Primitive Data Types

integers
byte from - 128 to 127 (8 bits $=1$ byte)
short from - 32,768 to 32,767 (16 bits $=2$ bytes)
int from -2,147,483,648 to 2,147,483,647 (32 bits $=4$ bytes)
long from $-9,223,372,036,854,775,808$ to

$$
9,223,372,036,854,775,807 \text { (} 64 \text { bits }=8 \text { bytes })
$$

real numbers

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { float } \\
\text { double } \\
\text { other }\end{array}
$$ \& real numbers (with fractional components)

more precise real numbers\end{array}\right]\)| boolean | |
| :--- | :--- |
| char | true or false values (only 1 bit)
 character (ASCII) (8 bits $=1$ byte).
 |
| | $\operatorname{COsc} 117$ - Fall 2018 |

Main Memory (RAM)

- Is organized as a sequence of locations
- Each location can contain a sequence of bits, representing data or an instruction
- Locations are numbered with "addresses" from 0 to memory-size
(can be huge, even gigabytes)

Why use binary numbers?

- We could build computers that operate in base-10, but they would be expensive.
- What is easier than having a switch be ON or OFF?
- Electricity is used... that way: low current or high current.
- High voltages indicate 1 and low voltages indicate 0

The bit is the smallest unit of data;
it is 1 or 0 , that is, on or off

000

001

010

011

Base Ten Numbers

- In base 10, a decimal integer 587 means:

COSC 117 - Fall 2018

- Likewise, in base 2, a binary integer 101 means:

Convert the binary (base two) number 110111 to decimal (base ten). Answer $=55$

0	0	1	1	0	1	1	1
$\times 128$	$\times 64$	$\times 32$	$\times 16$	$\times 8$	x 4	x 2	x 1
+0	+0	+32	+16	+	0	+4	+

Convert the decimal (base ten) number 52 to binary (base two). Answer $=00110100$

$$
\begin{array}{rrrrrrr}
52 & \times 32 & \times 16 & \times 8 & \times 4 & \times 2 & \times 1 \\
-32 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 20 & & & & & & \\
-16 & & & & & & \\
\hline 4 & & & & & & \\
-4 & & & & & & \\
\hline 0 & & & & & &
\end{array}
$$

How do we represent negative numbers Two's Complement

$13=\quad 00001101$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$ invert the digits
1 add 1
$-13=\quad 11110011$
http://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html

Characters, marks, and more

Letters, numbers, line feeds, and non-printing characters

ASCII-8. Pronounced "ass-key" ASCII stands for American Standard Code for Information Interchange, has 256 different symbols-all Operating Systems fully understand ASCII.

UNICODE allows for up to 65,536 different characters.
It is more complex and not implemented on many Operating Systems, but it is on Windows NT and Windows XP.

Different characters held in RAM

Why are these lists in alphabetical order?

prod_name	
12 inch teddy bear	Name -
18 inch teddy bear	00010.JPG 010.JPG bikeride.JPG brooklynbridge.JPG chips.JPG chipsnyc.JPG
8 inch teddy bear	
9 inch nails	
Bird bean bag toy	
Fish bean bag toy	
King doll	
Queen doll	
Rabbit bean bag toy	

ASCII, Cont.

- 32 is the ASCII code for a space.
- So $32=00100000$ in binary, and when the computer gets that data, it causes a space to appear.
- Note: all the capital letters finish before the lower case letters appear
- $B=66$
- $b=98$

65	A
66	B
67	C
68	D
69	E

97	a
98	b
99	c
100	d
101	e
102	f

