Primitive Data Types

<u>integers</u>

byte	from -128 to 127 (8 bits = 1 byte)				
short	short from -32,768 to 32,767 (16 bits = 2 bytes)				
int	from -2,147,483,648 to 2,147,483,647 (32 bits = 4 bytes)				
long	from -9,223,372,036,854,775,808 to				
-	9,223,372,036,854,775,807 (64 bits = 8 bytes)				
<u>real numbers</u>					
float	real numbers (with fractional components)				
double	e more precise real numbers				
<u>other</u>					
booled	n true or false values (only 1 bit)				
char	character (ASCII) (8 bits = 1 byte).				
	COSC 117 - Fall 2018				

Main Memory (RAM)

- Is organized as a sequence of locations
- Each location can contain a sequence of bits, representing data or an instruction
- Locations are numbered with "addresses" from 0 to memory-size

(can be huge, even gigabytes)

0	1	2	3
10111101	10111110	01111101	00111110
4)	5	چ	7 00000000
10011111	11011111	00000000	
3	9	10	11
00000000	00000000	00000000	
1 <u>2</u>	13	14)	15
00000000	00000000	00000000	
16	17	18	19
00000000	00000000	00000000	00000000
2.0	21	22	23
00000000	00000000	00000000	
24	25	26	27
00000000	00000000	00000000	
23	29	30	31
00000000	00000000	00000000	00000000
1		Inpu	t/Outpu

COSC 117 - Fall 2018

Why use binary numbers?

- We could build computers that operate in base-10, but they would be expensive.
- What is easier than having a switch be ON or OFF?
- Electricity is used... that way: low current or high current.
- High voltages indicate 1 and low voltages indicate 0

COSC 117 - Fall 2018

Data Representation: Bits

COSC 117 - Fall 2018

Base Ten Numbers

• In base 10, a decimal integer 587 means:

Base Two

• Likewise, in base 2, a binary integer 101 means:

$$101 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$1 \times 2^{0} = 1$$

$$0 \times 2^{1} = 0$$

$$1 \times 2^{2} = 4$$

$$--------5$$

COSC 117 - Fall 2018

Convert the binary (base two) number 110111 to decimal (base ten). Answer = 55

COSC 117 - Fall 2018

7

Convert the decimal (base ten) number 52 to binary (base two). Answer = 00110100

52	x 32	x 16	x 8	x 4	x 2	x 1
-32	1	1	0	1	0	0
20						
-16						
4						
-4						
0						

How do we represent negative numbers Two's Complement

13 =	00001101	
	1 1 1 1 0 0 1 0	invert the digits
	1	add 1
-13 =	1 1 1 1 0 0 1 1	

http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html

COSC 117 - Fall 2018

9

Characters, marks, and more

Letters, numbers, line feeds, and non-printing characters

<u>ASCII-8</u>. Pronounced "ass-key" ASCII stands for <u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange, has 256 different symbols-all Operating Systems fully understand ASCII.

<u>UNICODE</u> allows for up to 65,536 different characters. It is more complex and not implemented on many Operating Systems, but it is on Windows NT and Windows XP.

Different characters held in RAM

COSC 117 - Fall 2018

Why are these lists in alphabetical order?

<u>ASCII</u>

256 cł foreigi	represe naracters n languag ilities are 9 10 11	s the e	2	Symbol A B C D E F	Decimal 65 66 67 68 69 70	Binary 01000001 01000011 01000100 01000101 01000110	
134 å 135 ç 136 ê 137 ë	150 û 151 ù 152 _ 153 Ö	166 167 168 169	ء • ذ	182 <mark> </mark> 183 m 184 m 185 <u>-</u>	199 200 201 202	I 21 I 21 IF 21 IF 21 ⊥ 21	16 17

COSC 117 - Fall 2018

ASCII, Cont.

- 32 is the ASCII code for a space.
- So 32 = 00100000 in binary, and when the computer gets that data, it causes a space to appear.
- Note: all the capital letters finish before the lower case letters appear
- B = 66
- b = 98

65	A
66	В
67	С
68	D
69	Е

97	а
98	b
99	с
100	d
101	e
102	f