ON THE QUANTUM PARAMETER IN THE QUANTUM COHOMOLOGY OF A FAMILY OF ODD SYMPLECTIC PARTIAL FLAG VARIETIES

CONNOR BEAN, CALEB SHANK, AND RYAN M. SHIFLER

Abstract

Let IF $:=\operatorname{IF}(1,2, \cdots, m ; 2 n+1)$ denote a family of odd symplectic partial flag varieties. This is the parameterization of sequences ($V_{1} \subset V_{2} \subset \cdots \subset V_{m}$), $\operatorname{dim} V_{i}=i$, of subspaces of $\mathbb{C}^{2 n+1}$ that are isotropic with respect to a general skew-symmetric form. In the quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IF})$, we have that $q_{1} q_{2} \cdots q_{m}$ appears m times in the quantum product $\tau_{D i v_{i}} \star \tau_{i d}$ when expressed as a sum in terms of the Schubert basis.

1. Introduction

Let IF $:=\operatorname{IF}(1,2, \cdots, m ; 2 n+1)$ denote the family of odd symplectic partial flag varieties that we are considering. This is the parameterization of sequences ($V_{1} \subset V_{2} \subset \cdots \subset V_{m}$), $\operatorname{dim} V_{i}=i$, of subspaces of $\mathbb{C}^{2 n+1}$ that are isotropic with respect to a general skew-symmetric form. The variety IF contains Schubert varieties $\left\{X(\lambda): \lambda \in W^{\text {odd }}\right\}$ where $W^{\text {odd }}$ is defined in Section 2. See [Mih07] for more details on odd symplectic flag varieties.

The quantum cohomology ring ($\mathrm{QH}^{*}(\mathrm{IF}), \star$) is a graded algebra over $\mathbb{Z}[q]=\mathbb{Z}\left[q_{1}, \cdots, q_{m}\right]$ where $\operatorname{deg} q_{i}=2$ for $1 \leqslant i \leqslant m-1$ and $\operatorname{deg} q_{m}=2(n-m)+3$. The ring has a Schubert basis given by $\left\{\tau_{\lambda}:=[X(\lambda)]: \lambda \in W^{\text {odd }}\right\}$. Here we take $\tau_{i d}$ to be the class of the Schubert point $p t$ and $\tau_{D i v_{i}}$ to be a divisor class where $1 \leqslant i \leqslant m$. The ring multiplication is given by $\tau_{\lambda} \star \tau_{\mu}=\sum_{\nu, d} c_{\lambda, \mu}^{\nu, d} q^{d} \tau_{\nu}$ where $c_{\lambda, \mu}^{\nu, d}$ is the degree d Gromov-Witten invariant of $\tau_{\lambda}, \tau_{\mu}$, and the Poicaré dual of τ_{ν}. We are now ready to state our main result. A more precise statement is given as Theorem 4.8.

Theorem 1.1. Consider the quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IF})$. Then $q_{1} q_{2} \cdots q_{m}$ appears m times in the product $\tau_{D i v_{i}} \star \tau_{i d}$ when expressed as a sum in terms of the Schubert basis given by $\left\{\tau_{\lambda}: \lambda \in W^{\text {odd }}\right\}$.

Our strategy will be to use use curve neighborhood calculations which we explain next. Let X be a Fano variety. Let $d \in H_{2}(X, \mathbb{Z})$ be an effective degree. Recall that the moduli space of genus 0 , degree d stable maps with two marked points $\overline{\mathcal{M}}_{0,2}(X, d)$ is endowed with two evaluation maps ev ${ }_{i}: \overline{\mathcal{M}}_{0,2}(X, d) \rightarrow X, i=1,2$ which evaluate stable maps at the i-th marked point.
Definition 1.2. Let $\Omega \subset X$ be a closed subvariety. The curve neighborhood of Ω is the subscheme

$$
\Gamma_{d}(\Omega):=\operatorname{ev}_{2}\left(\mathrm{ev}_{1}^{-1} \Omega\right) \subset X
$$

endowed with the reduced scheme structure.
The notion of curve neighborhoods is closely related to quantum cohomology. Let $X(\lambda) \subset$ IF be a Schubert variety, and let $\Gamma_{d}(X(\lambda))=\Gamma_{1} \cup \Gamma_{2} \cup \ldots \cup \Gamma_{k}$ be the decomposition of the curve neighborhood into irreducible components. By the divisor axiom, any component Γ_{i}

[^0]of "expected dimension" will contribute to the quantum product $\tau_{D i v_{i}} \star \tau_{\lambda}$ with $\left(\tau_{D i v_{i}}, d\right)$. $a_{i} \cdot q^{d}\left[\Gamma_{i}\right]$, where a_{i} is the degree of $\mathrm{ev}_{2}: \mathrm{ev}_{1}^{-1}(X(\lambda)) \rightarrow \Gamma_{d}(X(\lambda))$ over the given component (see [KM94] and Lemma 4.7). Therefore the main task is to find the components Γ_{i} of $\Gamma_{\left(1^{m}\right)}(p t)$, where $\left(1^{m}\right)=(\stackrel{m}{1, \cdots, 1})$, that are of expected dimension. That is, the following equation is satisfied:
$$
\operatorname{codim} X\left(D i v_{i}\right)+\operatorname{codim} p t=\operatorname{deg} q_{1} q_{2} \cdots q_{m}+\operatorname{codim} \Gamma_{i} .
$$

These components are stated precisely in Proposition 4.6.
1.1. Broader Context. Any curve neighborhood of a Schubert variety in the homogeneous space G / P is shown to be irreducible in [BM15]. This limits the number of times that q^{d} appears for a particular $d \in H_{2}(G / P, \mathbb{Z})$ in quantum products of Schubert classes. Examples of curve neighborhoods having two irreducible components are given for the odd symplectic Grassmannian in [MS19, PS24]. In particular, in the quantum Chevalley formula for the odd symplectic Grassmannian, q^{1} appears twice in the quantum product of the divisor class and the class of the point when expressed as a sum in terms of the Schubert basis. The main purpose of this manuscript is to give a specific example where q^{d} appears a specified number of times as stated in Theorem 1.1.

2. Preliminaries

There are many possible ways to index the Schubert varieties of isotropic flag manifolds. Here we recall an indexation using signed permutations. Consider the root system of type C_{n+1} with positive roots

$$
R^{+}=\left\{t_{i} \pm t_{j} \mid 1 \leqslant i<j \leqslant n+1\right\} \cup\left\{2 t_{i} \mid 1 \leqslant i \leqslant n+1\right\}
$$

and the subset of simple roots

$$
\Delta=\left\{\alpha_{i}:=t_{i}-t_{i+1} \mid 1 \leqslant i \leqslant n\right\} \cup\left\{\alpha_{n+1}:=2 t_{n+1}\right\} .
$$

The coroot of $t_{i} \pm t_{j} \in R^{+}$is $\left(t_{i} \pm t_{j}\right)^{\vee}=t_{i} \pm t_{j}$ and the coroot of $2 t_{i} \in R^{+}$is $\left(2 t_{i}\right)^{\vee}=t_{i}$. The associated Weyl group W is the hyperoctahedral group consisting of signed permutations, i.e. permutations w of the elements $\{1, \cdots, n+1, \overline{n+1}, \cdots, \overline{1}\}$ satisfying $w(\bar{i})=\overline{w(i)}$ for all $w \in W$. For $1 \leqslant i \leqslant n$ denote by s_{i} the simple reflection corresponding to the root $t_{i}-t_{i+1}$ and s_{n+1} the simple reflection of $2 t_{n+1}$. In particular, if $1 \leqslant i \leqslant n$ then $s_{i}(i)=i+1$, $s_{i}(i+1)=i$, and $s_{i}(j)$ is fixed for all other j. Also, $s_{n+1}(n+1)=\overline{n+1}, s_{n+1}(\overline{n+1})=n+1$, and $s_{n+1}(j)$ is fixed for all other j.

Each subset $I:=\left\{i_{1}<\ldots<i_{r}\right\} \subset\{1, \ldots, n+1\}$ determines a parabolic subgroup $P:=P_{I} \leqslant \mathrm{Sp}_{2 n+2}$ with Weyl group $W_{P}=\left\langle s_{i} \mid i \neq i_{j}\right\rangle$ generated by reflections with indices not in I. Let $\Delta_{P}:=\left\{\alpha_{i_{s}} \mid i_{s} \notin\left\{i_{1}, \ldots, i_{r}\right\}\right\}$ and $R_{P}^{+}:=\operatorname{Span}_{\mathbb{Z}} \Delta_{P} \cap R^{+}$; these are the positive roots of P. Let $\ell: W \rightarrow \mathbb{N}$ be the length function and denote by W^{P} the set of minimal length representatives of the cosets in W / W_{P}. The length function descends to W / W_{P} by $\ell\left(u W_{P}\right)=\ell\left(u^{\prime}\right)$ where $u^{\prime} \in W^{P}$ is the minimal length representative for the coset $u W_{P}$. We have a natural ordering $1<2<\cdots<n+1<\overline{n+1}<\cdots<\overline{1}$, which is consistent with our earlier notation $\bar{i}:=2 n+3-i$.

Let P be the parabolic obtained by excluding the reflections $s_{1}, s_{2}, \cdots s_{m}$. Then the minimal length representatives W^{P} have the form $(w(1)|w(2)| w(3)|\cdots| w(m)<w(m+1)<$ $\cdots<w(n) \leqslant n+1)$. Since the last $n+1-m$ labels are determined from the first m labels, we will identify an element in W^{P} with $(w(1)|w(2)| \cdots \mid w(m))$. Define $W^{\text {odd }}=\left\{w \in W^{P}\right.$: $w(i)<\overline{1}$ for $1 \leqslant i \leqslant m\}$.

Let $X^{e v}:=\operatorname{IF}(1,2, \cdots, m ; 2 n+2)$ be the symplectic partial flag that parameterizes sequences $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{m}\right)$, $\operatorname{dim} V_{i}=i$, of subspaces of $\mathbb{C}^{2 n+2}$ that are isotropic with respect to a skew-symmetric form. Here $P \subset \mathrm{Sp}_{2 n+2}$ is the maximal parabolic subgroup corresponding to $I=\{1<2<\cdots<m\}$ and $T_{2 n+2}=\left(t_{1}, \cdots, t_{n+1}, t_{n+1}^{-1}, \cdots, t_{1}^{-1}\right)$ is a maximal torus for $X^{e v}$. The Schubert varieties of $X^{e v}$ are indexed by $\lambda \in W^{P}$ and written as $X(\lambda)$. Since IF is identified with the Schubert variety $X(\overline{2} \overline{3} \cdots \bar{m} \overline{m+1}) \subset$ $X^{e v}$, the Schubert varieties of IF are $\left\{X(\lambda): \lambda \in W^{\text {odd }}\right\}$. The quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IF})$ has a Schubert basis given by $\left\{\tau_{\lambda}:=[X(\lambda)]: \lambda \in W^{\text {odd }}\right\}$. We also have that $T=\left(t_{1}, \cdots, t_{n+1}, t_{n+1}^{-1}, \cdots, t_{2}^{-1}\right)$ is a maximal torus for IF. We also have that $\operatorname{dim} \mathrm{IF}=$ $m(2 n-m+1)$. Next we will give notation to state the Bruhat order.

Definition 2.1. Let $\lambda, \delta \in W^{\text {odd }}$. Then define the following:
(1) $\Lambda^{k}:=\left\langle\Lambda_{1}^{k}<\Lambda_{2}^{k}<\cdots<\Lambda_{k}^{k}\right\rangle$ where $\left\{\Lambda_{1}^{k}, \Lambda_{2}^{k}, \cdots, \Lambda_{k}^{k}\right\}=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right\}$;
(2) $\Delta^{k}:=\left\langle\Delta_{1}^{k}<\Delta_{2}^{k}<\cdots<\Delta_{k}^{k}\right\rangle$ where $\left\{\Delta_{1}^{k}, \Delta_{2}^{k}, \cdots, \Delta_{k}^{k}\right\}=\left\{\delta_{1}, \delta_{2}, \cdots, \delta_{k}\right\}$;
(3) $\Lambda^{k} \leqslant \Delta^{k}$ if $\Lambda_{i}^{k} \leqslant \Delta_{i}^{k}$ for all $1 \leqslant i \leqslant k$.

Lemma 2.2 (Bruhat Order [Pro82]). Let $\lambda, \delta \in W^{P}$. Then $\lambda \leqslant \delta$ if and only if $\Lambda^{k} \leqslant \Delta^{k}$ for all $1 \leqslant k \leqslant m$. In particular, if $\lambda, \delta \in W^{\text {odd }}$ then $X(\lambda) \subset X(\delta)$ if and only if $\lambda \leqslant \delta$.

3. The Moment Graph

Sometimes called the GKM graph, the moment graph of a variety with an action of a torus T has a vertex for each T-fixed point, and an edge for each 1-dimensional torus orbit. The description of the moment graphs for flag manifolds is well known, and it can be found in [Kum02, Ch. XII]. In this section we consider the moment graphs for IF and $X^{e v}$.
Definition 3.1. The moment graph of $X^{e v}$ has a vertex for each $w \in W^{P}$, and an edge $w \rightarrow w s_{\alpha}$ for each
$\alpha \in R^{+} \backslash R_{P}^{+}=\left\{t_{i}-t_{j} \mid 1 \leqslant i \leqslant m, i<j \leqslant m+1\right\} \cup\left\{t_{i}+t_{j}, 2 t_{i} \mid 1 \leqslant i \leqslant m, 1 \leqslant i<j \leqslant m+1\right\}$.
This edge has degree $d=\left(d_{1}, d_{2}, \cdots, d_{m}\right)$, where $\alpha^{\vee}+\Delta_{P}^{\vee}=d_{1} \alpha_{1}^{\vee}+d_{2} \alpha_{2}^{\vee}+\cdots+d_{m} \alpha_{m}^{\vee}+\Delta_{P}^{\vee}$.
Definition 3.2. The moment graph of IF is the full subgraph of $X^{e v}$ determined by the vertices $w \in W^{\text {odd }}$.

Next we classify the positive roots by their degree.
Definition 3.3. Let $\left(0^{a} 1^{b} 2^{c}\right):=(\stackrel{a}{0, \cdots, 0}, \stackrel{b}{1, \cdots, 1}, 2, \cdots, 2)$. Define the following to describe moment graph combinatorics.
(1) Define the following sets which partitions $R^{+} \backslash R_{P}^{+}$.
(a) $R_{\left(0^{i-1} 1^{j-i} 0^{m-j+1}\right)}^{+}=\left\{t_{i}-t_{j}: 1 \leqslant i<j \leqslant m\right\}$;
(b) $R_{\left(0^{i-1} 1^{m-i+1}\right)}^{+}=\left\{t_{i} \pm t_{j}: 1 \leqslant i \leqslant j, m<j \leqslant n+1\right\} \cup\left\{2 t_{i}: 1 \leqslant i \leqslant m\right\}$;
(c) $R_{\left(0^{i-1} 1^{j-i} 2^{m-j+1}\right)}^{+}=\left\{t_{i}+t_{j}: 1 \leqslant i<j \leqslant m\right\}$.
(2) A chain of degree d is a path in the (unoriented) moment graph where the sum of edge degrees equals d. We will use the notation $u W_{P} \xrightarrow{d} v W_{P}$ to denote such a path.

In the next lemma we give a formula for the degree d of a chain which is useful to calculate curve neighborhoods. In particular, we will see that the degree of a chain is determined by summing the weights of the edges traversed in the moment graph.

Lemma 3.4. Let $u, v \in W^{P}$ be connected by a degree d chain

$$
\left(u W_{P} \xrightarrow{d} v W_{P}\right)=\left(u W_{P} \rightarrow u s_{\alpha_{1}} W_{P} \rightarrow \cdots \rightarrow u s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{t}} W_{P}\right)
$$

where $v W_{P}=u s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{t}} W_{P}$ and the α_{j} are in $R^{+} \backslash R_{P}^{+}$. Then $d=\left(O_{1}+D_{1}, O_{2}+\right.$ $\left.D_{2}, \cdots, O_{m}+D_{m}\right)$ where

$$
O_{i}=\sum_{\substack{a \leqslant i-1 \\ a+b \geqslant i}} \#\left\{\alpha_{j} \in R_{\left(0^{a} 1^{b} 2^{m-a-b}\right)}^{+}\right\} \text {and } D_{i}=2 \cdot \sum_{a+b \leqslant i-1} \#\left\{\alpha_{j} \in R_{\left(0^{a} 1^{b} 2^{m-a-b}\right)}^{+}\right\} .
$$

4. Proof of main result

We begin this section by stating Proposition 4.1 which gives curve neighborhoods, defined in Definition 1.2, a combinatorial interpretation in terms of the moment graph. Then Lemmas 4.2 and 4.3 demonstrate that $\lambda \in W^{\text {odd }}$ is constrained when it is reached by a chain of degree less than or equal to $\left(1^{m}\right)$. This follows with Lemmas 4.4 and 4.5 which gives a precise statement of $\Gamma_{\left(1^{m}\right)}(p t)$ in Proposition 4.6. Finally, we present our main result in Theorem 4.8 which follows from Lemma 4.7.
Proposition 4.1 ([BM15]). Let $\lambda \in W^{\text {odd } . ~ I n ~ t h e ~ m o m e n t ~ g r a p h ~ o f ~} \mathrm{IF}$, let $\left\{v^{1}, \cdots, v^{s}\right\}$ be the maximal vertices (for the Bruhat order) which can be reached from any $u \leqslant \lambda$ using a chain of degree d or less. Then $\Gamma_{d}(X(\lambda))=X\left(v^{1}\right) \cup \cdots \cup X\left(v^{s}\right)$.

Proof. Let $Z_{\lambda, d}=X\left(v^{1}\right) \cup \cdots \cup X\left(v^{s}\right)$. Let $v:=v^{i} \in Z_{\lambda, d}$ be one of the maximal T-fixed points. By the definition of v and the moment graph there exists a chain of T-stable rational curves of degree less than or equal to d joining $u \leqslant \lambda$ to v. It follows that there exists a degree d stable map joining $u \leqslant \lambda$ to v. Therefore $v \in \Gamma_{d}(X(\lambda))$, thus $X(v) \subset \Gamma_{d}(X(\lambda))$, and finally $Z_{\lambda, d} \subset \Gamma_{d}(X(\lambda))$.

For the converse inclusion, let $v \in \Gamma_{d}(X(\lambda))$ be a T-fixed point. By [MM18, Lemma 5.3] there exists a T-stable curve joining a fixed point $u \in X(\lambda)$ to v. This curve corresponds to a path of degree d or less from some $u \leqslant \lambda$ to v in the moment graph of $\operatorname{IG}(k, 2 n+1)$. By maximality of the v^{i} it follows that $v \leqslant v^{i}$ for some i, hence $v \in X\left(v^{i}\right) \subset Z_{\lambda, d}$, which completes the proof.
Lemma 4.2. Let $\mathcal{C}: i d W \xrightarrow{d} \lambda W$ be a chain in the moment graph of IF where $d \leqslant\left(1^{m}\right)$. Then we have the inequality

$$
\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right| \geqslant k-1 .
$$

Proof. Suppose $\left|\Lambda^{k} \bigcap\{1,2, \cdots, k\}\right|<k-1$. Then there are at at least two elements $\Lambda_{a_{1}}^{k}, \Lambda_{b_{1}}^{k} \in \Lambda^{k}$ such that $\Lambda_{a_{1}}^{k}, \Lambda_{b_{1}}^{k}>k$. Since $\Lambda_{a_{1}}^{k}>k$ there exists a reflection in the chain \mathcal{C} corresponding to $t_{a_{1}}-t_{a_{2}}$ where $a_{1} \leqslant k$ and $a_{2}>k$. Also, since $\Lambda_{b_{1}}^{k}>k$ there exists a reflection in the chain \mathcal{C} corresponding to $t_{b_{1}}-t_{b_{2}}$ where $b_{1} \leqslant k$ and $b_{2}>k$. Therefore, $d_{k} \geqslant 2$. But $d_{k} \leqslant 1$. The result follows.
Lemma 4.3. Let $\mathcal{C}: i d W \xrightarrow{d} \lambda W$ be a chain in the moment graph of IF where $d \leqslant\left(1^{m}\right)$ and $\bar{j} \in\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\}$ where $2 \leqslant j \leqslant m$. The chain \mathcal{C} has a reflection corresponding to the root $2 t_{j}$. In particular, $1 \in \Lambda^{j}$.

Proof. Consider the chain $\mathcal{C}: i d W_{P} \xrightarrow{d} \lambda W_{P}$. One of the following three cases must have occurred.
(1) The chain \mathcal{C} has a reflection corresponding to the root $2 t_{j}$;
(2) The chain \mathcal{C} has two reflections corresponding to two roots of the form $t_{a} \pm t_{b}$ where $a \leqslant m$ and $b \geqslant m$;
(3) The chain \mathcal{C} has a reflection corresponding to the root $t_{a}+t_{b}$ where $a, b \leqslant m$ and $a<b$.
In the first case we have that

$$
\left(2 t_{j}\right)^{\vee}=t_{j}=\left(t_{j}-t_{j+1}\right)+\left(t_{j+1}-t_{j+2}\right)+\cdots+\left(t_{n-1}-1 t_{n}\right)+t_{n}
$$

In particular, $d_{i} \leqslant 1$ for all $1 \leqslant i \leqslant m$. In the second case, the coefficient of $t_{m}-t_{m+1}$ is 1 when $t_{a} \pm t_{b}$ and $t_{c} \pm t_{d}(a, c \leqslant m$ and $b, d \geqslant m)$, are written as a sum of simple roots. Thus, $d_{m} \geqslant 2$. This is not possible. In the third case, the coefficient of $t_{m}-t_{m+1}$ is 2 when $t_{a}+t_{b}$ $(a, b \leqslant m$ and $a<b)$ is written as a sum of simple roots. This is not possible. Therefore, the chain \mathcal{C} has a reflection corresponding to the root $2 t_{j}$. Finally, if $1 \notin \Lambda^{j}$, then $d_{j} \geqslant 2$ or $\overline{1}$ appears in λ. Neither is possible. This completes the proof.
Lemma 4.4. Let $\mathcal{C}: i d W \xrightarrow{d} \lambda W$ be a chain in the moment graph of IF such that $d \leqslant\left(1^{m}\right)$.
(1) If $\Lambda_{m}^{m} \leqslant \overline{m+1}$ then $X(\lambda) \subset X(\overline{m+1}|2| 3|\cdots| m)$.
(2) If $\bar{j} \in\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\}$, where $2 \leqslant j \leqslant m$, then

$$
X(\lambda) \subset X(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)
$$

Proof. We will prove Part (1) first. Let $1 \leqslant k \leqslant m, \delta=(\overline{m+1}|2| 3|\cdots| m)$, and $\Lambda_{m}^{m} \leqslant$ $\overline{m+1}$. It follows that $\Delta^{k}=(2<3<\cdots<k<\overline{m+1})$. Also, $\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right| \in$ $\{k-1, k\}$ by Lemma 4.2. If $\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right|=k$ then clearly $\Lambda^{k} \leqslant \Delta^{k}$.

Suppose that $\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right|=k-1$. Then $\Lambda^{k}=\left(1<2<\cdots<\hat{i}<\cdots<k<\lambda_{j}\right)$ where i is removed and $\lambda_{j} \leqslant \Lambda_{m}^{m} \leqslant \overline{m+1}$. It follows that $\Lambda^{k} \leqslant \Delta^{k}$. Therefore, $\lambda \leqslant \delta$.

Next we will prove Part (2). Let $1 \leqslant k \leqslant m, \bar{j} \in\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right\}$, where $2 \leqslant j \leqslant m$, and $\delta=(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)$. There are two cases for Δ^{k}.
(1) If $k \leqslant j-1$ then $\Delta^{k}=(2<3<\cdots<k<\bar{j})$;
(2) if $k \geqslant j$ then $\Delta^{k}=(1<2<3 \cdots<j-1<j+1<\cdots<k<\bar{j})$.

If $\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right|=k$ then clearly $\Lambda^{k} \leqslant \Delta^{k}$.
Suppose that $\left|\Lambda^{k} \cap\{1,2, \cdots, k\}\right|=k-1$. Then $\Lambda^{k}=(1<2<\cdots<\hat{i}<\cdots<k<\bar{j})$ where i is removed. If $k \leqslant j-1$ then clearly $\Lambda^{k} \leqslant \Delta^{k}$. If $k \geqslant j$ then 1 must be included in Λ^{k} by Lemma 4.3. So, if $k \geqslant j$, we have that $\Lambda^{k} \leqslant \Delta^{k}$. Therefore, $\lambda \leqslant \delta$. The result follows.

Lemma 4.5. We have the following permutation length calculation

$$
\ell(\overline{m+1}|2| 3|\cdots| m)=\ell(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)=2 n
$$

for $2 \leqslant j \leqslant m$. In particular, the union

$$
X(\overline{m+1}|2| 3|\cdots| m) \cup\left(\bigcup_{j=2}^{m} X(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)\right)
$$

has m irreducible components of dimension $2 n$.
Proof. This follows from a straightforward calculation.
Proposition 4.6. Let $n \in \mathbb{Z}^{+}$and consider IF. Then $\Gamma_{\left(1^{m}\right)}(p t)$ has m irreducible components of dimension $2 n$. Specifically,

$$
\Gamma_{\left(1^{m}\right)}(p t)=X(\overline{m+1}|2| 3|\cdots| m) \cup\left(\bigcup_{j=2}^{m} X(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)\right)
$$

Proof. This is an immediate consequence of Lemmas 4.4 and 4.5.
Lemma 4.7 (divisor axiom, [KM94]). Let $I_{d}\left(\tau_{\lambda}, \tau_{\delta}, \tau_{D i v_{i}}\right)$ be the 3-point Gromov-Witten Invariant of $\tau_{\lambda}, \tau_{\delta}$, and $\tau_{D i v_{i}}$ and $I_{d}\left(\tau_{\lambda}, \tau_{\delta}\right)$ be the 2-point Gromov-Witten Invariant of τ_{λ} and τ_{δ}. Then the divisor axiom states

$$
I_{d}\left(\tau_{\lambda}, \tau_{\delta}, \tau_{D i v_{i}}\right)=\left(\tau_{D i v_{i}}, d\right) I_{d}\left(\tau_{\lambda}, \tau_{\delta}\right)
$$

In particular, any component Γ_{i} of $\Gamma_{d}(X(\lambda))=\Gamma_{1} \cup \Gamma_{2} \cup \ldots \cup \Gamma_{k}$ that satisfies

$$
\operatorname{codim} X\left(\operatorname{Div}_{i}\right)+\operatorname{codim} p t=\operatorname{deg} q^{\left(1^{m}\right)}+\operatorname{codim} \Gamma_{i}
$$

will contribute to the quantum product $\tau_{\text {Div }} \star \tau_{\lambda}$ with $\left(\tau_{D i v_{i}}, d\right) \cdot a_{i} \cdot q^{d}\left[\Gamma_{i}\right]$, where a_{i} is the degree of $\mathrm{ev}_{2}: \mathrm{ev}_{1}^{-1}(X(\lambda)) \rightarrow \Gamma_{d}(X(\lambda))$ over the given component.
Theorem 4.8. In the quantum cohomology ring $\mathrm{QH}^{*}(\mathrm{IF})$ we have that
$\tau_{D i v_{i}} \star \tau_{i d}=\left(\tau_{\text {Divi }}, d\right) q_{1} q_{2} \cdots q_{m}\left(a_{1} \tau_{(\overline{m+1}|2| 3|\cdots| m)}+\sum_{j=2}^{m} a_{j} \tau_{(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)}\right)+$ other terms
where a_{j} is the degree of $\mathrm{ev}_{2}: \mathrm{ev}_{1}^{-1}(p t) \rightarrow \Gamma_{d}(X(\lambda))$ over $X(\overline{m+1}|2| 3|\cdots| m)$ when $j=1$ and $X(\bar{j}|2| 3|\cdots| j-1|1| j+1|\cdots| m)$ when $2 \leqslant j \leqslant m$.

Proof. First notice that each irreducible component of $\Gamma_{\left(1^{m}\right)}(i d)$ is of expected dimension. That is, codim $X\left(D i v_{i}\right)+\operatorname{codim} p t=\operatorname{deg} q^{\left(1^{m}\right)}+(\operatorname{dim} \operatorname{IF}-2 n)$. The result follows by the divisor axiom.

References

[BM15] Anders Buch and Leonardo C. Mihalcea, Curve neighborhoods of Schubert varieties, Journal of Differential Geometry 99 (2015), no. 2, 255-283.
[KM94] Maxim Kontsevich and Yuri Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Communications in Mathematical Physics 164 (1994), no. 3, 525-562.
[Kum02] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002.
[Mih07] Ion Alexandru Mihai, Odd symplectic flag manifolds, Transformation Groups 12 (2007), no. 3, 573-599.
[MM18] Augustin-Liviu Mare and Leonardo C. Mihalcea, An affine quantum cohomology ring for flag manifolds and the periodic Toda lattice, Proceedings of the London Mathematical Society 116 (2018), no. 1, 135-181.
[MS19] Leonardo C. Mihalcea and Ryan M. Shifler, Equivariant quantum cohomology of the odd symplectic Grassmannian, Mathematische Zeitschrift 291 (2019), no. 3-4, 1569-1603.
[Pro82] Robert Proctor, Classical Bruhat orders and lexicographic shellability, Journal of Algebra 77 (1982), no. 1, 104-126.
[PS24] Clelia Pech and Ryan M. Shifler, Curve neighborhoods of Schubert varieties in the odd symplectic Grassmannian, Transformation Groups 29 (2024), no. 1, 361-408.

Department of Mathematical Sciences, Henson Science Hall, Salisbury University, SalisBURY, MD 21801

Email address: cbean2@gulls.salisbury.edu
Email address: cshank3@gulls.salisbury.edu
Email address: rmshifler@salisbury.edu

[^0]: 2010 Mathematics Subject Classification. Primary 14N35; Secondary 14N15, 14M15.

