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Abstract. Let IF :“ IFp1, 2, ¨ ¨ ¨ ,m; 2n ` 1q denote a family of odd symplectic partial
flag varieties. This is the parameterization of sequences pV1 Ă V2 Ă ¨ ¨ ¨ Ă Vmq, dimVi “ i,
of subspaces of C2n`1 that are isotropic with respect to a general skew-symmetric form.
In the quantum cohomology ring QH˚

pIFq, we have that q1q2 ¨ ¨ ¨ qm appears m times in
the quantum product τDivi ‹ τid when expressed as a sum in terms of the Schubert basis.

1. Introduction

Let IF :“ IFp1, 2, ¨ ¨ ¨ ,m; 2n`1q denote the family of odd symplectic partial flag varieties
that we are considering. This is the parameterization of sequences pV1 Ă V2 Ă ¨ ¨ ¨ Ă Vmq,
dimVi “ i, of subspaces of C2n`1 that are isotropic with respect to a general skew-symmetric
form. The variety IF contains Schubert varieties tXpλq : λ P W oddu where W odd is defined
in Section 2. See [Mih07] for more details on odd symplectic flag varieties.

The quantum cohomology ring pQH˚pIFq, ‹q is a graded algebra over Zrqs “ Zrq1, ¨ ¨ ¨ , qms

where deg qi “ 2 for 1 ď i ď m ´ 1 and deg qm “ 2pn ´ mq ` 3. The ring has a Schubert
basis given by tτλ :“ rXpλqs : λ P W oddu. Here we take τid to be the class of the Schubert
point pt and τDivi to be a divisor class where 1 ď i ď m. The ring multiplication is given

by τλ ‹ τµ “
ř

ν,d c
ν,d
λ,µq

dτν where cν,dλ,µ is the degree d Gromov-Witten invariant of τλ, τµ,

and the Poicaré dual of τν . We are now ready to state our main result. A more precise
statement is given as Theorem 4.8.

Theorem 1.1. Consider the quantum cohomology ring QH˚pIFq. Then q1q2 ¨ ¨ ¨ qm appears
m times in the product τDivi ‹ τid when expressed as a sum in terms of the Schubert basis
given by tτλ : λ P W oddu.

Our strategy will be to use use curve neighborhood calculations which we explain next.
Let X be a Fano variety. Let d P H2pX,Zq be an effective degree. Recall that the moduli
space of genus 0, degree d stable maps with two marked points M0,2pX, dq is endowed with

two evaluation maps evi : M0,2pX, dq Ñ X, i “ 1, 2 which evaluate stable maps at the i-th
marked point.

Definition 1.2. Let Ω Ă X be a closed subvariety. The curve neighborhood of Ω is the
subscheme

ΓdpΩq :“ ev2pev´1
1 Ωq Ă X

endowed with the reduced scheme structure.

The notion of curve neighborhoods is closely related to quantum cohomology. LetXpλq Ă

IF be a Schubert variety, and let ΓdpXpλqq “ Γ1 YΓ2 Y . . .YΓk be the decomposition of the
curve neighborhood into irreducible components. By the divisor axiom, any component Γi
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of “expected dimension” will contribute to the quantum product τDivi ‹ τλ with pτDivi , dq ¨

ai ¨qdrΓis, where ai is the degree of ev2 : ev
´1
1 pXpλqq Ñ ΓdpXpλqq over the given component

(see [KM94] and Lemma 4.7). Therefore the main task is to find the components Γi of

Γp1mqpptq, where p1mq “ p

m

1, ¨ ¨ ¨ , 1q, that are of expected dimension. That is, the following
equation is satisfied:

codim XpDiviq ` codim pt “ deg q1q2 ¨ ¨ ¨ qm ` codim Γi.

These components are stated precisely in Proposition 4.6.

1.1. Broader Context. Any curve neighborhood of a Schubert variety in the homogeneous
space G{P is shown to be irreducible in [BM15]. This limits the number of times that qd

appears for a particular d P H2pG{P,Zq in quantum products of Schubert classes. Examples
of curve neighborhoods having two irreducible components are given for the odd symplectic
Grassmannian in [MS19, PS24]. In particular, in the quantum Chevalley formula for the
odd symplectic Grassmannian, q1 appears twice in the quantum product of the divisor class
and the class of the point when expressed as a sum in terms of the Schubert basis. The
main purpose of this manuscript is to give a specific example where qd appears a specified
number of times as stated in Theorem 1.1.

2. Preliminaries

There are many possible ways to index the Schubert varieties of isotropic flag manifolds.
Here we recall an indexation using signed permutations. Consider the root system of type
Cn`1 with positive roots

R` “ tti ˘ tj | 1 ď i ă j ď n ` 1u Y t2ti | 1 ď i ď n ` 1u

and the subset of simple roots

∆ “ tαi :“ ti ´ ti`1 | 1 ď i ď nu Y tαn`1 :“ 2tn`1u.

The coroot of ti˘tj P R` is pti˘tjq
_ “ ti˘tj and the coroot of 2ti P R` is p2tiq

_ “ ti. The
associated Weyl group W is the hyperoctahedral group consisting of signed permutations,
i.e. permutations w of the elements t1, ¨ ¨ ¨ , n ` 1, n ` 1, ¨ ¨ ¨ , 1u satisfying wpiq “ wpiq
for all w P W . For 1 ď i ď n denote by si the simple reflection corresponding to the root
ti´ti`1 and sn`1 the simple reflection of 2tn`1. In particular, if 1 ď i ď n then sipiq “ i`1,
sipi`1q “ i, and sipjq is fixed for all other j. Also, sn`1pn`1q “ n ` 1, sn`1pn ` 1q “ n`1,
and sn`1pjq is fixed for all other j.

Each subset I :“ ti1 ă . . . ă iru Ă t1, . . . , n ` 1u determines a parabolic subgroup
P :“ PI ď Sp2n`2 with Weyl group WP “ xsi | i ‰ ijy generated by reflections with indices

not in I. Let ∆P :“ tαis | is R ti1, . . . , iruu and R`
P :“ SpanZ∆P X R`; these are the

positive roots of P . Let ℓ : W Ñ N be the length function and denote by WP the set of
minimal length representatives of the cosets in W {WP . The length function descends to
W {WP by ℓpuWP q “ ℓpu1q where u1 P WP is the minimal length representative for the
coset uWP . We have a natural ordering 1 ă 2 ă ¨ ¨ ¨ ă n ` 1 ă n ` 1 ă ¨ ¨ ¨ ă 1, which is
consistent with our earlier notation i :“ 2n ` 3 ´ i.

Let P be the parabolic obtained by excluding the reflections s1, s2, ¨ ¨ ¨ sm. Then the
minimal length representatives WP have the form pwp1q|wp2q|wp3q| ¨ ¨ ¨ |wpmq ă wpm`1q ă

¨ ¨ ¨ ă wpnq ď n` 1q. Since the last n` 1´m labels are determined from the first m labels,
we will identify an element in WP with pwp1q|wp2q| ¨ ¨ ¨ |wpmqq. Define W odd “ tw P WP :
wpiq ă 1 for 1 ď i ď mu.
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Let Xev :“ IFp1, 2, ¨ ¨ ¨ ,m; 2n ` 2q be the symplectic partial flag that parameterizes
sequences pV1 Ă V2 Ă ¨ ¨ ¨ Ă Vmq, dimVi “ i, of subspaces of C2n`2 that are isotropic with
respect to a skew-symmetric form. Here P Ă Sp2n`2 is the maximal parabolic subgroup

corresponding to I “ t1 ă 2 ă ¨ ¨ ¨ ă mu and T2n`2 “ pt1, ¨ ¨ ¨ , tn`1, t
´1
n`1, ¨ ¨ ¨ , t´1

1 q is

a maximal torus for Xev. The Schubert varieties of Xev are indexed by λ P WP and
written as Xpλq. Since IF is identified with the Schubert variety Xp2̄3̄ ¨ ¨ ¨mm ` 1q Ă

Xev, the Schubert varieties of IF are tXpλq : λ P W oddu. The quantum cohomology ring
QH˚pIFq has a Schubert basis given by tτλ :“ rXpλqs : λ P W oddu. We also have that
T “ pt1, ¨ ¨ ¨ , tn`1, t

´1
n`1, ¨ ¨ ¨ , t´1

2 q is a maximal torus for IF. We also have that dim IF “

mp2n ´ m ` 1q. Next we will give notation to state the Bruhat order.

Definition 2.1. Let λ, δ P W odd. Then define the following:

(1) Λk :“
〈
Λk
1 ă Λk

2 ă ¨ ¨ ¨ ă Λk
k

〉
where tΛk

1,Λ
k
2, ¨ ¨ ¨ ,Λk

ku “ tλ1, λ2, ¨ ¨ ¨ , λku;

(2) ∆k :“
〈
∆k

1 ă ∆k
2 ă ¨ ¨ ¨ ă ∆k

k

〉
where t∆k

1,∆
k
2, ¨ ¨ ¨ ,∆k

ku “ tδ1, δ2, ¨ ¨ ¨ , δku;

(3) Λk ď ∆k if Λk
i ď ∆k

i for all 1 ď i ď k.

Lemma 2.2 (Bruhat Order [Pro82]). Let λ, δ P WP . Then λ ď δ if and only if Λk ď ∆k

for all 1 ď k ď m. In particular, if λ, δ P W odd then Xpλq Ă Xpδq if and only if λ ď δ.

3. The Moment Graph

Sometimes called the GKM graph, the moment graph of a variety with an action of a
torus T has a vertex for each T -fixed point, and an edge for each 1-dimensional torus orbit.
The description of the moment graphs for flag manifolds is well known, and it can be found
in [Kum02, Ch. XII]. In this section we consider the moment graphs for IF and Xev.

Definition 3.1. The moment graph of Xev has a vertex for each w P WP , and an edge
w Ñ wsα for each

α P R`zR`
P “ tti´tj | 1 ď i ď m, i ă j ď m`1uYtti`tj , 2ti | 1 ď i ď m, 1 ď i ă j ď m`1u.

This edge has degree d “ pd1, d2, ¨ ¨ ¨ , dmq, where α_`∆_
P “ d1α

_
1 `d2α

_
2 `¨ ¨ ¨`dmα_

m`∆_
P .

Definition 3.2. The moment graph of IF is the full subgraph of Xev determined by the
vertices w P W odd.

Next we classify the positive roots by their degree.

Definition 3.3. Let p0a1b2cq :“ p

a

0, ¨ ¨ ¨ , 0,

b

1, ¨ ¨ ¨ , 1,

c

2, ¨ ¨ ¨ , 2q. Define the following to de-
scribe moment graph combinatorics.

(1) Define the following sets which partitions R`zR`
P .

(a) R`

p0i´11j´i0m´j`1q
“ tti ´ tj : 1 ď i ă j ď mu;

(b) R`

p0i´11m´i`1q
“ tti ˘ tj : 1 ď i ď j,m ă j ď n ` 1u Y t2ti : 1 ď i ď mu;

(c) R`

p0i´11j´i2m´j`1q
“ tti ` tj : 1 ď i ă j ď mu.

(2) A chain of degree d is a path in the (unoriented) moment graph where the sum of

edge degrees equals d. We will use the notation uWP
d

Ñ vWP to denote such a path.

In the next lemma we give a formula for the degree d of a chain which is useful to calculate
curve neighborhoods. In particular, we will see that the degree of a chain is determined by
summing the weights of the edges traversed in the moment graph.
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Lemma 3.4. Let u, v P WP be connected by a degree d chain

puWP
d

Ñ vWP q “ puWP Ñ usα1WP Ñ ¨ ¨ ¨ Ñ usα1sα2 . . . sαtWP q

where vWP “ usα1sα2 . . . sαtWP and the αj are in R`zR`
P . Then d “ pO1 ` D1, O2 `

D2, ¨ ¨ ¨ , Om ` Dmq where

Oi “
ÿ

aďi´1
a`běi

#
!

αj P R`

p0a1b2m´a´bq

)

and Di “ 2 ¨
ÿ

a`bďi´1

#
!

αj P R`

p0a1b2m´a´bq

)

.

4. Proof of main result

We begin this section by stating Proposition 4.1 which gives curve neighborhoods, defined
in Definition 1.2, a combinatorial interpretation in terms of the moment graph. Then
Lemmas 4.2 and 4.3 demonstrate that λ P W odd is constrained when it is reached by a
chain of degree less than or equal to p1mq. This follows with Lemmas 4.4 and 4.5 which
gives a precise statement of Γp1mqpptq in Proposition 4.6. Finally, we present our main result
in Theorem 4.8 which follows from Lemma 4.7.

Proposition 4.1 ([BM15]). Let λ P W odd. In the moment graph of IF, let tv1, ¨ ¨ ¨ , vsu be
the maximal vertices (for the Bruhat order) which can be reached from any u ď λ using a
chain of degree d or less. Then ΓdpXpλqq “ Xpv1q Y ¨ ¨ ¨ Y Xpvsq.

Proof. Let Zλ,d “ Xpv1q Y ¨ ¨ ¨ Y Xpvsq. Let v :“ vi P Zλ,d be one of the maximal T -fixed
points. By the definition of v and the moment graph there exists a chain of T -stable rational
curves of degree less than or equal to d joining u ď λ to v. It follows that there exists a
degree d stable map joining u ď λ to v. Therefore v P ΓdpXpλqq, thus Xpvq Ă ΓdpXpλqq,
and finally Zλ,d Ă ΓdpXpλqq.

For the converse inclusion, let v P ΓdpXpλqq be a T -fixed point. By [MM18, Lemma 5.3]
there exists a T -stable curve joining a fixed point u P Xpλq to v. This curve corresponds
to a path of degree d or less from some u ď λ to v in the moment graph of IGpk, 2n ` 1q.
By maximality of the vi it follows that v ď vi for some i, hence v P Xpviq Ă Zλ,d, which
completes the proof. □

Lemma 4.2. Let C : idW
d

Ñ λW be a chain in the moment graph of IF where d ď p1mq.
Then we have the inequality

ˇ

ˇ

ˇ
Λk X t1, 2, ¨ ¨ ¨ , ku

ˇ

ˇ

ˇ
ě k ´ 1.

Proof. Suppose
ˇ

ˇΛk
Ş

t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ ă k ´ 1. Then there are at at least two elements

Λk
a1 ,Λ

k
b1

P Λk such that Λk
a1 ,Λ

k
b1

ą k. Since Λk
a1 ą k there exists a reflection in the chain

C corresponding to ta1 ´ ta2 where a1 ď k and a2 ą k. Also, since Λk
b1

ą k there exists a
reflection in the chain C corresponding to tb1 ´ tb2 where b1 ď k and b2 ą k. Therefore,
dk ě 2. But dk ď 1. The result follows. □

Lemma 4.3. Let C : idW
d

Ñ λW be a chain in the moment graph of IF where d ď p1mq

and j P tλ1, λ2, ¨ ¨ ¨ , λmu where 2 ď j ď m. The chain C has a reflection corresponding to
the root 2tj. In particular, 1 P Λj .

Proof. Consider the chain C : idWP
d

Ñ λWP . One of the following three cases must have
occurred.

(1) The chain C has a reflection corresponding to the root 2tj ;
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(2) The chain C has two reflections corresponding to two roots of the form ta ˘ tb where
a ď m and b ě m;

(3) The chain C has a reflection corresponding to the root ta ` tb where a, b ď m and
a ă b.

In the first case we have that

p2tjq
_ “ tj “ ptj ´ tj`1q ` ptj`1 ´ tj`2q ` ¨ ¨ ¨ ` ptn´1 ´ 1tnq ` tn.

In particular, di ď 1 for all 1 ď i ď m. In the second case, the coefficient of tm ´ tm`1 is 1
when ta ˘ tb and tc ˘ td (a, c ď m and b, d ě m), are written as a sum of simple roots. Thus,
dm ě 2. This is not possible. In the third case, the coefficient of tm ´ tm`1 is 2 when ta ` tb
(a, b ď m and a ă b) is written as a sum of simple roots. This is not possible. Therefore,
the chain C has a reflection corresponding to the root 2tj . Finally, if 1 R Λj , then dj ě 2 or
1̄ appears in λ. Neither is possible. This completes the proof. □

Lemma 4.4. Let C : idW
d

Ñ λW be a chain in the moment graph of IF such that d ď p1mq.

(1) If Λm
m ď m ` 1 then Xpλq Ă Xpm ` 1|2|3| ¨ ¨ ¨ |mq.

(2) If j̄ P tλ1, λ2, ¨ ¨ ¨ , λmu, where 2 ď j ď m, then

Xpλq Ă Xpj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq.

Proof. We will prove Part (1) first. Let 1 ď k ď m, δ “ pm ` 1|2|3| ¨ ¨ ¨ |mq, and Λm
m ď

m ` 1. It follows that ∆k “ p2 ă 3 ă ¨ ¨ ¨ ă k ă m ` 1q. Also,
ˇ

ˇΛk X t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ P

tk ´ 1, ku by Lemma 4.2. If
ˇ

ˇΛk X t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ “ k then clearly Λk ď ∆k.

Suppose that
ˇ

ˇΛk X t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ “ k ´ 1. Then Λk “ p1 ă 2 ă ¨ ¨ ¨ ă î ă ¨ ¨ ¨ ă k ă λjq

where i is removed and λj ď Λm
m ď m ` 1. It follows that Λk ď ∆k. Therefore, λ ď δ.

Next we will prove Part (2). Let 1 ď k ď m, j̄ P tλ1, λ2, ¨ ¨ ¨ , λmu, where 2 ď j ď m, and
δ “ pj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq. There are two cases for ∆k.

(1) If k ď j ´ 1 then ∆k “ p2 ă 3 ă ¨ ¨ ¨ ă k ă jq;
(2) if k ě j then ∆k “ p1 ă 2 ă 3 ¨ ¨ ¨ ă j ´ 1 ă j ` 1 ă ¨ ¨ ¨ ă k ă jq.

If
ˇ

ˇΛk X t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ “ k then clearly Λk ď ∆k.

Suppose that
ˇ

ˇΛk X t1, 2, ¨ ¨ ¨ , ku
ˇ

ˇ “ k ´ 1. Then Λk “ p1 ă 2 ă ¨ ¨ ¨ ă î ă ¨ ¨ ¨ ă k ă jq

where i is removed. If k ď j ´ 1 then clearly Λk ď ∆k. If k ě j then 1 must be included
in Λk by Lemma 4.3. So, if k ě j, we have that Λk ď ∆k. Therefore, λ ď δ. The result
follows. □

Lemma 4.5. We have the following permutation length calculation

ℓpm ` 1|2|3| ¨ ¨ ¨ |mq “ ℓpj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq “ 2n

for 2 ď j ď m. In particular, the union

Xpm ` 1|2|3| ¨ ¨ ¨ |mq Y

˜

m
ď

j“2

Xpj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq

¸

has m irreducible components of dimension 2n.

Proof. This follows from a straightforward calculation. □

Proposition 4.6. Let n P Z` and consider IF. Then Γp1mqpptq has m irreducible compo-
nents of dimension 2n. Specifically,

Γp1mqpptq “Xpm ` 1|2|3| ¨ ¨ ¨ |mq Y

˜

m
ď

j“2

Xpj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq

¸

.
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Proof. This is an immediate consequence of Lemmas 4.4 and 4.5. □

Lemma 4.7 (divisor axiom, [KM94]). Let Idpτλ, τδ, τDiviq be the 3-point Gromov-Witten
Invariant of τλ, τδ, and τDivi and Idpτλ, τδq be the 2-point Gromov-Witten Invariant of τλ
and τδ. Then the divisor axiom states

Idpτλ, τδ, τDiviq “ pτDivi , dqIdpτλ, τδq.

In particular, any component Γi of ΓdpXpλqq “ Γ1 Y Γ2 Y . . . Y Γk that satisfies

codim XpDiviq ` codim pt “ deg qp1mq ` codim Γi

will contribute to the quantum product τDivi ‹ τλ with pτDivi , dq ¨ ai ¨ qdrΓis, where ai is the
degree of ev2 : ev

´1
1 pXpλqq Ñ ΓdpXpλqq over the given component.

Theorem 4.8. In the quantum cohomology ring QH˚pIFq we have that

τDivi‹τid “ pτDivi , dqq1q2 ¨ ¨ ¨ qm

˜

a1τpm`1|2|3|¨¨¨|mq `

m
ÿ

j“2

ajτpj|2|3|¨¨¨|j´1|1|j`1|¨¨¨|mq

¸

`other terms

where aj is the degree of ev2 : ev´1
1 pptq Ñ ΓdpXpλqq over Xpm ` 1|2|3| ¨ ¨ ¨ |mq when j “ 1

and Xpj|2|3| ¨ ¨ ¨ |j ´ 1|1|j ` 1| ¨ ¨ ¨ |mq when 2 ď j ď m.

Proof. First notice that each irreducible component of Γp1mqpidq is of expected dimension.

That is, codim XpDiviq ` codim pt “ deg qp1mq ` pdim IF ´ 2nq. The result follows by the
divisor axiom. □
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