CURVE NEIGHBORHOODS AND COMBINATORIAL PROPERTY \mathcal{O} FOR A FAMILY OF ODD SYMPLECTIC PARTIAL FLAG MANIFOLDS

CONNOR BEAN, BRADLEY CRUIKSHANK, AND RYAN M. SHIFLER

Abstract

Let E be an odd dimensional complex vector space and $\operatorname{IF}:=\operatorname{IF}(1,2 ; E)$ be the family of odd symplectic partial flag manifold. In this paper we give a full description of the irreducible components of the degree d curve neighborhood of any Schubert variety of IF, study their lattice structure, and prove a combinatorial version of Conjecture \mathcal{O}.

1. Introduction

1.1. Overview. The degree d curve neighborhood of a subvariety $V \subset X$, denoted $\Gamma_{d}(V)$, is the closure of the union of all degree d rational curves through V. Curve neighborhoods were introduced in [BCMP13] to prove finiteness of quantum K-theory for X a cominuscule homogeneous space. Let E be an odd dimensional complex vector space and IF $:=\operatorname{IF}(1,2 ; E)$ be the family of odd symplectic partial flag manifold made up of sequences of vector spaces ($V_{1} \subset V_{2} \subset E$) where $\operatorname{dim} V_{i}=i$ and V_{i} is isotropic with respect to a (necessarily degenerate) symmetric form. In this paper we give a full description of the irreducible components of the degree d curve neighborhood of any Schubert variety of IF, study their lattice structure, and prove a combinatorial version of Conjecture \mathcal{O}.
1.2. Broader context. Curve neighborhoods in homogeneous G / P case are irreducible and there are combinatorial models to perform calculations (see [BCMP13, BM15, SW20, Shi]). In [Asl], Aslan shows that the irreducible components of curve neighborhoods in the Affine Flag in Type A have equal dimension. It is shown in [PS22] that curve neighborhoods in the odd symplectic Grassmannian may not be irreducible. In Section 6, we see, for the first time, that reducible curves are an integral part of understanding the geometry of the (combinatorial) quantum Bruhat graph for IF. See Remark 6.4.
1.3. Curve neighborhoods. We now discuss curve neighborhoods. Let X be a Fano variety (one could consider X to be smooth). Let $d \in H_{2}(X, \mathbb{Z})$ be an effective degree. Recall that the moduli space of genus 0 , degree d stable maps with two marked points $\overline{\mathcal{M}}_{0,2}(X, d)$ is endowed with two evaluation maps $\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0,2}(X, d) \rightarrow X, i=1,2$ which evaluate stable maps at the i-th marked point. Let $\Omega \subset X$ be a closed subvariety. The curve neighborhood of Ω is the subscheme

$$
\Gamma_{d}(\Omega):=\operatorname{ev}_{2}\left(\mathrm{ev}_{1}^{-1} \Omega\right) \subset X
$$

endowed with the reduced scheme structure.
This notion was introduced by Buch, Chaput, Mihalcea and Perrin [BCMP13] to help study the quantum K-theory ring of cominuscule Grassmannians. It was analyzed further in [BM15, PS22]. Often, estimates for the dimension of the curve neighborhoods provide vanishing conditions for certain Gromov-Witten invariants.
1.4. Lattices. We will study curve neighborhoods through the lens of lattices. That is, let X be a smooth variety containing the subvariety Ω. It's interesting to ask if the set $\left.\left\{\Gamma_{d}(\Omega)\right)\right\}_{d}$ forms a (distributive) lattice where \leqslant is defined by inclusion of varieties. We will show that this set forms a distributive lattice when $X=\mathrm{IF}$ and Ω is a Schubert variety.
1.5. Conjecture \mathcal{O}. We will motivate and define the Combinatorial Property \mathcal{O} which is known to correspond with Conjecture \mathcal{O} in the homogeneous G / P and odd symplectic Grassmannian cases. We begin by reviewing Conjecture \mathcal{O} and conclude with its relation to graph theory in Lemma 1.1. In Subsection 1.7 we state the combinatorial versions of the quantum Bruhat graph and the Conjecture \mathcal{O}. In Subsection 6.1 we state and prove that Combinatorial Property \mathcal{O} holds for IF in Theorem 6.5.

We recall the precise statement of Conjecture \mathcal{O}. Let X be a Fano variety, let $K:=$ K_{X} be the canonical line bundle of X, let X_{D} be a fundamental divisor of X, and let $c_{1}(X):=c_{1}(-K) \in H^{2}(X)$ be the anticanonical class. The Fano index of X is r, where r is the greatest integer such that $K_{X} \cong-r X_{D}$. The small quantum cohomology ring $\left(Q H^{*}(X), \star\right)$ is a graded algebra over $\mathbb{Z}[q]$, where q is the quantum parameter. Consider the specialization $H^{\bullet}(X):=\left.Q H^{*}(X)\right|_{q=1}$ at $q=1$. The quantum multiplication by the first Chern class $c_{1}(X)$ induces an endomorphism \hat{c}_{1} of the finite-dimensional vector space $H^{\bullet}(X)$:

$$
y \in H^{\bullet}(X) \mapsto \hat{c}_{1}(y):=\left.\left(c_{1}(X) \star y\right)\right|_{q=1} .
$$

Denote by $\delta_{0}:=\max \left\{|\delta|: \delta\right.$ is an eigenvalue of $\left.\hat{c}_{1}\right\}$. Then Property \mathcal{O} states the following:
(1) The real number δ_{0} is an eigenvalue of \hat{c}_{1} of multiplicity one.
(2) If δ is any eigenvalue of \hat{c}_{1} with $|\delta|=\delta_{0}$, then $\delta=\delta_{0} \gamma$ for some r-th root of unity $\gamma \in \mathbb{C}$, where r is the Fano index of X.
The property \mathcal{O} was conjectured to hold for any Fano, complex manifold X in [GGI16]. If a Fano, complex, manifold has Property \mathcal{O} then we say that the space satisfies Conjecture \mathcal{O}. Conjecture \mathcal{O} underlies Gamma Conjectures I and II of Galkin, Golyshev, and Iritani. The Gamma Conjectures refine earlier conjectures by Dubrovin on Frobenius manifolds and mirror symmetry. Conjecture \mathcal{O} has already been proved for many cases in [CL17, LMS19, HKLY, Ke, BFSS]. The Perron-Frobenius theory of nonnegative matrices reduces the proofs that Conjecture \mathcal{O} holds for the homogeneous and the odd symplectic Grassmannian cases to be a graph-theoretic check. This is because Conjecture \mathcal{O} is largely reminiscent of PerronFrobenius Theory.

The small quantum cohomology is defined as follows. Let $\left(\alpha_{i}\right)_{i}$ be a basis of $H^{*}(X)$, the classical cohomology ring, and let $\left(\alpha_{i}^{\vee}\right)_{i}$ be the dual basis for the Poincaré pairing. The multiplication is given by

$$
\alpha_{i} \star \alpha_{j}=\sum_{d \geqslant 0, k} c_{i, j}^{k, d} q^{d} \alpha_{k}
$$

where $c_{i, j}^{k, d}$ are the 3 -point, genus 0 , Gromov-Witten invariants corresponding to the classes α_{i}, α_{j}, and α_{k}^{\vee}. We will make use of the quantum Chevalley formula which is the multiplication of a hyperplane class h with another class α_{j}. The explicit quantum Chevalley formula is the key ingredient used to prove Property \mathcal{O} holds.
1.6. Sufficient Criterion for Property \mathcal{O} to hold. We recall the notion of the (oriented) quantum Bruhat graph of a Fano variety X. The vertices of this graph are the basis elements $\alpha_{i} \in H^{\bullet}(X):=\left.Q H^{*}(X)\right|_{q=1}$. There is an oriented edge $\alpha_{i} \rightarrow \alpha_{j}$ if the class α_{j} appears with positive coefficient (where we consider $q>0$) in the quantum Chevalley multiplication
$h \star \alpha_{i}$ for some hyperplane class h. We say the graph is strongly connected if there are directed paths for α_{i} to α_{j} and α_{j} to α_{i} for any $\alpha_{i}, \alpha_{j} \in H^{\bullet}(X)$. If there is a path

$$
\alpha_{i_{1}} \rightarrow \alpha_{i_{2}} \rightarrow \cdots \rightarrow \alpha_{i_{k}} \rightarrow \alpha_{i_{1}}
$$

then we say this is a cycle with cycle length k. Using the Perron-Frobenius theory of nonnegative matrices, Conjecture \mathcal{O} reduces to a graph-theoretic check of the quantum Bruhat graph. The techniques involving Perron-Frobenius theory used by Li, Mihalcea, and Shifler in [LMS19] and Cheong and Li in [CL17] imply the following lemma:

Lemma 1.1. If the following conditions hold for a Fano variety X :
(1) The matrix representation of \hat{c}_{1} is nonnegative,
(2) The quantum Bruhat graph of X is strongly connected, and
(3) There exists a set of cycles where the Great Common Divisor of the cycle lengths is r, the Fano index, in the quantum Bruhat graph of X,
then Property \mathcal{O} holds for X.
Remark 1.2. Part (2) of Conjecture \mathcal{O} holds automatically if the Fano index is equal to one. That is, we don't need to verify Lemma 1.1 (3) for $\operatorname{IF}(1,2 ; E)$.
1.7. Combinatorial version of the quantum Bruhat graph and Conjecture \mathcal{O}. Let X be a Fano variety. Let $\mathcal{B}:=\left\{\alpha_{i}\right\}_{i \in I}$ denote a basis of the cohomology ring $H^{*}(X)$. Denote its first Chern class by

$$
c_{1}(X)=a_{1} \operatorname{Div}_{1}+a_{2} \operatorname{Div}_{2}+\cdots+a_{k} \operatorname{Div}_{k}
$$

where $\operatorname{Div}_{i} \in \mathcal{B}$ is a divisor class for each $1 \leqslant i \leqslant k$.
Definition 1.3. The combinatorial quantum Bruhat graph of X is define as follows. The vertices of this graph are the basis elements $\alpha_{i} \in H^{*}(X)$. The edges set is given as follows:
(1) There is an oriented edge $\alpha_{i} \rightarrow \alpha_{j}$ if the class α_{j} appears with positive coefficient in the Chevalley multiplication $h \star \alpha_{i}$ for some hyperplane class h.
(2) Let $\alpha_{i}=[X(i)]$ and $\alpha_{j}=[X(j)]$. There is an oriented edge $\alpha_{i} \rightarrow \alpha_{j}$
(a) if $X(j)$ is an irreducible component of $\Gamma_{d}(X(i))$ where $d=\left(d_{1}, \cdots, d_{k}\right)$,
(b) and

$$
\operatorname{dim}(X(j))-\operatorname{dim}(X(i))=a_{1} d_{1}+a_{2} d_{2}+\cdots+a_{k} d_{k}-1 .
$$

Lemma 1.1 leads us to naturally consider the following combinatorial formulation of Conjecture \mathcal{O}.

Definition 1.4. Combinatorial Property \mathcal{O} holds if the following conditions are satisfied:
(1) There is a basis with respect to which the associated matrix of \hat{c}_{1} is nonnegative ${ }^{1}$,
(2) The combinatorial quantum Bruhat graph is strongly connected and the Greatest Common Divisor of the cycle lengths is $r=\operatorname{GCD}\left(a_{1}, a_{2}, \cdots, a_{k}\right)$.

The purpose of Proposition 1.5 is to assert that the Combinatorial versions of the quantum Bruhat graph and Conjecture \mathcal{O} correspond with their geometric analogue.

Proposition 1.5 ([LMS19, CL17]). The combinatorial quantum Bruhat graphs (Combinatorial Property \mathcal{O}) and the quantum Bruhat graphs (Conjecture \mathcal{O}) correspond for homogeneous G / P and the odd symplectic Grassmannian.

[^0]1.8. Organization of the main results. The manuscript has three objectives. The first is to compute the curve neighborhoods of Schubert varieties in IF. This is done in Section 4. We study curve neighborhoods in the context of lattices in Section 5. In Section 6 we study the combinatorial analogues of the quantum Bruhat graphs and Conjecture \mathcal{O}. We conclude by showing that Combinatorial Property \mathcal{O} holds which motivate futher study of IF.

2. Notations and Definitions

2.1. A small family of odd symplectic partial flag manifolds. Let $n \geqslant 2$ and $E:=$ $\mathbb{C}^{2 n+1}$ be an odd-dimensional complex vector space. An odd symplectic form ω on E is a skew-symmetric bilinear form of maximal rank (i.e. with kernel of dimension 1). It will be convenient to extend the form ω to a (nondegenerate) symplectic from $\tilde{\omega}$ on an even-dimensional space $\widetilde{E} \supset E$, and to identify $E \subset \widetilde{E}$ with a coordinate hyperplane $\mathbb{C}^{2 n+1} \subset \mathbb{C}^{2 n+2}$.

For that, let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n+1}, \mathbf{e}_{\overline{n+1}}, \ldots, \mathbf{e}_{\overline{2}}, \mathbf{e}_{\overline{1}}\right\}$ be the standard basis of $\widetilde{E}:=\mathbb{C}^{2 n+2}$, where $\bar{i}=2 n+3-i$. Consider $\widetilde{\omega}$ to be the symplectic form on \widetilde{E} defined by

$$
\widetilde{\omega}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=\delta_{i, \bar{j}} \text { for all } 1 \leqslant i \leqslant j \leqslant \overline{1} .
$$

The form $\widetilde{\omega}$ restricts to the degenerate skew-symmetric form ω on

$$
E=\mathbb{C}^{2 n+1}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{2 n+1}\right\rangle
$$

such that the kernel $\operatorname{ker} \omega$ is generated by \mathbf{e}_{1}. Then

$$
\omega\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=\delta_{i, \bar{j}} \text { for all } 1 \leqslant i \leqslant j \leqslant \overline{2} .
$$

Let $F \subset E$ denote the $2 n$-dimensional vector space with basis $\left\{\mathbf{e}_{2}, \mathbf{e}_{3}, \cdots, \mathbf{e}_{2 n+1}\right\}$.
The odd symplectic partial flag manifold we are considering is

$$
\operatorname{IF}(1,2 ; E):=\left\{V_{1} \subset V_{2} \subset E: \operatorname{dim} V_{i}=i \text { and } \omega(x, y)=0 \text { for any } x, y \in V_{i}\right\} .
$$

The restriction of ω to F is non-degenerate, hence we can see the odd symplectic Grassmannian as intermediate space

$$
\begin{equation*}
\operatorname{IF}(1 ; F) \subset \operatorname{IF}(1,2 ; E) \subset \operatorname{IF}(1,2 ; \widetilde{E}) \tag{1}
\end{equation*}
$$

sandwiched between two odd symplectic flag manifolds. This and the more general "odd symplectic partial flag varieties" have been studied in [Mih07, Pec13, MS19, LMS19, PS22]. In particular, Mihai showed that IF is a smooth Schubert variety in $\operatorname{IF}(1,2 ; \widetilde{E})$.
2.2. The odd symplectic group. Proctor's odd symplectic group (see [Pro88]) is the subgroup of GL (E) which preserves the odd symplectic form ω :

$$
\operatorname{Sp}_{2 n+1}(E):=\{g \in \mathrm{GL}(E) \mid \omega(g \cdot u, g \cdot v)=\omega(u, v), \forall u, v \in E\}
$$

Let $\mathrm{Sp}_{2 n}(F)$ and $\mathrm{Sp}_{2 n+2}(\widetilde{E})$ denote the symplectic groups which respectively preserve the symplectic forms $\omega_{\mid F}$ and $\widetilde{\omega}$. Then with respect to the decomposition $E=F \oplus \operatorname{ker} \omega$ the elements of the odd symplectic group $\operatorname{Sp}_{2 n+1}(E)$ are matrices of the form

$$
\operatorname{Sp}_{2 n+1}(E)=\left\{\left.\left(\begin{array}{cc}
\lambda & a \\
0 & S
\end{array}\right) \right\rvert\, \lambda \in \mathbb{C}^{*}, a \in \mathbb{C}^{2 n}, S \in \operatorname{Sp}_{2 n}(F)\right\}
$$

The symplectic group $\mathrm{Sp}_{2 n}(F)$ embeds naturally into $\mathrm{Sp}_{2 n+1}(E)$ by $\lambda=1$ and $a=0$, but $\mathrm{Sp}_{2 n+1}(E)$ is not a subgroup of $\mathrm{Sp}_{2 n+2}(\widetilde{E}) .{ }^{2}$ Mihai showed in [Mih07, Prop 3.3] that there is a surjection $P \rightarrow \operatorname{Sp}_{2 n+1}(E)$ where $P \subset \operatorname{Sp}_{2 n+2}(\widetilde{E})$ is the parabolic subgroup which preserves $\operatorname{ker} \omega$, and the map is given by restricting $g \mapsto g_{\mid E}$. Then the Borel subgroup $B_{2 n+2} \subset \mathrm{Sp}_{2 n+2}(\widetilde{E})$ of upper triangular matrices restricts to the (Borel) subgroup $B \subset$ $\mathrm{Sp}_{2 n+1}(E)$. Similarly, the maximal torus

$$
T_{2 n+2}:=\left\{\operatorname{diag}\left(t_{1}, \cdots, t_{n+1}, t_{n+1}^{-1}, \cdots, t_{1}^{-1}\right): t_{1}, \cdots, t_{n+1} \in \mathbb{C}^{*}\right\} \subset B_{2 n+2}
$$

restricts to the maximal torus

$$
T=\left\{\operatorname{diag}\left(t_{1}, \cdots, t_{n+1}, t_{n+1}^{-1}, \cdots, t_{2}^{-1}\right): t_{1}, \cdots, t_{n+1} \in \mathbb{C}^{*}\right\} \subset B .
$$

Later on we will also require notation for subgroups of $\mathrm{Sp}_{2 n}(F)$, viewed as a subgroup of $\operatorname{Sp}_{2 n+1}(E)$. We denote by $B_{2 n} \subset B$ the Borel subgroup of upper-triangular matrices in $\mathrm{Sp}_{2 n}(F)$ and by $T_{2 n}$ the maximal torus

$$
T_{2 n}=\left\{\operatorname{diag}\left(1, t_{2}, \cdots, t_{n+1}, t_{n+1}^{-1}, \cdots, t_{2}^{-1}\right): t_{2}, \cdots, t_{n+1} \in \mathbb{C}^{*}\right\} \subset B_{2 n} .
$$

Mihai showed that the odd symplectic group $\operatorname{Sp}_{2 n+1}(E)$ acts on IF with three orbits:

$$
\begin{aligned}
X^{\circ} & =\left\{V \in \mathrm{IF} \mid \mathbf{e}_{1} \notin V_{2}\right\} \text { the open orbit. } \\
Z_{2} & =\left\{V \in \mathrm{IF} \mid \mathbf{e}_{1} \in V_{2} \backslash V_{1}\right\} . \\
Z_{1} & =\left\{V \in \mathrm{IF} \mid \mathbf{e}_{1} \in V_{1}\right\} \text { the closed orbit. }
\end{aligned}
$$

The closed orbit Z_{1} is isomorphic to $\operatorname{IF}(1, F)$ via the map $V \mapsto V \cap F$.
2.3. The Weyl group of $\mathrm{Sp}_{2 n+2}$ and odd symplectic minimal representatives. There are many possible ways to index the Schubert varieties of isotropic flag manifolds. Here we recall an indexation using signed permutations.

Consider the root system of type C_{n+1} with positive roots

$$
R^{+}=\left\{t_{i} \pm t_{j} \mid 1 \leqslant i<j \leqslant n+1\right\} \cup\left\{2 t_{i} \mid 1 \leqslant i \leqslant n+1\right\}
$$

and the subset of simple roots

$$
\Delta=\left\{\alpha_{i}:=t_{i}-t_{i+1} \mid 1 \leqslant i \leqslant n\right\} \cup\left\{\alpha_{n+1}:=2 t_{n+1}\right\} .
$$

The associated Weyl group W is the hyperoctahedral group consisting of signed permutations, i.e. permutations w of the elements $\{1, \cdots, n+1, \overline{n+1}, \cdots, \overline{1}\}$ satisfying $w(\bar{i})=\overline{w(i)}$ for all $w \in W$. For $1 \leqslant i \leqslant n$ denote by s_{i} the simple reflection corresponding to the root $t_{i}-t_{i+1}$ and s_{n+1} the simple reflection of $2 t_{n+1}$. In particular, if $1 \leqslant i \leqslant n$ then $s_{i}(i)=i+1$, $s_{i}(i+1)=i$, and $s_{i}(j)$ is fixed for all other j. Also, $s_{n+1}(n+1)=\overline{n+1}, s_{n+1}(\overline{n+1})=n+1$, and $s_{n+1}(j)$ is fixed for all other j.

Each subset $I:=\left\{i_{1}<\ldots<i_{r}\right\} \subset\{1, \ldots, n+1\}$ determines a parabolic subgroup $P:=P_{I} \leqslant \operatorname{Sp}_{2 n+2}(\widetilde{E})$ with Weyl group $W_{P}=\left\langle s_{i} \mid i \neq i_{j}\right\rangle$ generated by reflections with indices not in I. Let $\Delta_{P}:=\left\{\alpha_{i_{s}} \mid i_{s} \notin\left\{i_{1}, \ldots, i_{r}\right\}\right\}$ and $R_{P}^{+}:=\operatorname{Span}_{\mathbb{Z}} \Delta_{P} \cap R^{+}$; these are the positive roots of P. Let $\ell: W \rightarrow \mathbb{N}$ be the length function and denote by W^{P} the set of minimal length representatives of the cosets in W / W_{P}. The length function descends to W / W_{P} by $\ell\left(u W_{P}\right)=\ell\left(u^{\prime}\right)$ where $u^{\prime} \in W^{P}$ is the minimal length representative for the coset $u W_{P}$. We have a natural ordering

$$
1<2<\cdots<n+1<\overline{n+1}<\cdots<\overline{1}
$$

[^1]which is consistent with our earlier notation $\bar{i}:=2 n+3-i$.
Let P be the parabolic obtained by excluding the reflections s_{1} and s_{2}. Then the minimal length representatives W^{P} have the form $(w(1)|w(2)| w(3)<\cdots<w(n) \leqslant n+1)$. Since the last $n-1$ labels are determined from the first 2 labels, we will identify an element in W^{P} with ($w(1) \mid w(2))$.
Example 2.1. The reflection $s_{t_{1}+t_{2}}$ is given by the signed permutation
$$
s_{t_{1}+t_{2}}(1)=\overline{2}, s_{t_{1}+t_{2}}(2)=\overline{1}, \text { and } s_{t_{1}+t_{2}}(i)=i \text { for all } 3 \leqslant i \leqslant n+1
$$

The minimal length representative of $s_{t_{1}+t_{2}} W^{P}$ is $(\overline{2} \mid \overline{1})$.
2.4. Schubert Varieties in even and odd symplectic partial flag manifolds. Recall that the even symplectic partial flag manifold $X^{e v}=\operatorname{IF}(1,2 ; \tilde{E})$ is a homogeneous space $\mathrm{Sp}_{2 n+2} / P$, where P is the parabolic subgroup generated by the simple reflections s_{i} with $i \neq 1,2$. For each $w \in W^{P}$ let $X^{e v}(w)^{\circ}:=B_{2 n+2} w B_{2 n+2} / P$ be the Schubert cell. This is isomorphic to the space $\mathbb{C}^{\ell(w)}$. Its closure $X^{e v}(w):=\overline{X^{e v}(w)^{\circ}}$ is the Schubert variety. We might occasionally use the notation $X^{e v}\left(w W_{P}\right)$ if we want to emphasize the corresponding coset, or if w is not necessarily a minimal length representative. Recall that the Bruhat ordering can be equivalently described by $v \leqslant w$ if and only if $X^{e v}(v) \subset X^{e v}(w)$. Set

$$
w_{0}=(\overline{2} \mid \overline{3})
$$

this is an element in W. Recall that the odd symplectic Borel subgroup is $B=B_{2 n+2} \cap$ $\mathrm{Sp}_{2 n+1}$. The following results were proved by Mihai [Mih07, §4].
Remark 2.2. Here w_{0} is the longest element for IF which is different than the longest element for $\operatorname{IF}(1,2 ; \tilde{E})$.
Proposition 2.3. (a) The natural embedding $\iota: X=\operatorname{IF} \hookrightarrow X^{e v}=\operatorname{IF}(1,2 ; \tilde{E})$ identifies IF with the (smooth) Schubert subvariety

$$
X^{e v}\left(w_{0} W_{P}\right) \subset \operatorname{IF}(1,2 ; \tilde{E}) .
$$

(b) The Schubert cells (i.e. the $B_{2 n+2}$-orbits) in $X^{e v}\left(w_{0}\right)$ coincide with the B-orbits in IF. In particular, the B-orbits in IF are given by the Schubert cells $X^{e v}(w)^{\circ} \subset \operatorname{IF}(1,2 ; \tilde{E})$ such that $w \leqslant w_{0}$.

We discuss Schubert cells or varieties in the odd symplectic case. For each $w \leqslant w_{0}$ such that $w \in W^{P}$, we denote by $X(w)^{\circ}$, and $X(w)$, the Schubert cell, respectively the Schubert variety in IF. The same Schubert variety $X(w)$, but regarded in the even symplectic partial flag manifold is denoted by $X^{e v}(w)$. For further use we note that IF has complex dimension $\ell(\overline{2} \mid \overline{3})=4 n-6, \operatorname{IF}(1,2 ; \tilde{E})$ has complex dimension $\ell(\overline{1} \mid \overline{2})=4 n-4$, and IF has codimension 2 in $\operatorname{IF}(1,2 ; \tilde{E})$. Further, a Schubert variety $X(w)$ in IF is included in the closed $\mathrm{Sp}_{2 n+1}$-orbit Z_{1} of if and only if it has a minimal length representative $w \leqslant w_{0}$ such that $w(1)=1$.

Define the set $W^{\text {odd }}:=\left\{w \in W \mid w \leqslant w_{0}\right\}$ and call its elements odd symplectic permutations. The set $W^{\text {odd }}$ consists of permutations $w \in W$ such that $w(j) \neq \overline{1}$ for any $1 \leqslant j \leqslant n+1$ [Mih07, Prop. 4.16].

2.5. Divisors and the first Chern class.

Lemma 2.4. The odd symplective flag manifold IF has two divisor classes. If $n=2$ then

$$
\left[X\left(\text { Div }_{1}\right)\right]:=[X(\overline{3} \mid \overline{2})] \quad \text { and } \quad\left[X\left(\text { Div }_{2}\right)\right]:=[X(\overline{2} \mid 3)] .
$$

If $n>2$ then

$$
\left[X\left(\text { Div }_{1}\right)\right]:=[X(\overline{3} \mid \overline{2})] \quad \text { and } \quad\left[X\left(\text { Div }_{2}\right)\right]:=[X(\overline{2} \mid \overline{4})] .
$$

Lemma 2.5. The first Chern class of IF is

$$
c_{1}(\mathrm{IF})=2 \cdot\left[X\left(D i v_{1}\right)\right]+(2 n-1) \cdot\left[X\left(D i v_{2}\right)\right] .
$$

3. The Moment Graph

Sometimes called the GKM graph, the moment graph of a variety with an action of a torus T has a vertex for each T-fixed point, and an edge for each 1-dimensional torus orbit. The description of the moment graphs for flag manifolds is well known, and it can be found e.g in [Kum02, Ch. XII]. In this section we consider the moment graphs for $X=\operatorname{IF}(1,2 ; E) \subset X^{e v}=\operatorname{IF}(1,2 ; \tilde{E})$. As before let $P \subset \mathrm{Sp}_{2 n+2}$ be the maximal parabolic for $X^{e v}$. Recall that we will identify an element in W^{P} with $(w(1) \mid w(2))$.
3.1. Moment graph structure of $\operatorname{IF}(1,2 ; \tilde{E})$. The moment graph of $X^{e v}$ has a vertex for each $w \in W^{P}$, and an edge $w \rightarrow w s_{\alpha}$ for each
$\alpha \in R^{+} \backslash R_{P}^{+}=\left\{t_{i}-t_{j} \mid 1 \leqslant i \leqslant 2, i<j \leqslant n+1\right\} \cup\left\{t_{i}+t_{j}, 2 t_{i} \mid 1 \leqslant i \leqslant 2,1 \leqslant i<j \leqslant n+1\right\}$.
Geometrically, this edge corresponds to the unique torus-stable curve $C_{\alpha}(w)$ joining w and $w s_{\alpha}$. The curve $C_{\alpha}(w)$ has degree $d=\left(d_{1}, d_{2}\right)$, where $\alpha^{\vee}+\Delta_{P}^{\vee}=d_{1} \alpha_{1}^{\vee}+d_{2} \alpha_{2}^{\vee}+\Delta_{P}^{\vee}$. In the next section we classify the positive roots by their degree. In order to perform curve neighborhood calculations we will we give precise combinatorial description of the moment graph.

Definition 3.1. Define the following to describe moment graph combinatorics.
(1) Define the following four sets which partitions $R^{+} \backslash R_{P}^{+}$.
(a) $R_{(1,0)}^{+}=\left\{t_{1}-t_{2}\right\}$;
(b) $R_{(0,1)}^{+}=\left\{t_{2} \pm t_{j} \mid 3 \leqslant j \leqslant n+1\right\} \cup\left\{2 t_{2}\right\}$;
(c) $R_{(1,1)}^{+}=\left\{t_{1} \pm t_{j}: 3 \leqslant j \leqslant n+1\right\} \cup\left\{2 t_{1}\right\}$;
(d) $R_{(1,2)}^{+}=\left\{t_{1}+t_{2}\right\}$.
(2) A chain of degree d is a path in the (unoriented) moment graph where the sum of edge degrees equals d. We will often use that notation $u W_{P} \xrightarrow{d} v W_{P}$ to denote such a path.

In the next lemma we give a formula for the degree d of a chain which is useful to calculate curve neighborhoods. In particular, we will see that the degree of a chain is determined by summing the weights of the edges traversed in the moment graph.
Lemma 3.2. Let $u, v \in W^{P}$ be connected by a degree d chain

$$
\left(u W_{P} \xrightarrow{d} v W_{P}\right)=\left(u W_{P} \rightarrow u s_{\alpha_{1}} W_{P} \rightarrow \cdots \rightarrow u s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{t}} W_{P}\right)
$$

where $v W_{P}=u s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{t}} W_{P}$ and the α_{i} are in $R^{+} \backslash R_{P}^{+}$. Then:

$$
\begin{aligned}
d=\left(\#\left\{\alpha_{i} \in R_{(1,0)}^{+}\right\}, \#\left\{\alpha_{i} \in R_{(0,1)}^{+}\right\}\right) & +\left(\#\left\{\alpha_{i} \in R_{(1,1)}^{+}\right\}, \#\left\{\alpha_{i} \in R_{(1,1)}^{+}\right\}\right) \\
& +\left(\#\left\{\alpha_{i} \in R_{(1,2)}^{+}\right\}, 2 \cdot \#\left\{\alpha_{i} \in R_{(1,2)}^{+}\right\}\right) .
\end{aligned}
$$

3.2. Moment graph structure of IF. The moment graph of IF is the full subgraph of $\operatorname{IF}(1,2 ; 2 n+2)$ determined by the vertices $w \in W^{P} \cap W^{\text {odd }}$. Notice that the orbits of T and $T_{2 n+2}$ coincide, therefore we do not distinguish between the moment graphs for these tori. See Figure 1.

Figure 1. The moment graph for IF when $n=2$.

4. Curve neighborhoods

The main result of this section is Theorem 4.3 which states all curve neighborhoods of Schubert varieties IF. We will define a curve neighborhood in Definition 4.1 and Proposition 4.2 will state the combinatorial equivalent version. Then Lemmas 4.4 and 4.5 are used to prove the main result in Theorem 4.3.

Let X be a Fano variety. Let $d \in H_{2}(X, \mathbb{Z})$ be an effective degree. Recall that the moduli space of genus 0 , degree d stable maps with two marked points $\overline{\mathcal{M}}_{0,2}(X, d)$ is endowed with two evaluation maps ev ${ }_{i}: \overline{\mathcal{M}}_{0,2}(X, d) \rightarrow X, i=1,2$ which evaluate stable maps at the i-th marked point.
Definition 4.1. Let $\Omega \subset X$ be a closed subvariety. The curve neighborhood of Ω is the subscheme

$$
\Gamma_{d}(\Omega):=\operatorname{ev}_{2}\left(\operatorname{ev}_{1}^{-1} \Omega\right) \subset X
$$

endowed with the reduced scheme structure.
The next proposition gives a combinatorial formulation of curve neighborhoods in terms of the moment graph. See Figure 2 for an example of an application of Proposition 4.2.
Proposition 4.2 ([BM15]). Let $w \in W^{P} \cap W^{\text {odd }}$. In the moment graph of $X=\mathrm{IF}$, let $\left\{v^{1}, \cdots, v^{s}\right\}$ be the maximal vertices (for the Bruhat order) which can be reached from any $u \leqslant w$ using a chain of degree d or less. Then $\Gamma_{d}(X(w))=X\left(v^{1}\right) \cup \cdots \cup X\left(v^{s}\right)$.

Proof. Let $Z_{w, d}=X\left(v^{1}\right) \cup \cdots \cup X\left(v^{s}\right)$. Let $v:=v^{i} \in Z_{w, d}$ be one of the maximal T-fixed points. By the definition of v and the moment graph there exists a chain of T-stable rational curves of degree less than or equal to d joining $u \leqslant w$ to v. It follows that there exists a

Figure 2. In this figure we calculate a few curve neighborhoods of the Schubert point $(1 \mid 2)$ for $n=2$ as an example of Proposition 4.2.

degree d stable map joining $u \leqslant w$ to v. Therefore $v \in \Gamma_{d}(X(w))$, thus $X(v) \subset \Gamma_{d}(X(w))$, and finally $Z_{w, d} \subset \Gamma_{d}(X(w))$.

For the converse inclusion, let $v \in \Gamma_{d}(X(w))$ be a T-fixed point. By [MM18, Lemma 5.3] there exists a T-stable curve joining a fixed point $u \in X(w)$ to v. This curve corresponds to a path of degree d or less from some $u \leqslant w$ to v in the moment graph of $\operatorname{IG}(k, 2 n+1)$. By maximality of the v^{i} it follows that $v \leqslant v^{i}$ for some i, hence $v \in X\left(v^{i}\right) \subset Z_{w, d}$, which completes the proof.

The next theorem is the main result of this section that states the precise calculations of curve neighborhoods of Schubert varieties in IF. The result follows from Lemmas 4.4 and 4.5 stated below.

Theorem 4.3. The following curve neighborhood calculations hold.
(1) $\Gamma_{\left(d_{1} \geqslant 1,0\right)}(X(a \mid b))=\left\{\begin{array}{l}X(a \mid b) ; a>b \\ X(b \mid a) ; a<b\end{array}\right.$
(2) $\Gamma_{\left(0, d_{2} \geqslant 1\right)}(X(a \mid b))=\left\{\begin{array}{l}X(a \mid \overline{3}) ; a \in\{2, \overline{2}\} \\ X(a \mid \overline{2}) ; a \notin\{2, \overline{2}\}\end{array}\right.$
(3) $\Gamma_{\left(d_{1} \geqslant 1,1\right)}(X(a \mid b))=\left\{\begin{array}{l}X(\overline{3} \mid 2) \cup X(\overline{2} \mid 1) ;(a \mid b) \in\{(1 \mid 2),(2 \mid 1)\} \\ X(\overline{2} \mid \max \{a, b\}) ; 1 \leqslant a, b \leqslant \overline{3} \text { and }(a \mid b) \notin\{(1 \mid 2),(2 \mid 1)\} \\ X(\overline{2} \mid \overline{3}) ; \overline{2} \in\{a, b\}\end{array}\right.$
(4) $\Gamma_{\left(d_{1} \geqslant 1, d_{2} \geqslant 2\right)}(X(a \mid b))=X(\overline{2} \mid \overline{3})$

Proof. For case (1), if $a>b$ then $(a \mid b) \cdot s_{1}=(a \mid b)$ and if $a<b$ then $(a \mid b) \cdot s_{1}=(b \mid a)$.
For case (2) we will need to check four subcases. Notice that we are multiplying $(a \mid b)$ by reflections of the form $t_{2} \pm t_{j}$ for $3 \leqslant j \leqslant n+1$ or $2 t_{2}$. In particular, a remains fixed so $\Gamma_{(0,1)}(X(a \mid b))=\Gamma_{\left(0, d_{2} \geqslant 1\right)}(X(a \mid b))$. If $a \in\{2, \overline{2}\}$ and $b \notin\{3, \overline{3}\}$ then $(a \mid b) \cdot s_{t_{2}+t_{3}}=(a \mid \overline{3})$.

If $a \in\{2, \overline{2}\}$ and $b \in\{3, \overline{3}\}$ then $(a \mid b) \cdot s_{2 t_{2}}=(a \mid \overline{3})$. If $a \notin\{2, \overline{2}\}$ and $b \notin\{2, \overline{2}\}$ then $(a \mid b) \cdot s_{t_{2}+t_{3}}=(a \mid \overline{2})$. If $a \notin\{2, \overline{2}\}$ and $b \in\{2, \overline{2}\}$ then $(a \mid b) \cdot s_{2 t_{2}}=(a \mid \overline{2})$. In each case, this is the vertex with the greatest length that can be reached by and edge of degree $(0,1)$ from $(a \mid b)$.

For case (3), first notice that $\Gamma_{(1,1)}(X(a \mid b))=\Gamma_{\left(d_{1} \geqslant 1,1\right)}(X(a \mid b))$ since the reflection s_{1} only interchanges $(a \mid b)$ and there is not an edge in the moment graph of IF with degree $(2,1)$. Case (3) follows by Lemma 4.5 .

For case (4), notice that $\Gamma_{(1,2)}(X(a \mid b))=\Gamma_{\left(d_{1} \geqslant 1, d_{2} \geqslant 1\right)}(X(a \mid b))$. By case (3), we see that $\Gamma_{(1,1)}(X(a \mid b))$ has a component of the form $X(\overline{2} \mid b)$. The result for case (4) follows by an application of case (2). The result follows.

In the next lemma we state the possible chains in the moment graph of IF of degree less than or equal to $(1,1)$.
Lemma 4.4. Let $(a \mid b) \in W^{\text {odd }}$. Then we have the following chains in the moment graph of IF.
(1) For chains traversing an edge of degree $(1,0)$ followed by an edge of degree $(0,1)$, we have the following:

$$
(a \mid b) \xrightarrow{(1,0)}(b \mid a) \xrightarrow{(0,1)}(b \mid h)
$$

where $h \notin\{b, \bar{b}\}$.
(2) For chains traversing an edge of degree $(0,1)$ followed by an edge of degree $(1,0)$ we have the following:

$$
(a \mid b) \xrightarrow{(0,1)}(a \mid h) \xrightarrow{(1,0)}(h \mid a)
$$

where $h \notin\{a, \bar{a}\}$. Notice that if $a=\overline{2}$ then permutation length decreases on the second step.
(3) For chains traverse an edge of degree $(1,1)$ we have the following:

$$
(a \mid b) \xrightarrow{(1,1)}(h \mid b)
$$

where $h \notin\{b, \bar{b}\}$.
Proof. We will prove each case. For case (1), following an edge of degree $(1,0)$ from $(a \mid b)$ results in $(b \mid a)$ by Lemma 3.2. Then following an edge of degree $(0,1)$ from $(b \mid a)$ results in $(b \mid h)$ where $h \notin\{b, \bar{b}\}$ by Lemma 3.2.

For case (2), following an edge of degree (0,1) from ($a \mid b$) results in $(a \mid h)$ where $h \notin\{a, \bar{a}\}$ by Lemma 3.2. Then following an edge of degree $(1,0)$ from $(a \mid h)$ results in $(h \mid a)$ by Lemma 3.2.

For case (3), following an edge of degree $(1,1)$ from $(a \mid b)$ results in $(h \mid b)$ where $h \notin\{b, \bar{b}\}$ by Lemma 3.2. The result follows.

In this lemma, we calculate the curve neighborhood $\Gamma_{\left(d_{1} \geqslant 1,1\right)}(X(a \mid b))$ for any $(a \mid b) \in W^{P}$.
Lemma 4.5. First note the $\Gamma_{\left(d_{1} \geqslant 1,1\right)}(X(a \mid b))=\Gamma_{(1,1)}(X(a \mid b))$ for any $(a \mid b) \in W^{\text {odd }}$ since right multiplication by s_{1} on $w \in W$ interchanges $w(1)$ and $w(2)$. The curve neighborhood $\Gamma_{(1,1)}(X(a \mid b))$ is given by one of the following.
(1) Suppose $a \notin\{2, \overline{2}\}$ and $b \notin\{2, \overline{2}\}$.
(a) If $a<b$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid b) .
$$

(b) If $a>b$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid a)
$$

(2) Suppose $a \notin\{2, \overline{2}\}$ and $b \in\{2, \overline{2}\}$.
(a) If $b=\overline{2}$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid \overline{3})
$$

(b) If $a>2$ and $b=2$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid a) .
$$

(c) If $a=1$ and $b=2$ then

$$
\Gamma_{(1,1)}(X(1 \mid 2))=X(\overline{3} \mid 2) \cup X(\overline{2} \mid 1) .
$$

(3) Suppose $a \in\{2, \overline{2}\}$ and $b \notin\{2, \overline{2}\}$.
(a) If $a=\overline{2}$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid \overline{3}) .
$$

(b) If $a=2$ and $b>2$ then

$$
\Gamma_{(1,1)}(X(a \mid b))=X(\overline{2} \mid b) .
$$

(c) If $a=2$ and $b=1$ then

$$
\Gamma_{(1,1)}(X(2 \mid 1))=X(\overline{3} \mid 2) \cup X(\overline{2} \mid 1) .
$$

Proof. The result follows from Lemma 4.4 and the observation that the pair $\{(\overline{3} \mid 2),(\overline{2} \mid 1)\}$ is incomparable in the Bruhat order. The result follows.

5. Lattices

Let X be a Fano variety containing the subvariety Ω. It is interesting to ask if the set $\left.\left\{\Gamma_{d}(\Omega)\right)\right\}_{d}$ forms a (distributive) lattice where \leqslant is defined by inclusion of varieties. We will show that

$$
\left\{\Gamma_{\left(d_{1}, d_{2}\right)}(X(a \mid b))\right\}_{\left(d_{1}, d_{2}\right) \geqslant(0,0)}
$$

is a distributive lattice for any $(a \mid b) \in W^{\text {odd }}$. We will review the definition of a (distributive) lattice and two particular lattices next.

Definition 5.1. We will define lattices, distributive lattices, and two useful lattices.
(1) A partially ordered set (L, \leqslant) is a lattice if the following two conditions hold.
(a) if for any $a, b \in L$ there is a unique element denoted by $a \vee b \in L$ such that

- $a \leqslant a \vee b$ and $b \leqslant a \vee b$
- and if there is a $c \in L$ such that $a \leqslant c$ and $b \leqslant c$ then $a \vee b \leqslant c$.
(b) if for any $a, b \in L$ there is a unique element denoted by $a \wedge b \in L$ such that
- $a \geqslant a \vee b$ and $b \geqslant a \vee b$
- and if there is a $c \in L$ such that $a \geqslant c$ and $b \geqslant c$ then $a \wedge b \geqslant c$.
(2) A Lattice (L, \leqslant) is a distributive lattice if

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
$$

for any $a, b, c \in L$.
(3) Define the lattice M_{3} and N_{5} as follows:

Figure 3. M_{3} and N_{5}.

M_{3}

N_{5}
(a) $M_{3}=\{0, a, b, c, 1\}$ with \leqslant defined by

- $0<a, b, c$,
- $a, b, c<1$, and
- a, b, and c are incomparable.
(b) $N_{5}=\{0, a, b, c, 1\}$ with \leqslant defined by
- $0<c<a<1$
- $0<b<1$
- b is incomparable with both a and c.

See Figure 3.
The next lemma gives a precise description of when a lattice is distributive.
Lemma 5.2. [Grä98, Chapter 2, Theorem 1] A lattice is distributive if and only if it does not have a sub-lattice isomorphic to M_{3} nor N_{5}.

We are ready to state the main result of the section.
Theorem 5.3. The set $L=\left\{\Gamma_{\left(d_{1}, d_{2}\right)}(X(a \mid b))\right\}_{\left(d_{1}, d_{2}\right) \geqslant(0,0)}$ where $\leqslant i s$ defined by inclusions of varieties is a distributive lattice.
Proof. Figure 4 lists each lattice for each case except the trivial case $(a \mid b)=(\overline{2} \mid \overline{3})$. Furthermore, (L, \leqslant) is distributive because neither M_{3} nor N_{5} is isomorphic to a sub-lattice of L.

6. Combinatorial Property \mathcal{O}

We begin by recalling the definitions of the combinatorial quantum Bruhat graph and Combinatorial Conjecuture \mathcal{O}. Let X be a Fano variety. Let $\mathcal{B}:=\left\{\alpha_{i}\right\}_{i \in I}$ denote a basis of the cohomology ring $H^{*}(X)$. Denote its first Chern class by

$$
c_{1}(X)=a_{1} \operatorname{Div}_{1}+a_{2} \operatorname{Div}_{2}+\cdots+a_{k} \operatorname{Div}_{k}
$$

where $\operatorname{Div}_{i} \in \mathcal{B}$ is a divisor class for each $1 \leqslant i \leqslant k$.
Definition 6.1. The combinatorial quantum Bruhat graph of X is defined as follows. The vertices of this graph are the basis elements $\alpha_{i} \in H^{*}(X)$. The edge set is given as follows:
(1) There is an oriented edge $\alpha_{i} \rightarrow \alpha_{j}$ if the class α_{j} appears with positive coefficient in the Chevalley multiplication $h \star \alpha_{i}$ for some hyperplane class h.
(2) Let $\alpha_{i}=[X(i)]$ and $\alpha_{j}=[X(j)]$. There is an oriented edge $\alpha_{i} \rightarrow \alpha_{j}$
(a) $X(j)$ is an irreducible component of $\Gamma_{d}(X(i))$ where $d=\left(d_{1}, \cdots, d_{k}\right)$,

Figure 4. The table contains the lattices $\left(\left\{\Gamma_{\left(d_{1}, d_{2}\right)}(X(a \mid b))\right\}_{\left(d_{1}, d_{2}\right) \geqslant(0,0)}, \leqslant\right)$ in IF for each possible case except the trivial case when $(a \mid b)=(\overline{2} \mid \overline{3})$.

(b) and

$$
\operatorname{dim}(X(j))-\operatorname{dim}(X(i))=a_{1} d_{1}+a_{2} d_{2}+\cdots+a_{k} d_{k}-1
$$

Lemma 1.1 leads us to naturally consider the following combinatorial formulation of Conjecture \mathcal{O}.

Definition 6.2. Combinatorial Property \mathcal{O} holds if the combinatorial quantum Bruhat graph is strongly connected and the Greatest Common Divisor of the cycle lengths is $r=$ $\operatorname{GCD}\left(a_{1}, a_{2}, \cdots, a_{k}\right)$.
6.1. Results for IF. We begin this section by describing the combinatorial quantum Bruhat graph for IF which specializes Definition 6.1.
Proposition 6.3. Let there be a vertex for each $w \in W^{\text {odd }}$. Let $u, v \in W^{\text {odd }}$. The combinatorial quantum Bruhat graph \mathcal{G}_{n} can be created by:
(1) There is an arrow $u \rightarrow v$ if $v \leqslant u$ and $\ell(v)=\ell(u)-1$;
(2) Draw an arrow $u \xrightarrow{d} v$ if:

- $\Gamma_{d}(X(u))=X\left(v_{1}\right) \cup \cdots \cup X(v) \cup \cdots \cup X\left(v_{s}\right)$;
- $v \leqslant v_{i}$ for any $1 \leqslant i \leqslant s$;
- $\ell(v)-\ell(u)=2 d_{1}+(2 n-1) d_{2}-1$.

Figure 5. Combinatorial quantum Bruhat graph of IF for $n=2$. Notice that the edge joining $(1 \mid 2)$ and $(\overline{2} \mid 1)$ is not in the moment graph.

Remark 6.4. Observe that the edge $(1 \mid 2) \xrightarrow{(1,1)}(\overline{2} \mid 1)$ in the combinatorial quantum Bruhat graph is not present in the moment graph. There is no known example of an edge appearing in the (geometric) quantum Bruhat graph that does not appear in the moment graph.

We are ready to state and prove the main result of this section.
Theorem 6.5. Combinatorial Property \mathcal{O} holds for IF.
Proof. We begin the proof by showing that combinatorial quantum Bruhat graph is strongly connected. First, there is a path from $(1 \mid 2)$ to $(\overline{2} \mid \overline{3})$ in the combinatorial quantum Bruhat graph given by

$$
(1 \mid 2) \xrightarrow{(1,1)}(\overline{2} \mid 1) \xrightarrow{(0,1)}(\overline{2} \mid \overline{3})
$$

since

$$
\begin{gathered}
\Gamma_{(1,1)}(X(1 \mid 2))=X(\overline{2} \mid 1), \Gamma_{(0,1)}(X(\overline{2} \mid 1))=X(\overline{2} \mid \overline{3}), \\
\ell(\overline{2} \mid 1)-\ell(1 \mid 2)=2 * 1+(2 n-1) * 1-1, \text { and } \ell(\overline{2} \mid \overline{3})-\ell(\overline{2} \mid 1)=2 * 0+(2 n-1) * 1-1 .
\end{gathered}
$$

Next, there is clearly a path from $(a \mid b)$ to (1|2) by decomposing the permutation $(a \mid b)$ into simple reflections. Finally we claim that there is a path from $(\overline{2} \mid \overline{3})$ to any other vertex. Indeed, if $(a \mid b) \in W^{\text {odd }} \backslash\{(\overline{2} \mid \overline{3})\}$ then there is another point $(c \mid d) \in W^{\text {odd }}$ and edge $(c \mid d) \rightarrow(a \mid b)$ such that $\ell(c \mid d)-\ell(a \mid b)=1$. Since the $\ell(\overline{2} \mid \overline{3})$ is maximum in the Bruhat order, we conclude the combinatorial quantum Bruhat graph is strongly connected.

The quantum Bruhat graph \mathcal{G}_{n} has a cycle of length 2 given by

$$
(1 \mid 2) \rightarrow(2 \mid 1) \rightarrow(1 \mid 2) .
$$

There is a cycle of length $2 n-1$ given by one of the following two cases. For $n=2$ we have

$$
(1 \mid 2) \rightarrow(1 \mid \overline{3}) \rightarrow(1 \mid 3) \rightarrow(1 \mid 2)
$$

For $n>2$ we have

$$
(1 \mid 2) \rightarrow(1 \mid \overline{3}) \rightarrow \cdots \rightarrow(1 \mid \bar{n}) \rightarrow(1 \mid n) \rightarrow \cdots \rightarrow(1 \mid 2)
$$

The result follows.

References

[Asl] Songul Aslan, The combinatorial curve neighborhoods of affine flag manifold in type $A_{n-1}^{(1)}$, Ph.D. Thesis, Virginia Tech, 2018.
[BCMP13] Anders Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, and Nicolas Perrin, Finiteness of cominuscule quantum K-theory, Annales Sci. de L'École Normale Supérieure 46 (2013), 477494.
[BFSS] Lela Bones, Garrett Fowler, Lisa Schneider, and Ryan Shifler, Conjecture \mathcal{O} holds for some horospherical varieties of Picard rank 1.
[BM15] Anders S. Buch and Leonardo C. Mihalcea, Curve neighborhoods of Schubert varieties, J. Differential Geom. 99 (2015), no. 2, 255-283. MR3302040
[CL17] Daewoong Cheong and Changzheng Li, On the conjecture \mathcal{O} of GGI for G / P, Adv. Math. 306 (2017), 704-721. MR3581315
[GGI16] Sergey Galkin, Vasily Golyshev, and Hiroshi Iritani, Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), no. 11, 2005-2077. MR3536989
[Grä98] George Grätzer, General lattice theory, second edition, 1998.
[GZ84] I. M. Gel'fand and A. V. Zelevinskiĭ, Models of representations of classical groups and their hidden symmetries, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 14-31. MR757246
[HKLY] J. Hu, H. Ke, C. Li, and T. Yang, Gamma conjecture i for del pezzo surfaces, arXiv:1901.01748.
[Ke] H. Ke, On conjecture \mathcal{O} for projective complete intersections, arXiv:1809.10869.
[Kum02] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR1923198
[LMS19] Changzheng Li, Leonardo C. Mihalcea, and Ryan M. Shifler, Conjecture \mathcal{O} holds for the odd symplectic Grassmannian, Bulletin of the London Mathematical Society 51 (2019), no. 4, 705-714, available at https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms. 12268.
[Mih07] Ion Alexandru Mihai, Odd symplectic flag manifolds, Transform. Groups 12 (2007), no. 3, 573599. MR2356323
[MM18] A. Mare and L. Mihalcea, An affine deformation of the quantum cohomology ring of flag manifolds and periodic toda lattice, Proceedings of the London Mathematical Society (2018).
[MS19] Leonardo C. Mihalcea and Ryan M. Shifler, Equivariant quantum cohomology of the odd symplectic Grassmannian, Math. Z. 291 (2019), no. 3-4, 1569-1603. MR3936119
[Pec13] Pech, Clélia, Quantum cohomology of the odd symplectic Grassmannian of lines, J. Algebra 375 (2013), 188-215. MR2998953
[Pro88] Robert A. Proctor, Odd symplectic groups, Invent. Math. 92 (1988), no. 2, 307-332. MR936084
[PS22] Clelia Pech and Ryan M. Shifler, Curve neighborhoods of schubert varieites in the odd symplectic grassmannian, Transformation Groups (2022).
[Shi] Ryan M. Shifler, Minimum quantum degrees with maya diagrams, arXiv:2201.03124.
[SW20] Ryan M. Shifler and Camron Withrow, Minimum quantum degrees for isotropic Grassmannians in Types B and C, Arxiv: 2004.00084 (2020).

Department of Mathematical Sciences, Henson Science Hall, Salisbury University, SalisBURY, MD 21801

Email address: cbean2@gulls.salisbury.edu
Department of Mathematical Sciences, Henson Science Hall, Salisbury University, SalisBURY, MD 21801

Email address: bcruikshank1@gulls.salisbury.edu
Department of Mathematical Sciences, Henson Science Hall, Salisbury University, SalisBURY, MD 21801

Email address: rmshifler@salisbury.edu

[^0]: ${ }^{1}$ General Fano manifolds may not satisfy this property. For instance, the blowup of \mathbb{P}^{2} at a point does not satisfy this property.

[^1]: ${ }^{2}$ However, Gelfand and Zelevinsky [GZ84] defined another group $\widetilde{\mathrm{Sp}}_{2 n+1}$ closely related to $\mathrm{Sp}_{2 n+1}$ such that $\mathrm{Sp}_{2 n} \subset \widetilde{\mathrm{Sp}}_{2 n+1} \subset \mathrm{Sp}_{2 n+2}$.

