Programs for this lab should be stored in your Eclipse repository. Remember to use a location on your P: drive or a USB drive (not the C: drive). Create a new Java project in your workspace called lab7. When your programs are running correctly, turn in a printout of the Java code and send an email containing your .java files for each program in lab7 (as separate file attachments) to the instructor at stlauterburg@salisbury.edu with the subject line "COSC 117 Lab 7".

Problem 1

Write a program called VowelCount that does the following:

1. Ask the user to type in a sentence. The Scanner method nextLine () will accept an entire line and return it at as a String. This is different from next () which will accept only a single 'token'.
2. Count the number of lower-case vowels in the sentence. For purposes of this exercise consider the characters 'a', 'e', 'i', 'o' and 'u' to be vowels.
3. Print out the count for each vowel.

Example:

Please enter a sentence:
Your eyes are blue.

Number of $a^{\prime} s: 1$
Number of $e^{\prime} s: 4$
Number of $i^{\prime} s: 0$
Number of $o^{\prime} s: 1$
Number of u's: 2

Problem 2

Write a program called Combinations that prompts the user for two integer numbers: the number of objects in a set (n) and the number of objects to be chosen from that set (k). The program should then call a function that determines the number of ways that k objects can be selected from n distinct objects.

The combinations function $\mathrm{C}(n, k)$ can be calculated in terms of factorials (see http://en.wikipedia.org/wiki/Combination):

$$
\mathrm{C}(n, k)=\frac{n!}{k!^{*}(n-k)!}
$$

Your program should contain three methods:

1) a main method which does all input and output (in other words, you don't need a separate input method for n and k; just prompt for the values in the main method)
2) a method called factorial that computes the factorial of a number (you can use either a for loop or a while loop)
3) a method called combinations that computes the number of combinations. The combinations method should be relatively short (around 5 lines). It simply calls the factorial function with an appropriate argument when it needs a factorial computed (hint:
it will do this three times).

Example 1:

```
Enter the number of items to choose (k): 3
Enter the number of items (n): 5
There are 10 combinations.
```


Problem 3

In the game Scrabble, words are scored by summing the point value for each letter in the word. A letter's point value is inversely proportional to its frequency in English words. Letters are awarded points as follows:

1 point: $\quad \mathbf{A}, \mathbf{E}, \mathbf{I}, \mathbf{L}, \mathbf{N}, \mathbf{O}, \mathbf{R}, \mathbf{S}, \mathbf{T}, \mathbf{U}$
2 points: \mathbf{D}, \mathbf{G}
3 points: $\mathbf{B}, \mathbf{C}, \mathbf{M}, \mathbf{P}$
4 points: $\quad \mathbf{F}, \mathbf{H}, \mathbf{V}, \mathbf{W}, \mathbf{Y}$
5 points: K
8 points: J, X
10 points: \mathbf{Q}, \mathbf{Z}

Write a program called ScrabbleScore that accepts a word from the user and uses an if-else statement to compute its score (not counting any of the bonuses that might normally occur in the game). Do not assume that the user enters words all in one case. Hint: think about converting the word to all lower- or upper-case before processing its score. Take a look at https://docs.oracle.com/javase/8/docs/api/iava/lang/String.html. The program should display the word as originally entered along with the number of points it is worth.

Example 1:

Please enter a word: FARM
The word FARM is worth 9 points.

Example 2:

Please enter a word: Farmer
The word Farmer is worth 11 points.

