ “ tV P IGpk,Eq : e1 R V u the open orbit.

The closed orbit X
c

is isomorphic to IGpk ´ 1, F q. If k “ n ` 1 then IGpn ` 1, Eq “ X
c

may be identified to the Lagrangian Grassmannian IGpn, F q.
Mihai identifies the closures O

i

of the orbits and proves they are smooth. From now
on we will identify F Ä E Ä rE to C2n Ä C2n`1 Ä C2n`2 with bases xe2, . . . , e2n`1y Ä
xe1, . . . , e2n`1y Ä xe1, . . . , e2n`2y. The corresponding symplectic flag manifolds will be
denoted by IFpi1´1, . . . , i

r

´1; 2nq Ä IFpi1, . . . , ir; 2n`1q Ä IFpi1, . . . , ir; 2n`2q. Similarly
Sp2n`1pEq will be denoted by Sp2n`1 etc.

2.3. The Weyl group and odd-symplectic minimal representatives. We recall next
the indexing sets which we will use in the next section to define the Schubert varieties.

Consider the root system of type C
n`1 with positive roots R` “ tt

i

˘ t
j

: 1 § i † j §
n ` 1u Y t2t

i

: 1 § i § n ` 1u and the subset of simple roots � “ t↵
i

:“ t
i

´ t
i`1 : 1 § i §

nuYt↵
n`1 :“ 2t

n`1u. The associated Weyl groupW is the hyperoctahedral group consisting
of signed permutations, i.e. permutations w of the elements t1, ¨ ¨ ¨ , n ` 1, n ` 1, ¨ ¨ ¨ , 1u
satisfying wpiq “ wpiq for all w P W . For 1 § i § n denote by s

i

the simple reflection
corresponding to the root t

i

´ t
i`1 and s

n`1 the simple reflection of 2t
n`1. Each subset

I :“ ti1 † . . . † i
r

u Ä t1, . . . , n`1u determines a parabolic subgroup P :“ P
I

§ Sp2n`2p rEq
with Weyl group W

P

“ xs
i

: i ‰ i
j

y generated by reflections with indices not in I. Let
�

P

:“ t↵
i

s

: i
s

R ti1, . . . , iruu and R`
P

:“ SpanZ�P

X R`; these are the positive roots
of P . Let ` : W Ñ N be the length function and denote by WP the set of minimal
length representatives of the cosets in W {W

P

. The length function descends to W {W
P

by
`puW

P

q “ `pu1q where u1 P WP is the minimal length representative for the coset uW
P

. We
have a natural ordering

1 † 2 † . . . † n ` 1 † n ` 1 † . . . † 1,

which is consistent with our earlier notation i :“ 2n` 3´ i. Let P “ P
k

to be the maximal
parabolic obtained by excluding the reflection s

k

. Then the minimal length representatives
WP have the form pwp1q † wp2q † ¨ ¨ ¨ † wpkq|wpk ` 1q † . . . † wpn ` 1q § n ` 1q if
k † n ` 1 and pwp1q † wp2q † ¨ ¨ ¨ † wpn ` 1qq if k “ n ` 1. Since the last n ` 1 ´ k
labels are determined from the first, we will identify an element in WP

k with the sequence
pwp1q † wp2q † ¨ ¨ ¨ † wpkqq.
Example 2.2. The reflection s

t1`t2 is given by the signed permutation s
t1`t2p1q “ 2̄, s

t1`t2p2q “
1̄, and s

t1`t2piq “ i for all 3 § i § n ` 1. The minimal length representative of s
t1`t2WP

k

is p3 † 4 † ¨ ¨ ¨ † k † 2̄ † 1̄q.
The Weyl group W admits a partial ordering § given by the Bruhat order. Its covering

relations are given by w † ws
↵

where ↵ P R` is a root and `pwq † `pws
↵

q. We will use the
Hecke product on the Weyl group W . For a simple reflection s

i

the product is defined by

w ¨ s
i

“
"

ws
i

if `pws
i

q ° `pwq;
w otherwise
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The Hecke product gives W a structure of an associative monoid; see e.g. [9, §3] for more
details. Given u, v P W , the product uv is called reduced if `puvq “ `puq ` `pvq, or, equiva-
lently, if uv “ u ¨ v. For any parabolic group P , the Hecke product determines a left action
W ˆ W {W

P

›Ñ W {W
P

defined by

u ¨ pwW
P

q “ pu ¨ wqW
P

.

We recall the following properties of the Hecke product (cf. e.g. [9]).

Lemma 2.3. For any u, v P W there is an inequality `pu ¨ vW
P

q § `puq ` `pvW
P

q. If
the equality holds then u ¨ vW

P

“ uvW
P

. If furthermore v P WP is a minimal length
representative, then the following are equivalent:

(i) `pu ¨ vW
P

q “ `puq ` `pvW
P

q;
(ii) `pu ¨ vq “ `puq ` `pvq, and u ¨ v “ uv is a minimal length representative in WP .

Proof. The first part of this lemma is explicitly stated in [9, §3]. For the equivalence, observe
first that (ii) implies (i) since u ¨ v “ uv. For the converse, since v P WP ,

`pu ¨ vq • `pu ¨ vW
P

q “ `puq ` `pvW
P

q “ `puq ` `pvq • `pu ¨ vq.
Thus u ¨ v P WP and `pu ¨ vq “ `puq ` `pvq and this finishes the proof. ⇤

2.4. Schubert Varieties in even and odd flag manifolds. Let I :“ ti1 † . . . † i
r

u Ä
t1, . . . , n ` 1u and the associated parabolic subgroup P :“ P

I

. The even symplectic flag
manifold IFpi1, . . . , ir; 2n ` 2q is a homogeneous space Sp2n`2 {P . For each w P WP let
Y pwq˝ :“ B2n`2wB2n`2{P be the Schubert cell. This is isomorphic to the space C`pwq. Its
closure Y pwq :“ Y pwq˝ is the Schubert variety. We might occasionally use the notation
Y pwW

P

q if we want to emphasize the corresponding coset, or if w is not necessarily a min-
imal length representative. Recall that the Bruhat ordering can be equivalently described
by v § w if and only if Y pvq Ä Y pwq. Set

(3) w0 “
#

p2, 3, . . . , n ` 1, 1q if k † n ` 1;

p1, 2, 3, . . . , n ` 1q if k “ n ` 1;

this is an element in W . Let B :“ B2n`2 X Sp2n`1 be the odd-symplectic Borel subgroup.
The following results were proved by Mihai [28, §4].
Proposition 2.4. (a) The natural embedding ◆ : IFpi1, ¨ ¨ ¨ , i

r

; 2n`1q ãÑ IFpi1, ¨ ¨ ¨ , i
r

; 2n`
2q identifies IFpi1, ¨ ¨ ¨ , i

r

; 2n ` 1q with the (smooth) Schubert subvariety

Y pw0WP

q Ä IFpi1, ¨ ¨ ¨ , i
r

; 2n ` 2q.
(b) The Schubert cells (i.e. the B2n`2-orbits) in Y pw0q coincide with the B-orbits in

IFpi1, . . . , ir; 2n ` 1q. In particular, the B-orbits in IFpi1, . . . , ir; 2n ` 1q are given by the
Schubert cells Y pwq˝ Ä IFpi1, . . . , ir; 2n ` 2q such that w § w0.

To emphasize that we discuss Schubert cells or varieties in the odd-symplectic case, for
each w § w0 such that w P WP , we denote by Xpwq˝, and Xpwq, the Schubert cell,
respectively the Schubert variety in IFpi1, . . . , ir; 2n`1q. The same Schubert variety Xpwq,
but regarded in the even flag manifold is denoted by Y pwq. For further use we note that
IGpk, 2n`1q has complex codimension k in IGpk, 2n`2q. Further, a Schubert variety Xpwq
in IGpk, 2n ` 1q is included in the closed orbit X

c

of if and only if it has a minimal length
representative w § w0 such that wp1q “ 1.

Define the set W odd :“ tw P W : w § w0u and call its elements odd-symplectic permuta-
tions. This set consists of permutations w P W such that wpjq ‰ 1̄ for any 1 § j § n ` 1
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[28, Prop. 4.16]. The following closure property of the Hecke product on odd-symplectic
permutations will be important later on.

Lemma 2.5. Let u, v P W be two odd-symplectic permutations, and assume that up1q “ 1.
Then uv and u ¨ v are odd-symplectic permutations.

Proof. We need to show that puvqpjq ‰ 1̄ and pu ¨ vqpjq ‰ 1̄ for any 1 § j § n ` 1. In
the first situation, since up1q “ 1, if puvqpjq “ 1̄ for some 1 § j § n ` 1, then vpjq “ 1̄,
which contradicts that v is odd-symplectic. For the second, consider the signed permutation
u1 :“ pu ¨ vqv´1 P W . By [9, Prop. 3.1] we have that u1 § u and u1v “ u ¨ v. The condition
that u1 § u implies that there is an inclusion of Schubert varieties Xpu1q Ä Xpuq in the full
odd-symplectic flag manifold IF :“ IFp1, 2, . . . , n ` 1; 2n ` 1q. Further, the hypothesis that
up1q “ 1 implies that Xpuq is in the closed orbit of IF, thus Xpu1q is in the closed orbit as
well. This implies that u1p1q “ 1. Then u ¨ v “ u1v and since u1p1q “ 1 the element u1v is
again odd-symplectic, as claimed. ⇤

3. Equivariant cohomology

Fix a parabolic subgroup P Ä Sp2n`2 containing the standard Borel subgroup B2n`2. Let
IFev :“ IFpi1, . . . , ir; 2n`2q be the corresponding symplectic flag variety. The Schubert cells
Y pwq˝ form a stratification of IFev, when w varies in WP . This implies that the Schubert
classes rY pwqs P H2`pwqpIFq form a basis of the (integral) homology of IFev. Since IFev is

smooth, the Schubert classes determine cohomology classes rY pwqs P H2 dim IF´2`pwqpIFevq.
The odd-symplectic flag manifold IF :“ IFpi1, . . . , ir; 2n`1q is a smooth Schubert variety in
IFev, therefore its Schubert classes rXpwqs “ rY pwqs P H2`pwqpIFq for w P WP XW odd form
a Z-basis for both homology and cohomology H˚pIFq “ H˚pIFq. We will use that in the
Grassmannian case, the inclusion ◆ : IGpk, 2n`1q Ñ IGpk, 2n`2q gives a group isomorphism
H2pIGpk, 2n ` 1qq » H2pIGpk, 2n ` 2qq sending the Schubert curve rXps

k

qs to itself. For
X P tIF, IFevu there is a nondegenerate Poincaré pairing x¨, ¨y : H˚pX q b H˚pX q Ñ H˚pptq
given by

x�1, �2y “
ª

X
�1 Y �2

where the integral is the push-forward to the point, i.e.
≥
X � :“ p˚p�q and p : X Ñ pt is

the structure morphism. For a cohomology class � P H˚pX q we denote by �_ its Poincaré
dual. Thus

≥
IFrXpuqs Y rXpvqs_ “ �

u,v

.

Remark 3.1. It is well known that the Poincaré dual of a Schubert class in H˚pIFevq is again
a Schubert class; indeed this is true for any homogeneous space G{P [3]. This is no longer
true in the odd-symplectic case. Formulas for Poincaré dual classes of Schubert classes in
the odd-symplectic Grassmannian IGpk, 2n ` 1q were calculated by Pech in [38, Prop. 3]
for k “ 2 and in [37, Prop. 2.11, p.50] for arbitrary k.

We review some basic facts about the equivariant cohomology ring, following [1], and
focusing on H˚

T

pIFq. For any topological space Z with a left torus T action, its equivariant
cohomology ring is the ordinary cohomology of the Borel mixed space Z

T

:“ pET ˆ Zq{T
where ET Ñ BT is the universal T -bundle, and T acts on ET ˆZ by t¨pe, zq “ pet, t´1zq. In
particular, H˚

T

pptq “ H˚pBT q is a polynomial ring Zrt1, . . . , tss where t
i

are an additive basis
for pLie T q˚. The continuous map Z

T

Ñ BT gives a H˚
T

pptq-algebra structure on H˚
T

pZq.
Let now Z “ IF with its natural T » pC˚qn`1 action. The Schubert varieties Xpuq Ä IF
are T -stable, and the fundamental classes rXpuqs

T

P HT

2`puqpIFq give an H˚
T

pptq-basis for the
equivariant (co)homology H˚

T

pIFq “ HT

˚ pIFq. The inclusion ◆ : IF Ñ IFev gives a natural
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restriction map H˚
T2n`2

pIFevq Ñ H˚
T

pIFq. The action of T2n`2 on IF factors through that
of T , therefore the natural morphism H˚

T2n`2
pIFq Ñ H˚

T

pIFq is an algebra isomorphism
over H˚

T

pptq “ H˚
T2n`2

pptq “ Zrt1, . . . tn`1s. Because of this, we will take T :“ T2n`2 from
now on. We use the same conventions as in [9, §8] for the geometric interpretation of the
characters t

i

inside the equivariant cohomology ring. There is an equivariant version of the
Poincaré pairing x¨, ¨y : H˚

T

pIFqbH˚
T

pIFq Ñ H˚
T

pptq given by the (equivariant) push forward
map to the point:

x�1, �2y “
ª

T

IF
�1 Y �2 :“ pT˚ p�1 Y �2q P H˚

T

pptq.

4. (Equivariant) Quantum cohomology

In this section we recall some basic facts about equivariant Gromov-Witten (GW) in-
variants and the equivariant quantum (EQ) cohomology rings, following [12, 32]. For the
purposes of this paper we specialize to the odd and even-symplectic Grassmannian case.

4.1. Equivariant Gromov-Witten invariants. Set IG :“ IGpk, 2n ` 1q and IGev :“
IGpk, 2n ` 2q, with ◆ : IG Ñ IGev the natural embedding. Let X P tIG, IGevu. Recall
that H2pX q “ Z. A degree d in X is an e↵ective homology class d P H2pX q, and it can be
identified with a non-negative integer. Let M0,rpX , dq be the Kontsevich moduli of stable
maps to X of degree d to X with r marked points (r • 0); see e.g. [12]. This is a projective
algebraic variety of expected dimension

expdim M0,rpX , dq “ dimX `
ª

rXps
k

qs
c1pTX q ` r ´ 3

where TX denotes the tangent bundle of X .

Lemma 4.1. Let XpDivq and Y pDivq be the (unique) Schubert divisors in IG and IGev.
Then the following equalities hold:

(a) ◆˚rY pDivqs “ rXpDivqs;
(b) c1pTIGq “ p2n ` 2 ´ kqrXpDivqs and c1pTIGevq “ p2n ` 3 ´ kqrY pDivqs.
(c)

ª

rXps
k

qs
c1pTX q “

#
2n ` 2 ´ k if X “ IG;

2n ` 3 ´ k if X “ IGev.

Proof. A more general version of the first identity was proved by Pech in her thesis [37, Prop.
2.9]. The explicit calculation of the class of the tangent bundle in the even case can be
found e.g. in [7]. In the odd case, the calculation is implicit Pech’s work (cf. [38, Prop.
13], see also [37, Prop. 2.15]). Part (c) is a standard calculation based on the fact that≥
IGev

rY pDivqs X rY ps
k

qs “ 1. ⇤

The points of the moduli space are (equivalence classes of) stable maps f : pC, pt1, . . . , ptrq Ñ
X of degree d, where C is a tree of P1’s and pt

i

P C are non-singular points. The moduli
space M0,rpX , dq comes equipped with r evaluation maps ev

i

: M0,rpX , dq Ñ X sending
pC, pt1, . . . ptr; fq to fppt

i

q. For �1, . . . , �r P H˚
T

pX q, the r-point, genus 0, (equivariant) GW
invariant is defined by

x�1, . . . , �ry
d

:“
ª

T

rM0,rpX ,dqsvir
ev˚

1p�1q Y ev˚
2p�2q Y . . . Y ev˚

r

p�
r

q P H˚
T

pptq,
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where rM0,rpX , dqsvir
T

P HT

2 expdim M0,rpX ,dqpM0,rpX , dqq is the virtual fundamental class. If

X “ IGev (or, more generally, X “ G{P ) then the moduli space M0,rpX , dq is an irreducible
algebraic variety [20, 42], and the virtual fundamental class coincides to the fundamental
class. In the (non-homogeneous) case X “ IG, and when d “ 1, Pech used obstruction
theory to prove the following (cf. [37, Proposition 2.15]; for k “ 2 [38, Proposition 13]):

Proposition 4.2. Let r “ 1, 2, 3. Then the moduli space of stable maps M0,rpIGpk, 2n `
1q, 1q is a smooth, irreducible, algebraic variety of complex dimension kp2n`1´kq´ kpk´1q

2 `
p2n ` 2 ´ kq ` r ´ 3.

The GW invariants satisfy the “divisor axiom” property: if rDs
T

P H2
T

pX q is a class in
complex codimension 1 then for any �2, . . . , �r P H˚

T

pX q,
(4) xrDs

T

, �2, . . . , �ry
d

“ prDs X dqx�2, . . . , �ry
d

.

4.2. The (equivariant) quantum cohomology ring. The quantum cohomology ring
QHpIGq of IG :“ IGpk, 2n ` 1q is a graded Zpptqrqs-algebra with a Zrqs-basis given by
Schubert classes rXpuqs, where u P WP X W odd. The multiplication is given by

rXpuqs ‹ rXpvqs “
ÿ

d•0;wPWP

qdcw,d

u,v

rXpwqs,

where cw,d

u,v

“ xrXpuqs, rXpvqs, rXpwqs_y
d

is the GW invariant. The degree of q is

deg q “
ª

rXpDivqs_
c1pTIGpk,2n`1qq “ 2n ` 2 ´ k,

by Lemma 4.1 above. The grading is equivalent to the requirement that

codim Xpuq ` codim Xpvq “ codim Xpwq ` d ¨ deg q.
The quantum cohomology ring is a deformation of the ordinary cohomology ring, in the
sense that if one makes q “ 0 then one recovers the multiplication in H˚

T

pIGq.
As before there is an equivariant version of the quantum cohomology ring, denoted

QH˚
T

pIGq, which deforms the multiplication in H˚
T

pIGq. This is a graded, free algebra
over H˚

T

pptqrqs with a basis given by equivariant Schubert classes rXpuqs
T

, where u varies
in WP XW odd. The multiplication is defined as before, using the equivariant GW invariants.
The structure constants cw,d

u,v

P H˚
T

pptq are homogeneous polynomials of polynomial degree

deg cw,d

u,v

“ codim Xpuq ` codim Xpvq ´ codim Xpwq ´ d ¨ deg q.
If this degree equals 0, then one recovers the structure constant from the ordinary (non-
equivariant) quantum cohomology ring.

5. The moment graph

Sometimes called the GKM graph, the moment graph of a variety X with a torus T action
has a vertex for each T -fixed locus of X, and an edge for each 1-dimensional torus orbit.
The description of the moment graphs for flag manifolds is well known, and it can be found
e.g in [24, Ch. XII]. In this note we consider the moment graphs for IG :“ IGpk, 2n ` 1q Ä
IGev :“ IGpk, 2n ` 2q. Let P :“ P

k

Ä Sp2n`2 be the maximal parabolic for IGev. The
minimal length representatives in w P WP are in one to one correspondence to sequences
1 § wp1q † . . . † wpkq § 1̄. Those corresponding to the odd-symplectic Grassmannian
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satisfy in addition that wpiq § 2̄ for 1 § i § n` 1. The moment graph of IGev has a vertex
for each w P WP , and an edge w Ñ ws

↵

for each

↵ P R`zR`
P

k

“ tt
i

´ t
j

: 1 § i § k † j § n ` 1u Y tt
i

` t
j

, 2t
i

: 1 § i † j § n ` 1, i § ku.
Geometrically, this edge corresponds to the unique torus-stable curve C

↵

pwq joining w and
ws

↵

. This curve has degree d, where ↵_ `�_
P

“ d↵_
k

`�_
P

. The moment graph of IG is the
full subgraph of that of IGev determined by the vertices w P WP X W odd. Notice that the
orbits of T and T2n`2 coincide, therefore we do not distinguish between the moment graphs
for these tori. For later use, we list below the vertices adjacent to the identity element in
the moment graph of IGev, together with the degrees of the corresponding curves. Recall
the convention s̄ “ 2n ` 3 ´ s. For now we let k ° 1.

(i) p1 † 2 † ¨ ¨ ¨ † i ´ 1 † i ` 1 † ¨ ¨ ¨ † k † jq where k † j § n ` 1;
(ii) p1 † 2 † ¨ ¨ ¨ † i ´ 1 † i ` 1 † ¨ ¨ ¨ † k † j̄q where n ` 1 † j̄ § k ` 1;
(iii) p1 † 2 † ¨ ¨ ¨ † i ´ 1 † i ` 1 † ¨ ¨ ¨ † j ´ 1 † j ` 1 † ¨ ¨ ¨ † k † j̄ † īq;
(iv) p1 † 2 † ¨ ¨ ¨ † i ´ 1 † i ` 1 † ¨ ¨ ¨ † k † iq .

The edge in (i) corresponds to ↵ “ t
i

´ t
j

, those in (ii) and (iii) to ↵ “ t
i

` t
j

and that
in (iv) to ↵ “ 2t

i

. In particular, only the edge in (iii) has degree 2, and the others have
degree 1. If k “ 1, the case (iii) does not apply, and the remaining vertices in cases (i), (ii)
and (iv) are respectively pjq, pj̄q and p1̄q. The figure below illustrates the moment graphs
of IGp2, 5q and IGp2, 6q.

6. Curve Neighborhoods

Let X P tIG, IGevu, let d P H2pX q be an e↵ective degree, and let ⌦ Ä X be a closed
subvariety. Consider the moduli space of stable maps M0,2pX , dq with evaluation maps
ev1, ev2. The curve neighborhood of ⌦ is the subscheme

�
d

p⌦q :“ ev2pev´1
1 ⌦q Ä X

endowed with the reduced scheme structure. This notion was introduced by Buch, Chaput,
Mihalcea and Perrin [5] to help study the quantum K theory ring of cominuscule Grass-
mannians. It was analyzed further for any homogeneous space by Buch and Mihalcea [9], in
relation to 2-point K-theoretic GW invariants, and to a new proof of the quantum Chevalley
formula. Often, estimates for the dimension of the curve neighborhoods provide vanishing
conditions for certain GW invariants. In this paper we will use this technique to prove
vanishing of “Chevalley” GW invariants of degree d • 2 in IG.

We start with the observation (going back to [5]) that if ⌦ is a Schubert variety, then
�
d

p⌦q must be a (finite) union of Schubert varieties, stable under the same Borel subgroup.
This follows because ⌦ is stable under the appropriate Borel subgroup, and ev1, ev2 are
proper, equivariant maps; thus �

d

p⌦q is closed and Borel stable. Further, it was proved
in [5] that the curve neighborhood �

d

pY pwqq of any Schubert variety is again a Schubert
variety. This Schubert variety was described in [9]: �

d

pY pwqq “ Y pw ¨z
d

W
P

q, where z
d

P W
is defined by the condition that �

d

p1.P q “ Y pz
d

W
P

q. We recall next a recursive formula
for z

d

. Recall also that q2n`2 denotes the quantum parameter for QH˚pIGevq and it has
degree 2n ` 3 ´ k. The maximal elements of the set t� P R`zR`

P

: �_ ` �_
P

§ du are
called maximal roots of d. The root � P R`zR`

P

is called P -cosmall if � is a maximal root
of �_ ` �_

P

P H2pIGpk, 2n ` 2qq. In type C
n`1, the P -cosmall roots are the roots 2t

i

for
1 § i § n ` 1, and t

i

´ t
j

for 1 § i † j § n ` 1. The following follows from [9, Corollary
4.12, Theorem 6.2, Theorem 5.1, and Theorem 7.2].
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Figure 1. The figure is the moment graph of IGp2, 6q without degree la-
bels. The blue portion corresponds to vertices outside the Schubert variety
IGp2, 5q. The red portion is inside the closed orbit IGp1, 4q “ P3.

p3̄ † 2̄q

p3 † 2̄q

p2 † 3̄q p1 † 2̄q

p2 † 3q p1 † 3̄q

p1 † 3q

p1 † 2q

p2 † 1̄q

p3 † 1̄q

p3 † 1̄q

p2 † 1̄q

Proposition 6.1. Let d P H2pIGpk, 2n ` 2qq be an e↵ective degree and w P WP . Then the
following hold:

(1) If ↵ P R` ´ R`
P

is a maximal root of d, then s
↵

¨ z
d´↵

_W
P

“ z
d

W
P

;
(2) dim�

d

pY pwqq § `pwq ` `pz
d

W
P

q § `pwq ` d ¨ deg q2n`2 ´ 1. Furthermore, if the
second equality occurs then d “ ↵_ ` Z�_

P

and ↵ is a P -cosmall root.

Corollary 6.2. (a) If k ° 1 then there is an equality z1WP

“ s2t1WP

and the minimal
length representative of z1WP

is p2 † 3 † ¨ ¨ ¨ † k † 1q.
(b) There is an inequality `pz

d

W
P

q § d deg q2n`2 ´ 1 with equality if and only if d “ 1.
(c) If k ° 1 and d “ 2 then z2WP

“ s
t1`t2WP

and `pz2WP

q “ 2 deg q2n`2 ´ 3.
(d) If k “ 1 then z1WP

“ z2WP

and `pz2WP

q “ 2n ` 1 † 2 deg q2n`2 ´ 3.

Proof. The first part follows directly from the part (1) of the proposition. The equality in
(b) follows by direct calculation of `ps2t1WP

q, using its minimal length representative. A
calculation of degrees of roots shows that no degree d • 2 can be the degree of a cosmall
root, thus equality cannot occur in this case.
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For part (c), notice that 2t1 is a maximal root of d “ 1, therefore z1WP

“ s2t1WP

. By
the recursion in Proposition 6.1 we obtain z2WP

“ s2t1 ¨s2t1WP

. Now observe the following:

s2t1 ¨ s2t1 “ ps1 . . . sn`1 . . . s1q ¨ ps1 . . . sn`1 . . . s1q “ s1 ¨ s2t2 ¨ s1 ¨ s2t2 ¨ s1 “ s1 ¨ s
t1`t2 ¨ s1

“ s
t1`t2 ¨ s1 ¨ s1 “ s

t1`t2 ¨ s1.
Since s1 P W

P

, the above shows that z2WP

“ s
t1`t2WP

as claimed. The equality `pz2WP

q “
2 deg q2n`2 ´ 3 follows by a direct calculation, using the minimal length representative of
s
t1`t2WP

. Finally, part pdq follows from the observation that if k “ 1, then IGp1, 2n` 2q “
P2n`1, and then �1pidq “ P2n`1, thus `pz1WP

q “ dim IGp1, 2n ` 2q. ⇤
In what follows we give estimates for the dimension of the curve neighborhoods of Schu-

bert varieties Xpwq Ä IG, using known estimates for the dimension in the even case. We
will need the following lemma.

Lemma 6.3. Let w “ pwp1q † wp2q † ¨ ¨ ¨ † wpkqq P WP . Then `pw ¨ z1WP

q “ `pwq `
`pz1WP

q if and only if wp1q “ 1. In particular, dim�1pY pwqq “ `pwq ` deg q2n`2 ´ 1 if and
only if Y pwq Ä X

c

is a Schubert variety in the closed orbit of IG.

Proof. Let z1 :“ p2 † 3 † ¨ ¨ ¨ † k † 1q P WP be the minimal length representative of z1WP

.
By Lemma 2.3, `pw ¨z1WP

q “ `pwq ` `pz1WP

q if and only if the product wz1 is reduced and
it is a minimal length representative. We calculate wz1 “ pwp2q, wp3q, . . . , wpkq, wp1q, wpk`
1q, . . . , wpn`1qq. If wp1q “ 1 then clearly wz1 P WP , and one checks `pwz1q “ `pwq``pz1q.
Conversely, if w ¨ z1 “ wz1 P WP , then one uses the bijection between WP and the strict
partitions described in §11.1 below to calculate that

`pwz1q ´ `pwq “ 2n ` 4 ´ 2wp1q ´ k ` #tj : wp1q ` wpjq ° 2n ` 3u.
The length condition forces wp1q “ 1. (For a similar proof see Proposition 11.4 below). ⇤

6.1. Curve neighborhoods for IGpk, 2n ` 1q. Let w P WP X W odd and let d P H2pIGq
be an e↵ective degree. As mentioned above, the curve neighborhood �

d

pXpwqq of Xpwq is
a closed, B-stable subvariety of IG, therefore it must be an union of Schubert varieties:

�
d

pXpwqq “ Xpw1q Y ¨ ¨ ¨ Y Xpwrq
where wi P WP XW odd. As noticed in [9, §5.2] and [26, Cor. 5.5], the permutations wi can
be determined combinatorially from the moment graph.

Proposition 6.4. Let w P WP X W odd. In the moment graph of IGpk, 2n ` 1q, let
tv1, ¨ ¨ ¨ , vsu be the maximal vertices in the moment graph which can be reached from any
u § w using a path of degree d or less. Then �

d

pXpwqq “ Xpv1q Y ¨ ¨ ¨ Y Xpvsq.
Proof. Let Z

w,d

“ Xpv1q Y ¨ ¨ ¨ Y Xpvsq. Let v :“ vi P Z
w,d

be one of the maximal T -fixed
points. By the definition of vi’s and the moment graph there exists a chain of T -stable
rational curves of degree less than or equal to d joining u § w to v. It follows that
v P �

d

pXpwqq, thus Xpvq Ä �
d

pXpwqq, whence Z
w,d

Ä �
d

pXpwqq.
For the converse inclusion, let v P �

d

pXpwqq be a T -fixed point. By [26, Lemma 5.3] there
exists a T -stable curve joining a fixed point u P Xpwq to v. This curve corresponds to a
path in the moment graph of IGpk, 2n`1q, thus v P Z

w,d

. Since Bruhat order is compatible
with inclusion of Schubert varieties, this completes the proof. ⇤

In what follows we will obtain estimates for the dimension of the curve neighborhood
�
d

pXpwqq, using estimates obtained in the even case. We start with the observation that
the “odd” curve neighborhoods are proper subvarieties of the “even” ones.
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Lemma 6.5. Let w P WP X W odd and d • 1 an e↵ective degree. Then there is a strict
inclusion �

d

pXpwqq à �
d

pY pwqq.
Proof. Consider the identity 1.P P �

d

pXpwqq. There is a T -stable degree 1 curve (i.e.
a line) in IGpk, 2n ` 2q that contains the T -fixed points 1.P and p2 † 3 † ¨ ¨ ¨ † 1̄q P
IGpk, 2n ` 2qzIGpk, 2n ` 1q. ⇤

The next result is the key technical requirement needed for the vanishing of certain
Chevalley GW invariants.

Theorem 6.6. Let w P WP X W odd. Then the following inequalities hold:

dim�1pXpwqq ´ dimXpwq § deg q ´ 1

dim�
d

pXpwqq ´ dimXpwq † d deg q ´ 1 for all d • 2

Further, if the Schubert variety Xpwq is not contained in the closed orbit X
c

of IG then

dim�1pXpwqq ´ dimXpwq † deg q ´ 1.

Proof. Recall that deg q2n`2 “ deg q ` 1. If d “ 1, by Lemma 6.5 and Proposition 6.1

dim�1pXpwqq ` 1 ´ dimXpwq § dim�1pY pwqq ´ dimY pwq § deg q2n`2 ´ 1

thus dim�1pXpwqq ´ dimXpwq § deg q2n`2 ´ 2 “ deg q ´ 1. Let now d “ 2. If k ° 1 then
by Lemma 6.5 and Corollary 6.2 we obtain

dim�2pXpwqq´dimXpwq § dim�2pY pwqq´1´`pwq § `pz2WP

q´1 § 2 deg q2n`2´4 † 2 deg q´1.

For arbitrary d, let �
d

pXpwqq “ Xpv1q Y ¨ ¨ ¨ YXpvsq. Then each vi is joined to some ui § w
in the moment graph of IGpk, 2n ` 1q by j edges of degrees d

i

P t1, 2u, where ∞
j

i“1 di § d.
By applying repeatedly the estimates for d “ 1, 2 we have

dimXpviq ´ dimXpwq § dimXpviq ´ dimXpuiq §
jÿ

i“1

pd
i

deg q ´ 1q § d deg q ´ j.

If j • 2 then the result holds, and if j “ 1 then necessarily d P t1, 2u, a case treated before.
This proves the first two inequalities. For the last inequality, we notice that the hypothesis
implies that w is determined by a sequence pwp1q † ¨ ¨ ¨ † wpkqq such that wp1q ° 1. Then
by Lemma 6.3 combined with Proposition 6.1 we obtain

dim�1pXpwqq ´ dimXpwq § dim�1pY pwqq ´ 1 ´ `pwq † deg q2n`2 ´ 2 “ deg q ´ 1.

This finishes the proof. ⇤

7. Vanishing of Chevalley Gromov-Witten invariants

The main result of this section is the following.

Theorem 7.1. Let d • 1 be a degree in H2pIGpk, 2n`1qq. Let Xpvq, Xpwq Ä IGpk, 2n`1q be
two Schubert varieties and XpDivq the Schubert divisor. If dim�

d

pXpvqq † `pvq`d deg q´1
then the equivariant GW invariant

xrXpDivqs
T

, rXpvqs
T

, rXpwqs_
T

y
d

“ 0.

In particular, the equivariant Gromov-Witten invariant above vanishes if either d • 2 or if
d “ 1 and Xpvq is not included in the closed orbit X

c

Ä IGpk, 2n ` 1q.
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Proof. By the divisor axiom

xrXpDivqs
T

, rXpvqs
T

, rXpwqs_
T

y
d

“ dxrXpvqs
T

, rXpwqs_
T

y
d

.

By definition,

xrXpvqs
T

, rXpwqs_
T

y
d

“
ª

T

rM0,2pIGpk,2n`1q,dqvirs
T

ev˚
1rXpvqs

T

Y ev˚
2rXpwqs_

T

“
ª

T

IGpk,2n`1q
rXpwqs_

T

X pev2q˚pev˚
1rXpvqs

T

X rM0,2pIGpk, 2n ` 1q, dqvirs
T

q.

The cycle pev2qpev´1
1 rXpvqsq is supported on the curve neighborhood �

d

pXpvqq, and the
push-forward pev2q˚pev˚

1rXpvqs
T

XrM0,2pIGpk, 2n`1q, dqvirs
T

q is non-zero only if the curve
neighborhood has components of dimension

expdim M0,2pIGpk, 2n ` 1qq ´ codim Xpvq “ deg qd ´ 1 ` `pvq.
However, the hypothesis implies that dim�

d

pXpvqq is strictly less than this quantity. The
last statement follows from Theorem 6.6. ⇤

8. Lines in IGpk, 2n ` 1q
As before, we set IG :“ IGpk, 2n` 1q. If k ‰ n` 1 then Sp2n`1 acts with two orbits: Xo

(the open orbit) and X
c

(the closed orbit). If k “ n` 1 the space IG is homogeneous under
Sp2n`1, and IG “ X

c

is isomorphic to the Lagrangian Grassmannian IGpn, 2nq, and the
quantum cohomology ring is well understood. We will focus on the case when k ‰ n ` 1,
but all statements remain true if k “ n ` 1 after making Xo “ H, with almost identical
proofs.

According to Theorem 7.1, the only equivariant GW invariants xrXpDivqs
T

, rXpvqs
T

, rXpwqs_
T

y
d

which maybe non-zero are those when d “ 1 and the Schubert variety Xpvq is included in
the closed orbit X

c

» IGpk ´ 1, 2nq. To calculate these invariants, we will analyze the
geometry of the moduli spaces of stable maps M0,rpIG, 1q Ñ IG where r “ 1, 2, and the
geometry of the Gromov-Witten varieties

GW1pwq :“ ev´1
1 pXpwqq Ä M0,2pIG, 1q.

For Xpwq Ä X
c

, we will show that GW1pwq is a scheme which has 2 irreducible, generically
reduced, components. One component parametrizes lines in IG contained in the closed
orbit X

c

, and the other those lines which intersect the open orbit X˝. The restriction
of the evaluation maps to each of these components will be a surjective map, which is
either birational, or it has general fiber of positive dimension. We will deduce from this
that the curve neighborhood �1pXpwqq has two components, and that if non-zero, the GW
invariant is equal to 1 precisely in the cases when rXpwqs_ is Poincaré dual to one of these
components.

From now on, a line in X will mean an irreducible, reduced, curve of degree 1. Recall
that there is a sequence of embeddings

IGpk, 2n ` 1q Ä IGpk, 2n ` 2q Ä Grpk, 2n ` 2q Ä Pp
k©

C2n`2q
where the last is the Plücker embedding. The image of a line in IG under the composition
of these embeddings is a projective line. Indeed, a calculation in coordinates shows that the
image of the Schubert curve in IG is the Schubert curve in Grpk, 2n ` 2q, and the image of
this Schubert curve is a projective line.
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Let r “ 1, 2, 3. We recall from Prop. 4.2 that M0,rpIG, 1q is a non-singular, irreducible
scheme of dimension

dimM0,rpIG, 1q “ dim IG ` deg q ` r ´ 3 “ kp2n ` 1 ´ kq ´ kpk ´ 1q
2

` 2n ` 2 ´ k ` r ´ 3.

There is a natural isomorphismM0,1pGrpk, 2n`1q, 1q » Flpk´1, k, k`1; 2n`1q (a 3-step flag
variety) such that the evaluation map ev1 is the projection ⇡

k

: Flpk ´ 1, k, k ` 1; 2n` 1q Ñ
Grpk, 2n` 1q. To see the isomorphism explicitly, one can use e.g. the kernel-span technique
of Buch [6] to observe that to any line L Ä Gr one can associate its kernel K :“ ì

V PL V
and its span S :“ SpantV : V P Lu, which have dimension k ´ 1, respectively k ` 1. Then
the pointed line pp P Lq is sent to pkerL, p, SpanLq. Although logically not needed in what
follows, we remark that one can identify M0,1pIG, 1q to a subvariety of the three-step flag
variety: if V

k´1 P IGpk ´ 1, 2n ` 1q is the kernel of a line, then a triple pV
k´1 Ä V

k

Ä V
k`1q

corresponds to a line in IG if and only if V
k´1 is isotropic and V

k`1 Ä V K
k´1. Therefore

M0,1pIG, 1q can be identified set theoretically with

M0,1pIG, 1q » tpV
k´1 Ä V

k

Ä V
k`1q : V

k´1 P IGpk ´ 1, 2n ` 1q, V
k`1 Ä V K

k´1u.
Under this identification, ev1 corresponds to the projection to the component V

k

.

8.1. Lines intersecting the open orbit X˝. Consider the open subvarietyM˝ Ä M0,1pIG, 1q
parametrizing 1-pointed lines intersecting the open orbit X˝ Ä IG:

M˝ :“ tpp, Lq : L X X˝ ‰ Hu.
Since the kernel of a line L intersecting X˝ cannot contain e1 (which spans the kernel of the
odd symplectic form), the variety M˝ can be realized as the flag bundle F`p1, 2;SK

k´1{S
k´1q

over the open orbit IGpk ´ 1, 2n ` 1q˝, where S
k´1 denotes the tautological subbundle. In

this case rankpSK
k´1q “ 2n ` 1 ´ pk ´ 1q. Let ⇡ : M˝ Ñ IG denote the natural projection

map. Key to the calculation of the GW invariants is the following result, analyzing the
geometry of the fibres of ⇡.

Theorem 8.1. (a) The natural projection map ⇡ : M˝ Ñ IGpk, 2n ` 1q is surjective, and
all its fibers are irreducible, generically smooth, of dimension dimM˝ ´ dim IGpk, 2n ` 1q.

(b) The inverse image ⇡´1pX
c

q is isomorphic to an Sp2n`1 orbit in IFpk´1, k, k`1; 2n`
1q. In particular, it is smooth and irreducible.

Before proving the theorem, we recall the description of the Sp2n`1-orbits of the odd-
symplectic 3-step partial flag variety IFpk ´ 1, k, k ` 1; 2n ` 1q:

K1 “ tV
k´1 Ä V

k

Ä V
k`1 P IFpk ´ 1, k, k ` 1; 2n ` 1q : e1 P V

k´1u
K2 “ tV

k´1 Ä V
k

Ä V
k`1 P IFpk ´ 1, k, k ` 1; 2n ` 1q : e1 P V

k

, e1 R V
k´1u

K3 “ tV
k´1 Ä V

k

Ä V
k`1 P IFpk ´ 1, k, k ` 1; 2n ` 1q : e1 P V

k`1, e1 R V
k

u
K4 “ tV

k´1 Ä V
k

Ä V
k`1 P IFpk ´ 1, k, k ` 1; 2n ` 1q : e1 R V

k`1u.
We also need the following lemma:

Lemma 8.2. Let L be a line such that L X X
c

‰ H and L X X˝ ‰ H. Then Span L is an
isotropic subspace in C2n`1.

Proof. Let x P L X X
c

and y P L X X˝
1 . Since x P X

c

and y R X
c

we can choose a basis
te1, x1, ¨ ¨ ¨ , x

k´1u for x such that tx1, ¨ ¨ ¨ , x
k´1u is a basis for x X y and choose a basis

tx1, ¨ ¨ ¨ , x
k´1, fu for y. Then te1, x1, ¨ ¨ ¨ , x

k´1, fu is a basis for Span L “ xx, yy. Clearly
xx

i

, fy “ 0 and since e1 P ker! it follows that xe1, fy “ 0. This finishes the proof. ⇤
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We note that this is the best result possible. For instance let n “ k “ 2 and consider
the line that contains the T -fixed points p1 † 3q and p1 † 3q (this is a line included in
the closed orbit X

c

» IGp1, 4q » P3). Then SpanL “ he1, e3, e3i is not isotropic, because
!pe3, e3q “ 1. Similarly, the line joining p2 † 3q to p3 † 2̄q (a line in the open orbit) has
again non-isotropic span; see figure 2 below for more examples.

We will need to calculate dimK2. For that, observe that to construct a triple in K2 one
first chooses V

k

P IGpk, 2n ` 1q
c

» IGpk ´ 1, 2nq, then V
k´1 in an open set in Grpk ´ 1, V

k

q,
and then finally an open set of V

k`1 P Grp1, V K
k´1{V

k

q. (The spaces V
k`1 obtained this way

are automatically isotropic, because e1 P V
k

.) This yields
(5)

dimK2 “ dim IGpk´1, 2nq`pk´1q`p2n´2k`1q “ pk´1qp2n´k`1q´pk ´ 1qpk ´ 2q
2

`2n´k.

Proof of Theorem 8.1. The definition of M˝ implies that ⇡ is surjective over the open orbit
X˝. By [5, Prop. 2.3] this is a locally trivial fibration over the open Schubert cell in X˝.
Using that both M˝ and X˝ are smooth and irreducible, and that Sp2n`1 acts transitively
on X˝, we deduce that the fibers over X˝ are also smooth and irreducible. Invoking again
[5, Prop. 2.3] we obtain that ⇡´1pX

c

q is a locally trivial fibration over X
c

. To prove (a) it
remains to show that the fibre ⇡´1p1.P q is nonempty, irreducible, generically smooth, and
of dimension dimM˝ ´ dim IG.

As explained in §5, there is a line joining 1.P to xe2, e3, . . . , e
k

, e
k`1y P X˝. Thus

⇡´1p1.P q ‰ H. We prove next that the reduced support p⇡´1pX
c

qq
red

is irreducible, which
implies that ⇡´1pX

c

q is again irreducible. Then we will use a local calculation to find an
open dense set of ⇡´1p1.P q where it is smooth. In the process we will simultaneously prove
both (a) and (b).

To start, there is a bijective morphism K2 Ñ p⇡´1pXcqq
red

defined as follows: to each
pointed line pp P Lq in IG such that p P LXX

c

and LXX˝ ‰ H one associates the element
pkerL, p, SpanLq P IFpk´1, k, k`1; 2n`1q. (The fact that the span of L is isotropic follows
from Lemma 8.2.) Conversely, to each element pV

k´1 Ä V
k

Ä V
k`1q P K2 one associates the

line L :“ PpV
k`1{V

k´1q and the point V
k

P X
c

. Since V
k`1 is isotropic it follows that L is

a line in IG; the condition e1 R V
k´1 implies that L cannot be included in the closed orbit,

so L X X˝ ‰ H. The fact that this is an algebraic morphism follows e.g. because K2 is an
orbit of Sp2n`1. This proves that ⇡´1pXcq is irreducible. Since ⇡´1pX

c

q Ñ X
c

is a locally
trivial fibration, it follows that ⇡´1p1.P q is irreducible, and that it has dimension

dim⇡´1p1.P q “ dimK2 ´ dimX
c

“ 2n ´ k “ dimM˝ ´ dim IG.

Turning to smoothness, we will show that there exist open sets U1 Ä IG and U2 Ä M˝ such
that 1.P P U1, U2 Ä ⇡´1pU1q, U

i

’s are isomorphic to open sets in some a�ne spaces AN

i ,
i “ 1, 2 (for appropriate N

i

), and such that the induced map U2 Ñ U1 is smooth. Using
the coordinate charts in Grpk, 2n ` 1q one defines the open set U1 around 1.P to be given

by the column space of the matrix

ˆ
I
k

A

˙
where A “ pa

i,j

q is a p2n ` 1 ´ kq ˆ k matrix.

The isotropy constraints on the coordinates can be arranged in a triangular system with
equations of the form a

i,j

` quadratic terms “ 0, where 1 § j § k ´ 1 and k § i § j ` 1.
This implies that U1 is isomorphic to an a�ne space Adim IG.

To define U2, observe that an open set in the dual projective space of codimension 1 sub-
spaces V

k´1 Ä V
k

“ xv1, . . . , v
k

y P U1 where e1 R V
k´1 is given by hv

i

` c
i

v1 : 2 § i § k, c
i

P Ci.
Then an open set U2 around triples containing such V

k

is given by the column span of the
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matrix C :“ pC1|C2| . . . |C
k

|C
k`1q where C

i

are column vectors in C2n`1, defined as follows:

C
k

“ e1 `
2̄ÿ

j“k`1

a
j,1 ej ; C

k`1 “ e
k`1 `

2̄ÿ

j“k`2

d
j

e
j

,

and

C
i

“ c
i`1 e1 ` e

i`1 `
2̄ÿ

j“k`1

pa
j,i`1 ` c

i`1aj,1q e
j

; 1 § i § k ´ 1.

By definition, the span ⌃
k´1 :“ spanpC1, . . . , C

k´1q of the first k´1 columns is an isotropic
subspace, and the column vectors C

k

and C
k`1 are perpendicular to ⌃

k´1; the projection
to IGpk ´ 1, 2n ` 1q˝ sends the matrix C to ⌃

k´1. The isotropy conditions translate into
linear constraints which determine the coordinates d2̄, . . . , d

k̄

and the coordinates a
i,j

, where
1 § j § k ´ 1 and k § i § j ` 1 (these latter constraints are the same as those from U1).

There are p2n ` 2 ´ kqpk ´ 1q ` 4n ´ 2k ` 1 coordinates and kpk´1q
2 ` k ´ 1 of them are

determined from linear constraints; this shows that U2 » AdimM˝
. In these coordinates the

map ⇡
U2 : U2 Ñ U1 becomes the linear map given by c

i

fiÑ 0 and d
i

fiÑ 0. In particular, this
map is smooth, and the fiber ⇡´1p1.P q X U2 is smooth. This finishes the proof. ⇤
Example 8.3. We illustrate the local calculation for k “ n “ 3. The open sets U1 Ä IGp3, 7q
and U2 Ä M˝ » F`p1, 2;SK

2 {S2q (a flag bundle over IGp2, 7q˝) are given by:

U2 “

¨

˚̊
˚̊
˚̊
˚̊
˝

c2 c3 1 0
1 0 0 0
0 1 0 0

a4,2 ` c2a4,1 a4,3 ` c3a4,1 a4,1 1
a4̄,2 ` c2a4̄,1 a4̄,3 ` c3a4̄,1 a4̄,1 d4̄
a‚̄
3,2 ` c2a‚̄

3,1 a3̄,3 ` c3a‚̄
3,1 a‚̄

3,1 d‚̄
3

a2̄,2 ` c2a‚̄
2,1 a2̄,3 ` c3a‚̄

2,1 a‚̄
2,1 d‚̄

2

˛

‹‹‹‹‹‹‹‹‚

⇡

U2›Ñ U1 “

¨

˚̊
˚̊
˚̊
˚̊
˝

1 0 0
0 1 0
0 0 1

a4,1 a4,2 a4,3
a4̄,1 a4̄,2 a4̄,3
a‚̄
3,1 a‚̄

3,2 a3̄,3
a‚̄
2,1 a2̄,2 a2̄,3

˛

‹‹‹‹‹‹‹‹‚

The coordinates with ‚ are determined from linear equations, using the isotropy contraints.
For instance, a‚̄

2,1 in U1 is determined by imposing that the first and second column are
pependicular, i.e.

a‚̄
2,1 ¨ 1 ` a4̄,1 ¨ a4,2 ´ a4,1 ¨ a4̄,2 “ 0.

The third and fourth column vectors from U2 are each perpendicular to the first two column
vectors. The dimension of U2 is 17 (coordinates) - 5 (linear constraints) “ 12, which equals
dimM0,1pIGp3, 7q, 1q, as claimed.

8.2. Lines in the closed orbit. Set M :“ M0,1pIG, 1q and consider the closed subvariety

M
c

:“ MzM˝ “ tpp, Lq P M0,1pIG, 1q : L Ä X
c

u,
which consists of lines included in the closed orbit. In terms of triples of flags this consists of
triples pV

k´1 Ä V
k

Ä V
k`1q such that V

k´1 belongs to the closed orbit in IGpk´1, 2n`1q (i.e
e1 P V

k´1), and V
k`1 Ä V K

k´1. Since e1 spans the kernel of the odd-symplectic form !, this is

a smooth subvariety of Flpk´1, k, k`1; 2n`1q » M0,1pGrpk, 2n`1q, 1q, and the universal
property for the moduli space of stable maps gives a bijective morphism M

c

Ñ M0,1pX
c

, 1q.
Recall that X

c

is isomorphic to the homogeneous space IGpk´1, 2nq, thus the moduli space
M0,1pX

c

, 1q is smooth. It follows that M
c

is isomorphic to M0,1pX
c

, 1q, and that both are
smooth, projective, irreducible varieties of dimension

dimM
c

“ dim IGpk ´ 1, 2nq ` 2n ` 1 ´ pk ´ 1q ´ 2 “ dim IGpk ´ 1, 2nq ` 2n ´ k.



EQUIVARIANT QUANTUM COHOMOLOGY OF THE ODD SYMPLECTIC GRASSMANNIAN 19

(Note the coincidence dimM
c

“ dimK2.) We recall the following result, proved in Thm.
2.5 and Cor. 3.3 from [5]:

Lemma 8.4. For every V P X
c

, the fibre ev´1
1 pV q of the restricted map ev1 : M0,1pX

c

, 1q Ñ
X

c

is an irreducible, normal variety of dimension dimM
c

´ dimX
c

.

We combine the previous lemma to Theorem 8.1 to obtain the main result of this section.

Theorem 8.5. Consider the evaluation map ev1 : M0,1pIG, 1q Ñ IG. Then the following
hold:

(a) For any V P IG, the fibre ev´1
1 pV q is pure dimensional of dimension dimM0,1pIG, 1q´

dim IG, and each of its components is generically smooth. In particular, ev1 is flat.
(b) For any Schubert variety Xpwq Ä X

c

, the preimage ev´1
1 pXpwqq has two irreducible

components:
ev´1

1 pXpwqq :“ A1 Y A2,

where A1 is the closure of the subvariety of pointed lines pp, Lq such that L X X˝ ‰ H, and
A2 is the closed subscheme corresponding to pp, Lq such that L is included in the closed orbit
X

c

. In both cases p P Xpwq. Further, each irreducible component is generically smooth of
expected dimension dimM0,1pIG, 1q ´ codimIGXpwq.
Proof. Since Sp2n`1 acts transitively on the open orbit X˝, the morphism ev1 is flat, and
the fibres have the stated dimension. Transitivity implies that all fibers over the closed orbit
are isomorphic, thus it su�ces to take V “ 1.P . Let F :“ ev´1

1 p1.P q be the fibre. Recall
the notation M˝ and M

c

. Clearly F can be written as the disjoint union F “ F ˝ Y F
c

where F ˝ :“ F XM˝ is open in F and F
c

:“ F zF ˝ is closed in M
c

. It follows from Theorem
8.1 that F ˝ is irreducible, generically reduced, and of the stated dimension. On the other
side, Lemma 8.4 implies that F

c

is irreducible, reduced, of dimension

dimF
c

“ dimM
c

´ dimX
c

“ dimM ´ dim IG;

(the last equality is a simple calculation). Therefore F
c

cannot in the closure of F ˝, and
the statements about F hold.3 The flatness follows from [27, Theorem 23.1], taking into
account that both source and target of ev1 are smooth varieties, and that all fibers have
the same dimension. Flatness implies that the GW variety GW1pwq from part (b) is pure
dimensional of expected dimension. Further, using transitivity and applying [5, Prop. 2.3]
to each irreducible component of ev´1

1 pX
c

q implies that the map ev1 : ev´1
1 pX

c

q Ñ X
c

is a
locally trivial fibration with fibre F . Then the restriction to ev´1

1 pXpwqq is a locally trivial
fibration over Xpwq with fibre F , and the statement in (b) follows. ⇤

8.3. Lines with two marked points. Define ⇠ : M0,2pIG, 1q ›Ñ M0,1pIG, 1q to be the
map forgetting the second marked point.

Proposition 8.6. The forgetful map ⇠ : M0,2pIG, 1q ›Ñ M0,1pIG, 1q is a locally trivial
P1-fibration.

Proof. Consider the embedding IG Ä Gr :“ Grpk, 2n ` 1q. We first prove the statement
with IG replaced by Gr. Recall that the moduli space M0,1pGr, 1q may be identified to the
partial flag manifold Flpk ´ 1, k, k ` 1; 2n ` 1q. It follows in particular that M0,1pGr, 1q
admits a transitive action of SL :“ SL2n`1. Then by [5, Prop. 2.3] the forgetful map

3Another way to see that F
c

à F ˝ is to notice that every line in F ˝ has isotropic span, therefore any
line in the closure must satisfy the same property. But we have seen that there exist lines in X

c

with non
isotropic span.
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M0,2pGr, 1q Ñ M0,1pGr, 1q is an SL-equivariant locally trivial fibration with fibres isomor-
phic to P1. Consider the commutative diagram:

M0,2pIG, 1q

FP

M0,1pIG, 1q

M0,2pGr, 1q

M0,1pGr, 1q

 

⇡1

⇠

j2

⇡2

⇠2

j1

where FP denotes the fibre product and j1, j2 are the closed embeddings determined by the
embedding IG Ä Gr. The map  is determined by the universal property for fibre products.
It is easy to check that  is bijective. Since both M0,2pIG, 1q and FP are smooth varieties
 is in fact an isomorphism, by Zariski’s Main Theorem. Since the right vertical arrow is
a P1-fibration, so is the left vertical arrow FP » M0,2pIG, 1q Ñ M0,1pIG, 1q. This proves
the statement. ⇤

Combining Proposition 8.6 and Theorem 8.5 imply the main result of this section. Re-
call that GW1pwq denotes the Gromov-Witten variety ev´1

1 pXpwqq. Obviously ev1 is the
composition of the forgetful map ⇠ with the evaluation map from M0,1pIG, 1q.
Corollary 8.7. Consider a Schubert variety Xpwq Ä X

c

. Then the Gromov-Witten variety
GW1pwq has two irreducible components

GW1pwq “ GW p1q
1 pwq Y GW p2q

1 pwq,
where GW p1q

1 pwq “ ⇠´1pA1q is the closure of the subvariety corresponding to lines L such

that L X X˝ ‰ H, and GW p2q
1 pwq “ ⇠´1pA2q is the closed subscheme corresponding to lines

L included in the closed orbit X
c

. In both cases L X Xpwq ‰ H. Further, each irreducible
component is generically smooth and it has dimension dimM0,2pX, 1q ´ codim

X

Xpwq.
9. Line neighborhoods

In this section we analyze the curve neighborhoods �1pwq :“ �1pXpwqq (i.e. the line
neighborhoods) in the case when Xpwq Ä X

c

. By Theorem 7.1 these are the only ones
which may contribute to non-zero GW invariants. By Corollary 8.7, the Gromov-Witten
variety GW1pwq has two components, each of expected dimension. It follows that the curve
neighborhood �1pwq has at most two components, and we have an equality

�1pwq “ �p1q
1 pwq Y �p2q

1 pwq,
where ev2 : GW piq

1 pwq Ñ �piq
1 pwq :“ ev2pGW piq

1 pwqq (i “ 1, 2). By definition, �p1q
1 pwqXX˝ ‰

H, �p2q
1 pwq Ä X

c

, and each of �piq
1 pwq is irreducible and stable under the standard Borel

subgroup; therefore each must be a Schubert variety. Further, since the second component

GW p2q
1 pwq is included in the GW variety of lines in the closed orbit X

c

, it follows from



EQUIVARIANT QUANTUM COHOMOLOGY OF THE ODD SYMPLECTIC GRASSMANNIAN 21

Corollary 6.2 that �p2q
1 pwq “ Xpw ¨O2WP

q where XpO2q “ �X

c

1 pidq is the line neighborhood
of the Schubert point in X

c

. Next we will identify the components �piq
1 pwq.

Proposition 9.1. Consider the minimal length representatives O1 “ p2 † 3 † ¨ ¨ ¨ † k †
k ` 1q and O2 “ p1 † 3 † 4 † ¨ ¨ ¨ † k † 2q. Then the line neighborhood of the Schubert
point in IGpk, 2n`1q is �1pidq “ XpO1qYXpO2q and `pO1q “ `pO2q “ 2n`1´k. (Observe
that this equals deg q ´ 1.)

Before the proof, we contrast the result above to that for curve neighborhoods in a
homogeneous space. For the latter, it was proved in [5] and [9] that any curve neighborhood
of a Schubert variety is a single Schubert variety. For the quasi-homogeneous space IG, this
already fails for �1pidq, but we observe that the components correspond naturally to the
orbits of Sp2n`1 on IG.

Proof. The properties of O2 follow from Corollary 6.2. We observed in §5 that there exists
a line joining O1 to the identity. The fact that `pO1q “ 2n ` 1 ´ k follows immediately
from the equation (6) below, where we describe O1 in terms of partitions. Finally, since
`pO1q “ deg q ´ 1, Theorem 6.6 implies that XpO1q is a component of �1pwq. ⇤

Theorem 9.2. Let w “ pwp1q † ¨ ¨ ¨ † wpkqq P WP X W odd be an odd-symplectic minimal
length representative such that Xpwq Ä X

c

(i.e. wp1q “ 1). Then the cosets w ¨ O1WP

and
w ¨ O2WP

have representatives in W odd and

�1pXpwqq “ Xpw ¨ O1WP

q Y Xpw ¨ O2WP

q.
Proof. The existence of representatives in W odd follows from Lemma 2.5. To prove the
equality, since both sides are B-stable, it su�ces to check they have the same T -fixed
points. Using the action of Sp2n`1, a line passing through the Schubert point Xpidq can
be translated so it contains any point in the closed orbit. In particular, a T -stable line
guaranteed by Proposition 9.1, joining Xpidq to O

i

W
P

(i “ 1, 2) is translated to one joining
any T -fixed point v P Xpwq to vO

i

W
P

. Since the minimal length representatives satisfy
v § w it follows that vO

i

§ v¨O
i

§ w¨O
i

, therefore �1pXpwqq Ä Xpw¨O1WP

qYXpw¨O2WP

q.
For the converse inclusion we will consider only lines L which intersect both Xpwq and the
open orbit X˝ (those included in the closed orbit are already accounted by the equality

�p2q
1 pwq “ Xpw ¨ O2WP

q). Let v “ pw ¨ O1qO´1
1 , where the products are performed in W .

Then v § w by [9, Prop.3.1] and vO1 “ w ¨ O1 in W . If L is the line joining Xpidq to O1

in IG then v.L joins v P Xpwq to vO1WP

“ pw ¨ O1qW
P

P Xpw ¨ O1WP

q. This proves the
required inclusion. ⇤

We record an immediate consequence of Lemma 2.3, which gives necessary and su�cient
conditions for the components of the curve neighborhood to have the expected dimension.

Lemma 9.3. Let w P WP X W odd such that Xpwq Ä X
c

, and let z P tO1, O2u. Then
dimXpw ¨ zW

P

q ´ dimXpwq § deg q ´ 1. Furthermore, the following are equivalent:
(i) dimXpw ¨ zW

P

q ´ dimXpwq “ deg q ´ 1;
(ii) `pw ¨ zq “ `pwq ` `pzq, w ¨ z “ wz and w ¨ z is a minimal length representative in

W odd.

10. Gromov-Witten invariants of lines

The main result of this section is the following:
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Figure 2. The moment graph of IGp2, 5q. The thick edges have degree 2
and the rest have degree 1. Each red vertex is in X

c

. The blue edges leaving
upwards from each red vertex w are connected to w ¨ O1 or w ¨ O2.

p3̄ † 2̄q

p3 † 2̄q

p2 † 3̄q p1 † 2̄q

p2 † 3q p1 † 3̄q

p1 † 3q

p1 † 2q

Theorem 10.1. Let Xpwq Ä X
c

be a Schubert variety in the closed orbit of X, and let
z P tO1, O2u. Consider the restricted evaluation map

ev2 : GW piq
1 pwq Ñ Xpw ¨ O

i

q pi “ 1, 2q.
Then dimGW piq

1 pwq • dimXpw ¨ O
i

W
P

q with equality if and only if the restricted map ev2
is birational. In particular, the following holds:

pev2q˚rGW piq
1 pwqs

T

“
#

rXpw ¨ O
i

qs
T

if w ¨ O
i

P WP X W oddand `pw ¨ O
i

q “ `pwq ` `pO
i

q;
0 otherwise.

Proof. By definition Xpw ¨O
i

W
P

q “ ev2pGW piq
1 pwqq, therefore the inequality on dimensions

is immediate. In the case of equality it remains to prove the birationality statement. First
observe that in this case dimXpw ¨ O

i

W
P

q “ dimXpwW
P

q ` deg q ´ 1, and by Lemma 9.3
w ¨O

i

is a minimal length representative satisfying `pw ¨O
i

q “ `pwq ` `pO
i

q. Given this, we
will drop W

P

from the notation.

Recall from Corollary 8.7 that GW piq
1 pwq is irreducible and generically smooth. Since

the evaluation map ev2 is B-equivariant, [5, Prop. 2.3] implies that ev2 is a locally trivial
fibration over the open cell Xpw ¨ O

i

q˝. The preimage ev´1
2 pXpw ¨ O

i

q˝q, being open and

dense, intersects the smooth locus of GW piq
1 pwq. Therefore all fibres over the open cell, which

by hypothesis are discrete, must be reduced. To prove birationality it su�ces to show that
for some x P Xpw ¨ O

i

q˝ there exists a unique line L such that x P L and LXXpwq ‰ H. If
i “ 2 (when the GW variety parametrizes lines included in the closed orbit) this statement
follows from Lemma 8.4. We assume from now on that i “ 1.
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We consider the fibre over x “ wO1 “ w ¨ O1. This fibre contains the line L
w

, obtained
by w-translating the unique, T -stable, line joining Xpidq and O1. If Xpvq Ä Xpwq such
that v ‰ w then

dim�1pXpwqq ´ dimXpvq “ `pw ¨ O1q ´ `pvq “ 2n ` 1 ´ k ` p`pwq ´ `pvqq ° 2n ` 1 ´ k.

Then theorems 6.6 and 9.2 imply that there is no line joiningXpvq to the open cellXpwO1q˝.
We deduce that any line passing through wO1 and Xpwq cannot intersect the boundary
XpwqzXpwq˝ of Xpwq. Let L be any line such that wO1 P L and y P L X Xpwq˝. If
y “ w then L “ L

w

is T -stable, so assume y ‰ w; in particular L is not T -stable. We
show that existence of this L leads to a contradiction. Consider a general C˚ Ä T such
that the T and C˚ fixed points in IG coincide. (Pick the C˚ to be a regular 1-parameter
subgroup as in [18, Ch. 24].) A line t.L in the (infinite) family of lines tt.L : t P C˚u
contains w ¨ O1 and it passes through t.y P Xpwq˝. The limits at 0 and 8 exist by the
properness of the appropriate Hilbert scheme [17, Prop. 3.9.8], and they correspond to two
lines passing through two (distinct) T -fixed points lim

tÑ0 t.y, limtÑ8 t.y P Xpwq. The two
lines are necessarily T -stable, and this contradicts the uniqueness of L

w

. ⇤
As a corollary, we can calculate the Chevalley GW invariants not covered by Theorem

7.1. Recall that XpDivq denotes the Schubert divisor in IG.

Corollary 10.2. Let u,w P WP X W odd such that Xpwq Ä X
c

. Then the Gromov-Witten
invariant xrXpDivqs

T

, rXpwqs
T

, rXpuqs_
T

y1 “ 1 if u “ wO
i

and `puq “ `pwq ` `pO
i

q, and it
is equal to 0 otherwise.

Proof. As in the proof of Theorem 7.1 we obtain

xrXpDivqs
T

, rXpwqs
T

, rXpuqs_
T

y1 “
ª

T

IGpk,2n`1q
pev2q˚pev˚

1rXpwqs
T

q X rXpuqs_
T

.

(We omitted the virtual class, since for d “ 1 this is the actual fundamental class.) By
Theorem 8.5 and Proposition 8.6, the evaluation map ev1 is flat. Then by Corollary 8.7,

ev˚
1rXpwqs

T

“ rev´1
1 pXpwqqs

T

“ rGW p1q
1 pwqs

T

` rGW p2q
1 pwqs

T

.

Then the result follows from Theorem 10.1 and Poincaré duality. ⇤
The previous corollary together with Theorem 7.1 give the quantum terms in the equi-

variant quantum Chevalley formula for X. Recall that the Chevalley formula is given by

rXpDivqs
T

‹ rXpwqs
T

“
ÿ

d•0;uPW odd

cu,d
Div,w

qdrXpuqs
T

,

where cu,d
Div,w

is a homogeneous polynomial of degree codimXpwq`1´pcodimXpuq`d deg qq.
The terms when d “ 0 (i.e. the non-quantum, equivariant coe�cients) can be obtained from
Mihai’s work [28]. Those for d ° 0 are listed below. We remark that these coe�cients were
also calculated by Pech for QH˚pIGp2, 2n ` 1qq [38] and they were conjectured in few cases
for QH˚pIGp3, 2n ` 1qq [37].

Theorem 10.3. Let u,w P WP X W odd and d ° 0. The equivariant quantum Chevalley
coe�cients cu,d

Div,w

“ 0 for d • 2 or if wp1q ‰ 1 (i.e. Xpwq Ü X
c

). If d “ 1 and wp1q “ 1
then

cu,1
Div,w

“
#
1 if u “ wO

i

and `puq “ `pwq ` `pO
i

q for i “ 1, 2;

0 otherwise.

In the next section we will rewrite this formula in terms of partitions.
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11. Equivariant Quantum Chevalley Rule with pn ´ kq-strict partitions

The goal of this section is to give an explicit formulation of the equivariant quantum
Chevalley formula using partitions.

11.1. A dictionary permutations - partitions. In this section we introduce a variant
of Buch, Kresch and Tamvakis k-strict partitions [7]. This variant, due to Pech [38], is
convenient to describe the cohomology of the odd-symplectic Grassmannian X “ IGpk, 2n`
1q. Recall that if P

k

is the maximal parabolic subgroup of Sp2n`2 determined by the simple
root ↵

k

, then the minimal length representatives WP

k have the form pwp1q † wp2q † ¨ ¨ ¨ †
wpkqq. Consider the set of partitions � “ p2n ` 2 ´ k • �1 • ¨ ¨ ¨ • �

k

• 0q which are
pn ` 1 ´ kq-strict, i.e. �

j

° �
j`1 whenever �

j

° n ` 1 ´ k. We denote this set by ⇤2n`2
k

.
There is a bijection between ⇤2n`2

k

and the set WP

k of minimal length representatives given
by:

� fiÑ w is defined by wpjq “ 2n ` 3 ´ k ´ �
j

` #ti † j : �
i

` �
j

§ 2pn ` 1 ´ kq ` j ´ iu,
w fiÑ � is defined by �

j

“ 2n ` 3 ´ k ´ wpjq ` #ti † j : wpiq ` wpjq ° 2n ` 3u.
See [7, Proposition 4.3]. Recall that the minimal length representative of the element w0

defined in (3) indexes IG as a Schubert variety inside IGpk, 2n ` 2q. Under the bijection
above, the coset of w0WP

k

corresponds to the pn ` 1 ´ kq-strict partition 1k :“ p1, 1, . . . , 1q
if k † n ` 1 and to pk, 0, . . . , 0q if k “ n ` 1. The minimal length representatives for odd
symplectic permutations w P W odd are in bijection with the subset of ⇤2n`2

k

consisting of
those pn ` 1 ´ kq-strict partitions satisfying the additional condition that if �

k

“ 0 then
�1 “ 2n ` 2 ´ k; in other words, if the first column is not full, then the first row must be
full.4 Pech introduced an equivalent indexing set, which is more convenient in the context
of the odd-symplectic Grassmannians:

⇤ :“ t� “ p2n`1´k • �1 • ¨ ¨ ¨ • �
k

• ´1q : � is n´k-strict, if �
k

“ ´1 then �1 “ 2n`1´ku.
Pictorially, the partitions in ⇤ are obtained by removing the full first column 1k from the
partitions in ⇤2n`2

k

, regardless of whether a part equal to 0 is present.

Example 11.1. Let k “ 5, n “ 7, and w “ p1 † 6 † 8̄ † 7̄ † 2̄|3 † 4 † 5q P W odd. Then
� “ p�1 • �2 • �3 • �4 • �5q P ⇤2n`2 is given by � “ p11, 6, 3, 3, 0q and the corresponding
partition in ⇤ is p10, 5, 2, 2,´1q. Pictorially,

´ “

Example 11.2. Let k “ n ` 1 “ 5, so IGp5, 9q » IGp4, 8q is the Lagrangian Grassmannian.

Then the codimension 0 class is the ´1-strict partition � “ p4,´1,´1,´1,´1q “ .

For � P ⇤ define |�| “ �1 ` . . . ` �
k

. If w corresponds to � then `pwq “ kp2n ` 1 ´
kq ´ kpk´1q

2 ´ |�|, i.e. the codimension of the Schubert variety Xpwq in X equals |�|; see
[7, Proposition 4.4] and [38, Section 1.1.1]. The partitions associated to the elements O1

and O2 from Proposition 9.1 are:

�pO1q “ p2n ´ k • 2n ´ k ´ 1 • 2n ´ k ´ 2 • ... • 2n ´ 2k ` 2 • 0q;
�pO2q “ p2n ´ k ` 1 • 2n ´ k ´ 1 • ... • 2n ´ 2k ` 2 • ´1q.(6)

4One word of caution: the Bruhat order does not translate into partition inclusion. For example, p2n `
2 ´ k, 0, . . . , 0q § p1, 1, . . . 1q in the Bruhat order for k † n ` 1.



EQUIVARIANT QUANTUM COHOMOLOGY OF THE ODD SYMPLECTIC GRASSMANNIAN 25

A Schubert variety Xpwq is included in the closed orbit X
c

Ä IG if its partition � P ⇤
satisfies �1 “ 2n ` 1 ´ k. In order to translate the conditions from Lemma 9.3 in terms of
partitions we need the following definition.

Definition 11.3. Let � “ p�1, . . . ,�
k

q be a partition in ⇤ such that �1 “ 2n ` 1 ´ k.
(a) If �

k

• 0 then let �˚ “ p�2 • �3 • ¨ ¨ ¨ • �
k

• 0q. If �
k

“ ´1 then �˚ does not exist.
(b) If �2 “ 2n ´ k then let �˚˚ “ p�1 • �3 • ¨ ¨ ¨ • �

k

• ´1q. If �2 † 2n ´ k then �˚˚

does not exist.

In both situations notice that |�˚| “ |�˚˚| “ |�| ´ p2n ` 1 ´ kq. As an example, if
⇢ “ p2n ´ k ` 1, 2n ´ k, . . . , 2n ´ 2k ` 2q is the partition indexing the Schubert point,
then �pO1q “ ⇢˚ and �pO2q “ ⇢˚˚. It is easy to produce examples when only one of �˚

or �˚˚ exist. For instance, if k “ 3, n “ 4, and � “ p6, 5,´1q then �˚ does not exist, but
�˚˚ “ p6,´1,´1q; if � “ p6, 3, 0q then �˚ “ p3, 0, 0q and �˚˚ does not exist.

Proposition 11.4. Let w P WP

k X W odd such that wp1q “ 1 and let w fiÑ � “ p2n ` 1 ´
k,�2, . . . ,�

k

q be the partition in ⇤ corresponding to w. The following hold:
(a) The partition �˚ exists if and only if wO1 is a minimal length representative in

W odd. If any of these conditions is satisfied then wO1 fiÑ �˚, thus in particular `pwO1q “
`pwq ` `pO1q.

(b) The partition �˚˚ exists if and only if wO2 is a minimal length representative in W odd

and `pwO2q “ `pwq ` `pO2q. In this case wO2 fiÑ �˚˚.

Proof. By Lemma 2.5 wO
i

P W odd so one only needs to check the claims about minimal
length representatives. Let w “ p1 † 2 † . . . † j † wpj ` 1q † . . . † wpkq|wpk ` 1q † . . . †
wpn ` 1qq where j • 1, wpj ` 1q ° j ` 1 and wpn ` 1q § n ` 1, since w is a minimal length
representative; this last condition is omitted if k “ n ` 1. Notice that either wpkq “ j ` 1
and j ` 2 § wpk ` 1q, or wpkq § j ` 2 and wpk ` 1q “ j ` 1. By the definition of O1 and
O2, we have

wO1 “ pwp2q, wp3q, . . . , wpkq, wpk ` 1q|1, wpk ` 2q, . . . , wpn ` 1qq;
wO2 “ p1, wp3q, ¨ ¨ ¨ , wpkq, wp2q|wpk ` 1q, ¨ ¨ ¨wpn ` 1qq,

as elements in W . Therefore wO1 is not a minimal length representative if and only if
wpkq ° wpk ` 1q, i.e. wpkq “ j ` 1 and j ` 2 § wpk ` 1q. Similarly, wO2 R WP

k if and only
if wpkq ° wp2q.

We now proceed to prove the statement (a). If �˚ exists but wpk ` 1q ‰ j ` 1, then the
preceding considerations imply that wpkq “ j ` 1. Using the bijection WP

k X W odd Ñ ⇤,
we calculate

�
k

“ 2n ` 2 ´ k ´ j ` 1 ` #ti † k : wpiq ` j ` 1 ° 2n ` 3u
“ j ´ k ` #ti † k : wpiq ° j ` 1u
“ j ´ k ` pk ´ 1 ´ jq
“ ´1.

This contradicts that �
k

• 0. Therefore wpkq § j ` 2 and wpk ` 1q “ j ` 1, which means
that wO1 P WP

k . Conversely, if wO1 is a minimal length representative, let wO1 fiÑ µ under
the bijection WP

k X W odd Ñ ⇤. Then for 1 § s § k ´ 1,

µ
s

“ 2n ` 2 ´ k ´ wO1psq ` #ti † s : wO1piq ` wO1psq ° 2n ` 3u
“ 2n ` 2 ´ k ´ wps ` 1q ` #ti † s : wpi ` 1q ` wps ` 1q ° 2n ` 3u.
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Since wp1q “ 1, #ti † s : wpi ` 1q ` wps ` 1q ° 2n ` 3u “ #ti † s ` 1 : wpiq ` wps ` 1q °
2n ` 3u, thus µ

s

“ �
s`1. We calculate µ

k

separately:

µ
k

“ 2n ` 2 ´ k ´ wO1pkq ` #ti † k : wO1piq ` wO1pkq ° 2n ` 3u
“ 2n ` 2 ´ j ` 1 ` #ti † k : wpi ` 1q ` j ` 1 ° 2n ` 3u
“ j ´ k ` #ti † k : wpi ` 1q ° j ` 1u
“ j ´ k ` pk ´ jq
“ 0.

Then µ “ �˚, and in particular the length condition is satisfied.
We now prove (b). We first observe that �2 “ 2n ` 2 ´ k ´ wp2q. Then �˚˚ exists if

and only if �2 “ 2n ´ k, i.e. wp2q “ 2. Then clearly wpkq † wp2q, therefore wO2 P WP

k .
Let wO2 fiÑ µ. As before we calculate µ1 “ 2n ` 1 ´ k, µ

s

“ �
s`1 for 2 § s § k ´ 1, and

that µ
k

“ wp2q ´ 3 “ ´1. This proves one implication. For the converse, we notice that
once wO2 P WP

k , same calculations show that µ1 “ 2n ` 1 ´ k and that µ
s

“ �
s`1 for

2 § s § k´1 (the condition wp2q “ 2 is not used in these). The length condition on `pwO2q
implies that |�| ´ |µ| “ 2n` 1´ k, which forces µ

k

“ ´1, thus µ “ �˚˚ and the proposition
is proved. ⇤

11.2. The equivariant quantum Chevalley formula. To formulate the equivariant
quantum Chevalley formula we will first recall the (non-quantum) equivariant Chevalley for-
mula for IG. This is due to Pech [37], but for the convenience of the reader we briefly recall
the main steps. (Pech works in the non-equivariant setting, and a minor argument is needed
for the equivariant extension.) In a nutshell, Pech uses the embedding ◆ : IG Ñ IGpk, 2n`2q
to reduce the calculation to the Chevalley formula in H˚pIGpk, 2n`2qq. Since IGpk, 2n`2q
is homogeneous, the classical work of Chevalley [11], and its equivariant generalization (see
e.g. [22]), give this formula with Schubert classes indexed by Weyl group representatives.
Buch, Kresch and Tamvakis [7] proved a more general (non-equivariant) Pieri rule, and in
the process re-stated the formulas in terms of strict partitions.

In this section we will use the notation Xp�q to denote the Schubert variety in IG and
Y p�`1q to denote the same Schubert variety, but now regarded in IGpk, 2n`2q “ Sp2n`2 {P .
The notation is consistent with the fact that the partitions in ⇤2n`2

k

are obtained from the
“odd-symplectic partitions” � P ⇤ by adding one box to each row. Set Xp1q respectively
Y p1q to be the Schubert divisors in IG and in IGpk, 2n`2q. Pech proved that inH˚pIGq there
is an equality ◆˚rY p1qs “ rXp1qs. Therefore in the equivariant cohomology ◆˚rY p1qs

T

“
rXp1qs

T

` Cptq, where Cptq P H2
T

pptq is a homogeneous linear form. After localization at
the point w0WP

(the torus-fixed point in the open Schubert cell in IG), and using that
w0WP

R Xp1q we obtain that Cptq “ ◆˚
w0

rY p1qs
T

, where ◆˚
w0

is the localization map. For
the next result, let w0 denote the longest element in W , and for 1 § k § n ` 1, let
!
k

“ t1 ` . . . ` t
k

denote the fundamental weights for Sp2n`2.

Lemma 11.5. Let w P W be a signed permutation. Then the localization coe�cient
◆
ẘ

rY p1qs
T

“ w0p!
k

q ´ wp!
k

q. In particular, Cptq “ ◆˚
w0

rY p1qs
T

equals

Cptq “
#
t
k`1 ´ t1 if k † n ` 1;

´2t1 if k “ n ` 1.

Proof. Let '
w0 : IGpk, 2n ` 2q Ñ IGpk, 2n ` 2q be the left multiplication by w0. This is an

automorphism of IGpk, 2n ` 2q which is equivariant with respect to the map T Ñ T given
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by t fiÑ w0tw0
´1. There is a commutative diagram

IGpk, 2n ` 2q '

w0 // IGpk, 2n ` 2q

twu
◆

w

OO

'

w0 // tw0wu
◆

w0w

OO

For v P WP let Y pvq denote the Schubert variety which is stable underB´
2n`2, the opposite

Borel subgroup B2n`2; then Y pvq has codimension `pvq. The morphism '
w0 induces a ring

isomorphism '˚
w0

P AutpH˚
T

pIGpk, 2n`2qqq which satisfies '˚
w0

rY pw0vWP

qs
T

“ rY pvW
P

qs
T

,

and it acts on H˚
T

pptq by twisting by w0. Since in our situation rY p1qs
T

“ '˚
w0

rY ps
k

qs
T

we
deduce that

◆˚
w

rY p1qs
T

“ ◆˚
w

'˚
w0

rY ps
k

qs
T

“ '˚
w0
◆˚
w0w

rY ps
k

qs
T

“ '˚
w0

p!
k

´ w0wp!
k

qq “ w0p!
k

q ´ wp!
k

q.
The third equality follows from localization formulas of Schubert classes for opposite Borel
subgroups, see e.g. [22]. The claim on Cptq follows from taking into account the expression
for w0 from (3), and that w0 “ p1̄, . . . , n ` 1q. ⇤

Consider the expansions

rXp1qs
T

Y rXp�qs
T

“
ÿ

µP⇤
cµp1q,�rXpµqs

T

P H˚
T

pXq;

rY p1qs
T

Y rY p�` 1qs
T

“
ÿ

µP⇤
c̃µp1q,�rY pµ ` 1qs

T

P H˚
T2n`2

pIGpk, 2n ` 2qq,
(7)

where cµp1q,�, c̃
µ

p1q,� P H˚
T

pptq. Notice that ◆˚rXp�qs
T

“ rY p� ` 1qs
T

therefore the product

rY p1qs
T

Y rY p�` 1qs
T

will only contain cohomology classes supported on IG. We apply ◆˚
to both sides of (7) and the projection formula to obtain

◆˚prXp1qs
T

Y rXp�qs
T

q “◆˚pp◆˚rY p1qs
T

´ Cptqq Y rXp�qs
T

q
“prY p1qs

T

´ Cptqq Y rY p�` 1qs
T

“rY p1qs
T

Y rY p�` 1qs
T

´ CptqrY p�` 1qs
T

It follows from this and Lemma 11.5 that

(8) cµp1q,� “
#
c̃µp1q,� if � ‰ µ;

c̃�p1q,� ´ Cptq “ w0p!
k

q ´ w
�

p!
k

q if � “ µ,

where w
�

P W is any permutation such that wW
P

corresponds to �. Notice in particular
that if � ‰ µ, the coe�cients c̃µp1q,� are non-negative integers. We recall next the formula

for these integers obtained in [7].

Definition 11.6. Represent � P ⇤2n`2
k

as a Young diagram. The box in row r and column
c of � is pn ` 1 ´ kq - related to the box in row r1 and column c1 if

|c ´ n ` k ´ 2| ` r “ |c1 ´ n ` k ´ 2| ` r1.

Given �, µ P ⇤2n`2
k

with � Ä µ, the skew diagram µ{� is called a horizontal strip (resp.
vertical) strip if it does not contain two boxes in the same column (resp. row).

Following [7, Definition 1.3] we say � Ñ µ for any n`1´k-strict partitions �, µ if µ can
be obtained by removing a vertical strip from the first n ` 1 ´ k columns of � and adding a
horizontal strip to the result, so that
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(1) if one of the first n` 1´ k columns of µ has the same number of boxes as the same
column of �, then the bottom box of this column is n ` 1 ´ k-related to at most one
box of µz�; and

(2) if a column of µ has fewer boxes than the same column of �, the removed boxes and
the bottom box of µ in this column must each be n` 1´ k-related to exactly one box
of µz�, and these boxes of µz� must all lie in the same row.

If � Ñ µ, we let A be the set of boxes of µz� in columns n ` 2 ´ k through 2n ` 1 ´ k
which are not mentioned in (1) or (2). Then define Np�, µq to be the number of connected
components of A which do not have a box in column n`2´k. Here two boxes are connected
if they share at least a vertex.

We refer to [7] for examples of these coe�cients. Combining theorem 10.3, proposi-
tion 11.4, and equation (8) above, together with the formulation of the Chevalley rule for
H˚pIGpk, 2n ` 2qq obtained in [7, Theorem 1.1] yields the equivariant quantum Chevalley
formula. To shorten notation we set Ap�, µq :“ Np�` 1, µ ` 1q.
Theorem 11.7. Let � P ⇤ be an n ´ k strict partition. Then the following equality holds
in the equivariant quantum cohomology ring QH˚

T

pIGpk, 2n ` 1qq:
rXp1qs

T

‹ rXp�qs
T

“
´ÿ

2Ap�,µqrXpµqs
T

¯
` pw0p!

k

q ´ w
�

p!
k

qq rXp�qs
T

` qrXp�˚qs
T

` qrXp�˚˚qs
T

,
(9)

where the first sum is over partitions µ P ⇤ such that �` 1 Ñ µ ` 1 and |µ| “ |�| ` 1, and
where w

�

pjq “ 2n ` 2 ´ k ´ �
j

` #ti † j : �
i

` �
j

§ 2pn ´ kq ` j ´ iu. When �˚ or �˚˚ do
not exist then the corresponding quantum term is omitted.

Example 11.8. Consider the Schubert class indexed by rXp6, 2, 1qs
T

P QH˚
T

pIGp5, 11qq. The
permutation corresponding to � “ p6, 2, 1q is w “ p1, 5, 6, 4̄, 3̄|2q. Then
rXp1qs

T

‹ rXp6, 2, 1qs
T

“ ´pt1 ` t2 ` 2t5 ` 2t6qrXp6, 2, 1qs
T

` 2rXp6, 3, 1qs
T

` qrXp2, 1qs
T

.

More examples can be found in section 13.

Remark 11.9. By Kleiman-Bertini theorem, the GW invariants for homogeneous spaces
are enumerative; cf. [12]. There is an equivariant version of positivity [16, 31] which states
that (quantum) equivariant multiplication of B´stable Schubert classes yields structure
constants which are polynomials in negative simple roots with nonnegative coe�cients.
Both the ordinary and equivariant positivity statements hold for the coe�cients of the
Chevalley formula (9). Since IG is not a homogeneous space, one expects that in general
positivity will fail. Based on theorem 12.2 below we calculated that in QH˚

T

pIGp2, 5qq,
rXp3,´1qs

T

‹ rXp3,´1qs
T

“ pt21 ´ t23qrXp3,´1qs
T

` pt2 ` t3qrXp3qs
T

` rXp3, 1qs
T

´ q

thus cp0q,1
p3,´1q,p3,´1q “ ´1 (this coe�cient was also calculated by Pech [37]) and cp3q,0

p3,´1q,p3,´1q “
t2 ` t3. The last coe�cient fails the expected equivariant positivity. The full multiplication
table in QH˚

T

pIGp2, 5q, containing more such examples, can be found in section 13.1.

12. Application: an algorithm for the structure constants of
QH˚

T

pIGpk, 2n ` 1qq
One of the main applications of the equivariant quantum Chevalley formula is a recursive

algorithm calculating the structure constants in the equivariant quantum cohomology ring
QH˚

T

pIGq. This is possible despite the fact that the divisor class does not generate the
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ring.5 The key is that the extra equivariant parameters introduce su�cient rigidity to allow
for a recursive formula. Similar algorithms, in various levels of generality, were obtained in
[21,34,36] in relation to equivariant cohomology of Grassmannians. These were generalized
for equivariant quantum cohomology and equivariant quantum K theory of flag manifolds in
[4,30,32]. Although the odd-symplectic Grassmannian is not homogeneous, the shape of the
equivariant quantum Chevalley formula is almost identical to the one for the Grassmannian.
In particular, the non-quantum terms are governed by the Bruhat order, there are no “mixed
terms” (i.e. no terms which contain both equivariant and quantum coe�cients), and there
are two quantum terms with coe�cient 1 (in the Grassmannian case, there is just one such
term). Therefore it should not be a surprise that almost the same algorithm as the one
from [30] extends to this case, with essentially the same proof. We present next the precise
results, while indicating the salient points in their proofs, but we shall leave it to the reader
to check the details.

We need to introduce few additional notations. For a partition � P ⇤ there is at most
one partition �` P ⇤ such that p�`q˚ “ �. Similarly, there exists at most one partition �``

such that p�``q˚˚ “ �.

Proposition 12.1. Let �, µ, ⌫ P ⇤ and d P H2pXq a non-negative degree. The structure

constant c⌫,d
�,µ

satisfy the following equation:

pw
⌫

p!
k

q ´ w
�

p!
k

qqc⌫,d
�,µ

“
ÿ

⌘

2Ap�,⌘qc⌫,d
⌘,µ

´
ÿ

⇠

2Ap⇠,⌫qc⇠,d
�,µ

` pc⌫,d´1
�

˚
,µ

´ c⌫
`
,d´1

�,µ

q ` pc⌫,d´1
�

˚˚
,µ

´ c⌫
``

,d´1
�,µ

q,
(10)

where w
�

P W is the partition corresponding to �, the first sum is over ⌘ P ⇤ such that
�`1 Ñ ⌘`1 and |⌘| “ |�|`1, and the second sum is over ⇠ P ⇤ such that ⇠`1 Ñ ⌫`1 and
|⇠| “ |⌫| ´ 1; the terms involving �˚,�˚˚, ⌫`, ⌫`` are omitted if the corresponding partition
does not exist.

Proof. This is an immediate calculation obtained by collecting the coe�cient of qdrXp⌫qs
T

in both sides of the associativity equation rXp1qs
T

‹ prXp�qs
T

‹ rXpµqs
T

q “ prXp1qs
T

‹
rXp�qs

T

q ‹ rXpµqs
T

. ⇤
The system of equations (10) gives a recursive procedure to calculate any structure con-

stant c⌫,d
�,µ

. We briefly recall the main ideas, following [30], where a similar equation appeared
in the study of the equivariant quantum cohomology of Grassmannians; see [4,32] for more
general algorithms. The procedure can be summarized as follows: given �, µ, ⌫ P ⇤ and d a
degree, the first sum contains coe�cients c⌫,d

⌘,µ

where ⌘ is smaller in Bruhat order than �; the

second sum contains coe�cients c⇠,d
�,µ

where ⇠ is larger than ⌫ in Bruhat order; the remaining
terms involve degree d ´ 1 † d, known inductively. Given this, the recursion can be run
whenever w

⌫

p!
k

q ´ w
�

p!
k

q ‰ 0, which is equivalent to asking that � ‰ ⌫. If � “ ⌫ one

runs the recursion for the coe�cient c⌫,d
µ,�

“ c⌫,d
�,µ

, using commutativity of the quantum ring.
If � “ µ “ ⌫ one uses the system of equations (10) to write down a linear equation in the

unknown coe�cient c�,d
�,�

where all other terms in this equation will be known recursively;
see [30, Prop. 6.2], and also [32, Prop. 7.4] or [4, Prop. 5.4] for similar statements. The

existence of the linear equation in c�,d
�,�

requires certain positivity properties of the linear
form F

�,⌫

:“ w
�

p!
k

q ´ w
⌫

p!
k

q, stated in [32, Lemma 7.1], or in a slightly di↵erent setup

5But the Schubert divisor generates the ring QH˚
T

pIGq localized at the equivariant parameters. We refer
to [4, §5] for details.
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in [4, Lemma 5.1]. (Essentially one requires that F
�,⌫

:“ w
�

p!
k

q ´ w
⌫

p!
k

q is a nonzero,
positive, combination of simple roots whenever w

�

† w
⌫

in Bruhat ordering.) These prop-
erties are satisfied because F

�,⌫

“ c̃⌫
⌫,p1q ´ c̃�

�,p1q, thus the proofs are the same as those in the

(homogeneous) case when G{P “ IGpk, 2n ` 2q.6 This shows the following:

Theorem 12.2. The EQ coe�cients are determined (algorithmically) by the following for-
mulas:

(1) cp0q,d
p0q,p0q “

#
0 d ° 0 ;

1 d “ 0 ;

(2) (commutativity) cµ,d
�,⇣

“ cµ,d
⇣,�

for al partitions �, ⇣, and µ;

(3) (EQ Chevalley) The coe�cients cµ,dp1q,� from theorem 11.7, for all partitions � and µ,

and all degrees d;
(4) The system of equations (10) for all partitions �, ⇣, µ such that � ‰ ⌫.

The theorem immediately implies Corollary 1.2, stated in the introduction.

13. Examples

In this section we present several examples. All multiplications are in the equivariant
quantum cohomology ring, but we will ignore the subscripts T . The Chevalley formula for
QH˚

T

pIGp3, 7qq is:

� rXp1qs ‹ rXp�qs
p1q ´p2t4qrXp1qs ` rXp4,´1,´1qs ` 2rXp2qs
p2q ´p2t3qrXp2qs ` rXp4, 0,´1qs ` rXp2, 1qs ` 2rXp3qs

p4,´1,´1q ´pt1 ` t4qrXp4,´1,´1qs ` rXp4, 0,´1qs
p4, 0,´1q ´pt1 ` t3qrXp4, 0,´1qs ` rXp4, 1,´1qs ` rXp4qs

p2, 1q ´2pt3 ` t4qrXp2, 1qs ` rXp4, 1,´1qs ` 2rXp3, 1qs
p3q ´p2t2qrXp3qs ` rXp3, 1qs ` rXp4qs

p4, 1,´1q ´pt1 ` t3 ` 2t4qrXp4, 1,´1qs ` rXp4, 2,´1qs ` rXp4, 1qs
p3, 1q ´2pt2 ` t4qrXp3, 1qs ` rXp4, 1qs ` 2rXp3, 2qs
p4q ´pt1 ` t2qrXp4qs ` rXp4, 1qs ` q

p4, 2,´1q ´pt1 ` 2t3 ` t4qrXp4, 2,´1qs ` rXp4, 2qs ` 2rXp4, 3,´1qs
p3, 2q ´2pt2 ` t3qrXp3, 2qs ` rXp3, 2, 1qs ` rXp4, 2qs
p4, 1q ´pt1 ` t2 ` 2t4qrXp4, 1qs ` rXp4, 3,´1qs ` 2rXp4, 2qs ` qrXp1qs

p4, 3,´1q ´pt1 ` 2t2 ` t4qrXp4, 3,´1qs ` rXp4, 3qs ` qrXp4,´1,´1qs
p3, 2, 1q ´2pt2 ` t3 ` t4qrXp3, 2, 1qs ` rXp4, 2, 1qs
p4, 2q ´pt1 ` t2 ` 2t3qrXp4, 2qs ` rXp4, 2, 1qs ` rXp4, 3qs ` qrXp2qs

p4, 2, 1q ´pt1 ` t2 ` 2t3 ` 2t4qrXp4, 2, 1qs ` rXp4, 3, 1qs ` qrXp2, 1qs
p4, 3q ´pt1 ` 2t2 ` t3qrXp4, 3qs ` rXp4, 3, 1qs ` qrXp4, 0,´1qs ` qrXp3qs

p4, 3, 1q ´pt1 ` 2t2 ` t3 ` 2t4qrXp4, 3, 1qs ` rXp4, 3, 2qs ` qrXp4, 1,´1qs ` qrXp3, 1qs
p4, 3, 2q ´pt1 ` 2t2 ` 2t3 ` t4qrXp4, 3, 2qs ` qrXp4, 2,´1qs ` qrXp3, 2qs

6The proof of [32, Lemma 7.1] is given in the Appendix of [32]. We comment that the full details proving
the non-emptiness statement from loc.cit. can be found in [2, Thm. 2.5.5].



EQUIVARIANT QUANTUM COHOMOLOGY OF THE ODD SYMPLECTIC GRASSMANNIAN 31

13.1. Multiplication table for QH˚
T pIGp2, 5qq.

rXp1qs ‹ rXp1qs “ ´2t3rXp1qs ` rXp3,´1qs ` 2rXp2qs
rXp1qs ‹ rXp2qs “ ´2t2rXp2qs ` rXp2, 1qs ` rXp3qs
rXp1qs ‹ rXp3,´1qs “ ´pt1 ` t3qrXp3,´1qs ` rXp3qs
rXp1qs ‹ rXp2, 1qs “ ´2pt2 ` t3qrXp2, 1qs ` rXp3, 1qs
rXp1qs ‹ rXp3qs “ ´pt1 ` t2qrXp3qs ` rXp3, 1qs ` q

rXp1qs ‹ rXp3, 1qs “ ´pt1 ` t2 ` 2t3qrXp3, 1qs ` rXp3, 2qs ` qrXp1qs
rXp1qs ‹ rXp3, 2qs “ ´pt1 ` 2t2 ` t3qrXp3, 2qs ` qrXp2qs ` qrXp3,´1qs
rXp2qs ‹ rXp2qs “ 2t2pt2 ´ t3qrXp2qs ´ 2t2rXp2, 1qs ´ pt2 ´ t3qrXp3qs ` rXp3, 1qs
rXp2qs ‹ rXp3,´1qs “ ´pt1 ` t2qrXp3qs ` q

rXp2qs ‹ rXp2, 1qs “ 2t2pt2 ` t3qrXp2, 1qs ´ pt2 ` t3qrXp3, 1qs ` rXp3, 2qs
rXp2qs ‹ rXp3qs “ pt1 ` t2qpt2 ´ t3qrXp3qs ´ pt1 ` t2qrXp3, 1qs ´ pt2 ´ t3qq ` qrXp1qs
rXp2qs ‹ rXp3, 1qs “ pt1 ` t2qpt2 ` t3qrXp3, 1qs ´ pt1 ` t2qrXp3, 2qs ´ pt2 ` t3qqrXp1qs

` qrXp3,´1qs ` qrXp2qs
rXp2qs ‹ rXp3, 2qs “ 2t2pt1 ` t2qrXp3, 2qs ´ pt1 ` t2qqrXp3,´1qs ´ 2t2qrXp2qs ` qrXp3qs

rXp3,´1qs ‹ rXp3,´1qs “ pt21 ´ t23qrXp3,´1qs ` pt2 ` t3qrXp3qs ` rXp3, 1qs ´ q

rXp3,´1qs ‹ rXp2, 1qs “ ´pt1 ` t2qrXp3, 1qs ´ rXp3, 2qs ` qrXp1qs
rXp3,´1qs ‹ rXp3qs “ pt21 ´ t22qrXp3qs ` rXp3, 2qs ´ pt1 ´ t2qq
rXp3,´1qs ‹ rXp3, 1qs “ pt21 ´ t22qrXp3, 1qs ´ pt2 ` t3qrXp3, 2qs ´ pt1 ´ t2qqrXp1qs ` qrXp2qs
rXp3,´1qs ‹ rXp3, 2qs “ pt21 ´ t23qrXp3, 2qs ´ pt1 ´ t3qqrXp2qs ` qrXp2, 1qs

rXp2, 1qs ‹ rXp2, 1qs “ ´4t2t3pt2 ` t3qrXp2, 1qs ` 2t3pt2 ` t3qrXp3, 1qs ´ 2pt2 ` t3qrXp3, 2qs
` qrXp3,´1qs

rXp2, 1qs ‹ rXp3qs “ pt1 ` t2qpt2 ` t3qrXp3, 1qs ´ pt1 ´ t2qrXp3, 2qs ´ pt2 ` t3qqrXp1qs ` qrXp2qs
rXp2, 1qs ‹ rXp3, 1qs “ ´2t3pt1 ` t2qpt2 ` t3qrXp3, 1qs ` 2t1pt2 ` t3qrXp3, 2qs

´ pt1 ` t3qqrXp3,´1qs ` 2t3pt2 ` t3qqrXp1qs ´ 2pt2 ` t3qqrXp2qs ` qrXp3qs
rXp2, 1qs ‹ rXp3, 2qs “ ´2t2pt1 ` t3qpt2 ` t3qrXp3, 2qs ` pt2 ` t3qpt1 ` t3qqrXp3,´1qs

` 2t2pt2 ` t3qqrXp2qs ´ pt1 ` 2t2 ` t3qqrXp3qs ` q2

rXp3qs ‹ rXp3qs “ ´pt1 ` t2qpt1t2 ´ t1t3 ´ t22 ` t2t3qrXp3qs ` pt21 ´ t22qrXp3, 1qs ´ 2t2rXp3, 2qs
` pt1t2 ´ t1t3 ´ t22 ` t2t3qq ´ pt1 ´ t2qqrXp1qs ` qrXp3,´1qs ` qrXp2qs

rXp3qs ‹ rXp3, 1qs “ ´pt21t2 ` t21t3 ´ t32 ´ t22t3qrXp3, 1qs ` pt21 ` t22 ` 2t2t3qrXp3, 2qs
´ pt1 ` t3qqrXp3,´1qs ` pt1t2 ` t1t3 ´ t22 ´ t2t3qqrXp1qs ´ pt1 ` t2qqrXp2qs
` qrXp2, 1qs ` qrXp3qs

rXp3qs ‹ rXp3, 2qs “ ´2t2pt21 ´ t23qrXp3, 2qs ` pt21 ´ t23qqrXp3,´1qs
` 2t2pt1 ´ t3qqrXp2qs ´ 2t2qrXp2, 1qs ´ pt1 ´ t3qqrXp3qs ` qrXp3, 1qs

rXp3, 1qs ‹ rXp3, 1qs “ 2t3pt21 ´ t22qpt2 ` t3qrXp3, 1qs ´ 2pt21t2 ` t21t3 ` t22t3 ` t2t
2
3qrXp3, 2qs

` pt21 ` 2t1t3 ` t23qqrXp3,´1qs ´ 2t3pt1t2 ` t1t3 ´ t22 ´ t2t3qqrXp1qs
` 2t1pt2 ` t3qqrXp2qs ´ 2pt2 ` t3qqrXp2, 1qs ´ p2t1 ` t2 ` t3qqrXp3qs ` qrXp3, 1qs ` q2

rXp3, 1qs ‹ rXp3, 2qs “ 2t2pt21t2 ` t21t3 ´ t2t
2
3 ´ t33qrXp3, 2qs ´ pt2 ` t3qpt21 ´ t23qqrXp3,´1qs

´ 2t2pt1t2 ` t1t3 ´ t2t3 ´ t23qqrXp2qs ` 2t2pt2 ` t3qqrXp2, 1qs
` pt1 ` 2t2 ` t3qpt1 ´ t3qqrXp3qs ´ pt1 ` 2t2 ` t3qqrXp3, 1qs ´ pt1 ´ t3qq2 ` q2rXp1qs
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rXp3, 2qs ‹ rXp3, 2qs “ ´2t2pt21t22 ´ t21t
2
3 ´ t22t

2
3 ` t43qrXp3, 2qs ` pt21t22 ´ t21t

2
3 ´ t22t

2
3 ` t43qqrXp3,´1qs

` 2t2pt1t22 ´ t1t
2
3 ´ t22t3 ` t33qqrXp2qs ´ 2t2pt22 ´ t23qqrXp2, 1qs

´ pt1 ` 2t2 ` t3qpt1t2 ´ t1t3 ´ t2t3 ` t23qqrXp3qs ` pt21 ` 2t1t2 ` 2t22 ´ t23qqrXp3, 1qs
` pt1t2 ´ t1t3 ´ t2t3 ` t23qq2 ´ pt1 ` t2qq2rXp1qs ` q2rXp2qs
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[35] A. Okounkov and G. Olshanskĭı, Shifted Schur functions, Algebra i Analiz 9 (1997), no. 2, 73–146.

MR1468548
[36] Andrei Okounkov, Quantum immanants and higher Capelli identities, Transform. Groups 1 (1996),

no. 1-2, 99–126. MR1390752
[37] Pech, C., Cohomologie quantique des grassmanniennes symplectiques impaire, Ph.D. thesis, Université
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