
10/5/2015

1

CS427:

Software Engineering I

Core XP Practices

This lecture’s goals

□What is traditional waterfall process?

□What is eXtreme Programming (XP)?

□How extremely does XP differ?

□When (not) to use XP?

10/5/2015

2

Software development processes

□Many ways to develop software

◊Plan-driven / agile

◊Centralized / distributed

◊High math / low math

◊Close / little interaction with customers

◊Much testing / little testing

◊Organize by architecture / features

Waterfall process activities

□Requirements – what software should do

□Design – structure code into modules

□Implementation – hack code

□Integration – put modules together

□Testing – check if code works

□Maintenance – keep making changes

10/5/2015

3

Design

Theoretical waterfall model

Requirements

Implementation

Integration

OR Testing

Maintenance

Design

 Checking

Modified waterfall model

Requirements

Analysis

Implementation

Unit Testing

Integration

System Testing

Maintenance

Regression Testing

10/5/2015

4

eXtreme Programming (XP)

□Radically different from waterfall

□Big ideas

◊ Don’t write much documentation

○Working code is the main written product

◊ Implement features one by one

◊ Release code frequently

◊ Work closely with the customer

◊ Communicate a lot with team members

Main figure

Kent Beck

10/5/2015

5

XP: Some key practices

□Planning game for requirements

□Test-driven development for design and

testing

□Refactoring for design

□Pair programming for development

□Continuous integration for integration

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration meeting
that is held at the start

□Iteration is going to implement set of user
stories

□Divide work into tasks small enough to
finish in a day

□Each day, programmers work in pairs to
finish tasks

10/5/2015

6

Group Discussion: Pros/Cons in Team

Work vs. Solo Work

□Requirement: get into a group of three
neighbor students

□share and discuss respective answers
based on your current/past team/solo work
experiences either at school or outside of
school

□Instructor will call for volunteer groups and
sometimes randomly pick groups

5 minutes for discussion

©L. Williams

What Is Pair Programming?

 "Pair programming is a simple, straightforward

concept. Two programmers work side-by-side at

one computer, continuously collaborating on the

same design, algorithm, code, and test. It allows

two people to produce a higher quality of code than

that produced by the summation of their solitary

efforts.“

Driver: types or writes

Navigator: observer (looking for tactical & strategic defects)

□ Periodically switch roles of driver and navigator

◊ possibly every 30 minutes or less

□ Pair coding, design, debugging, testing, etc.

10/5/2015

7

Pairs (should) rotate

Pair Programming

©L. Williams

10/5/2015

8

This is NOT Pair Programming

©L. Williams

The Benefits of Pair Programming

©L. Williams

10/5/2015

9

Research Findings to Date

Strong anecdotal evidence from industry

“We can produce near defect-free code in less

than half the time.”

Empirical Study
◊ Pairs produced higher quality code

○15% fewer defects

◊ Pairs completed their tasks in about half the time

○58% of elapsed time

◊ Pair programmers are happier programmers

○Pairs enjoy their work more (92%)

○Pairs feel more confident in their work products (96%)

©L. Williams

Expected Benefits of Pair-

Programming

Higher product quality

Improved cycle time

Increased programmer satisfaction

Enhanced learning

Pair rotation
Ease staff training and transition

Knowledge management/Reduced product risk

Enhanced team building

©L. Williams

10/5/2015

10

Issues: Partner Work

Expert paired with an Expert

Expert paired with a Novice

Novices paired together Professional Driver Problem Culture

©L. Williams

Issues: Process

□Used in eXtreme Programming

□Used in the Collaborative Software

Process

□Pair programming can be added to any

process

©L. Williams

10/5/2015

11

How does this work?

Pair Pressure
 Keep each other on task and focused
 Don’t want to let partner down
 “Embarrassed” to not follow the prescribed process

Pair Negotiation

 Distributed Cognition: “Searching Through Larger Spaces of Alternatives”
Have shared goals and plans
 Bring different prior experiences to the task
Different access to task relevant information
Must negotiate a common shared of action

Pair Courage

 “if it looks right to me and it looks right to you – guess what? It’s probably
right!”

©L. Williams

How does this work (part two)?

Pair Reviews
 “Four eyeballs are better than two”

 Continuous design and code reviews

 Removes programmers’ distaste for reviews

 80% of all (solo) programmers don’t do them regularly or at all

Pair Debugging
 Explaining the problems to another person “Never mind; I see what’s

wrong. Sorry to bother you.”

Pair-Learning
 Continuous reviews learn from partners techniques, knowledge of

language, domain, etc.

 Take turns being the teacher and the student minute by minute

©L. Williams

10/5/2015

12

Pairs means working together

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration meeting
that is held at the start

□Iteration is going to implement set of

user stories
□Divide work into tasks small enough to finish

in a day

□Each day, programmers work in pairs to finish
tasks

10/5/2015

13

What are User Stories?

A user story represents

◊ a feature customers want in the software

A user story is the smallest amount of information

(a step) necessary to allow the customer to

define (and steer) a path through the system

□Written by our customers (communication w/

developers)

□Typically written on index cards

 System

©L. Williams

Writing User Stories

Materials
◊ A stack of blank index cards

◊ Pens or pencils

◊ Rubber bands

□Start with a goal of the system (e.g.,

Applicant submits a loan application)

□Think about the steps that the user takes

as he/she does the activity

□Write no more than one step on each card

© Randy Miller ©L. Williams

10/5/2015

14

Format of a User Story

□Title: 2-3 words

□Acceptance test

□Priority: 1-2-3 (1 most important)

□Story points (can mean #days of ideal development

time)

□Description: 1-2 sentences (a single step towards

achieving the goal)

©L. Williams

Ex. Acceptance Test for a Story

Create Receipt

Keep a running receipt with a short
description of each scanned item and its
price.

Setup: The cashier has a new customer

Operation: The cashier scans three cans of beans @
$.99, two pounds of spinach @ $.59/lb, and a
toothbrush @$2.00

Verify: The receipt has all of the scanned items and
their correctly listed prices

© Randy Miller ©L. Williams

10/5/2015

15

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration

meeting that is held at the start

□Iteration is going to implement set of user
stories

□Divide work into tasks small enough to finish
in a day

□Each day, programmers work in pairs to finish
tasks

Estimating size: concepts

□ Story point: unit of measure for expressing the overall
size of a user story, feature, or other piece of work.
The raw value of a story point is unimportant. What
matters are the relative values.
◊ Related to how hard it is and how much of it there is

◊ NOT related to amount of time or # of people

◊ Unitless, but numerically-meaningful

□ Ideal time: the amount of time “something” takes when
stripped of all peripheral activities
◊ Example: American football game = 60 minutes

□ Elapsed time: the amount of time that passes on the
clock to do “something”
◊ Example: American football game = 3 hours

□ Velocity: measure of a team’s rate of progress

©L. Williams

10/5/2015

16

Priorities

□High
◊ “Give us these stories to provide a minimal

working system.”

□Medium
◊ “We need these stories to complete this

system.”

□Low
◊ “Bells and whistles? Which stories can come

later?”

© Randy Miller ©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

17

Coming up with the plan

Desired

Features

©L. Williams

Estimating story points

□Choose a medium-size story and assign

it a “5”

□Estimate other stories relative to that
◊ Twice as big

◊ Half as big

◊ Almost but not quite as big

◊ A little bit bigger

□Only values:

◊ 0, 1, 2, 3, 5, 8, 13, 20, 40, 100

Near term iteration

 “stories”

A few iterations away

 “epic”
©L. Williams

10/5/2015

18

Estimating ideal days

□Ideal days vs. elapsed time in software
development
◊ Supporting current release

◊ Sick time

◊ Meetings

◊ Demonstrations

◊ Personal issues

◊ Phone calls

◊

□When estimating ideal days, assume:
◊ The story being estimated is the only thing you’ll work on

◊ Everything you need will be on hand when you start

◊ There will be no interruptions

Ideal days vs. Story points

□Favoring story points:
◊ Help drive cross-functional behavior

◊ Do not decay (change based on experience)

◊ Are a pure measure of size (focus on feature, not person)

◊ Estimation is typically faster in the long run

◊ My ideal days are not your ideal days (focus on person and

their speed)

□Favoring ideal days:
◊ Easier to explain outside of team

◊ Estimation is typically faster at first

10/5/2015

19

Deriving an estimate for a user story

□Expert opinion
◊ Rely on gut feel based on (extensive) experience

◊ Disadvantage for agile: need to consider all aspects of developing the
user story, so one expert will likely not be enough

□Analogy
◊ Relative to (several) other user stories

◊ Triangulation: little bigger than that “3” and a little smaller than that “8”

□Disaggregation
◊ Break up into smaller, easier-to-estimate pieces/tasks.

◊ Need to make sure you don’t miss any tasks.

◊ Sanity check: does the sum of all the parts make sense?

□Planning poker
◊ Combines expert opinion, analogy, disaggregation

© Laurie Williams 2007

©L. Williams

Planning Poker

(http://planningpoker.com)

10/5/2015

20

Playing Planning Poker

□Include all players on the development team (but
less than 10 people overall):
◊ Programmers

◊ Testers

◊ Database engineers

◊ Requirements analysts

◊ User interaction designers . . .

□Moderator (usually the product owner or analyst)
reads the description and answers any questions

□Each estimator privately selects a card with their
estimate

□All cards simultaneously turned over

□Re-estimate

□Repeat until converge
©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

21

Velocity

□Velocity is a measure of a team’s rate of
progress.

□Velocity is calculated by summing the number of
story points assigned to each user story that the
team completed during the operation.

□We assume that the team will produce in future
iterations at the rate of their past average
velocity.
◊ “Yesterday’s weather”

http://agilesoftwaredevelopment.com/blog/pbielicki/predicting-
team-velocity-yesterday-weather-method

©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

22

Prioritization

□Driven by customer, in conjunction with developer

□Choose features to fill up velocity of iteration, based

on:

◊ Desirability of the feature to a broad base of customers or

users

◊ Desirability of a feature to a small number of important

customers or users

◊ The cohesiveness of the story in relation to other stories.

Example:
○ “Zoom in” a high priority feature

○ “Zoom out” not a high priority feature

– But it becomes one relative to “Zoom in”

Coming up with the plan

Desired

Features

30 story points 6 iterations

5 story points/two-

week iteration
October

30

©L. Williams

10/5/2015

23

Planning game

□Customer writes user stories

□Programmers estimate time to do each

story

□If story is too big, customer splits it

□Customer chooses stories to match

project velocity

□Project velocity is amount of work done in

the previous iteration(s)

Planning

□Programmers only worry about one

iteration at a time

□Customer can plan as many iterations as

desired, but can change future iterations

10/5/2015

24

Simplicity

□Add one feature (user story) at a time

□Don’t worry about future stories

□Make program as simple as possible

□The simplest thing that could possibly

work

Need educated customer

10/5/2015

25

XP works best when

□Educated customer on site

□Small team

□People who like to talk

□All in one room (including customer)

□Changing requirements

Unit tests and refactoring

□Because code is as simple as it can be,

adding a new feature tends to make it less

simple

□To recover simplicity, you must refactor the

code

□To refactor safely, you should have a

rigorous set of unit tests

10/5/2015

26

Working software

□All software has automated (unit) tests

□All tests pass, all the time

◊ Never check in broken code

□How to work on a task

◊ Get latest version of the code. All tests pass.

◊ Write test first. It fails.

◊ Write code to make test pass. Now all tests pass.

◊ Refactor (clean up)

◊ Check in your code

One key practice

□Write tests first, then write code

□Various names

◊ Test-first programming

◊ Test-driven development

□Is it testing or designing?

□Degree to which you stick to it for MP?

10/5/2015

27

Why test?

□Improve quality - find bugs

□Measure quality

◊ Prove there are no bugs? (Is it possible?)

◊ Determine if software is ready to be released

◊ Determine what to work on

◊ See if you made a mistake

□Learn the software

What is a test?

□Run program with known inputs,

check results

◊ Tests pass or fail

□Tests can document bugs

□Tests can document code

□Some terminology

◊ Failure, error, fault, oracle

10/5/2015

28

Who should test?

□Developer? Separate “quality assurance”

group?

□Programmer? User? Someone with a

degree in “testing”?

When to write tests

□During requirements analysis

□During architectural design

□During component design

□During coding

□After all coding

10/5/2015

29

Timing

□Standard practice:

◊ Worry about testing after you build the system

□Testers tradition:

◊ Plan tests early, before code is written

□XP:

◊ Write tests early, before code is written

XP Testing

□Write tests before code

□A design technique, not a testing

technique

□Doesn’t find bugs, but eliminates them

□Doesn’t measure quality, but improves it

10/5/2015

30

What kind of tests?

□Programmer tests / non-programmer tests

□Developer / Tester

□Unit tests / Integration tests / Functional

tests / System tests

□Automated tests / Manual tests

□Regression tests

□Exploratory testing

New bugs or old bugs?

□Regression tests – test to make sure that

everything that worked in the past still

works

□Exploratory testing – look for new bugs

◊ Name also used to contrast scripted testing

10/5/2015

31

Regression tests: good

□Should be automated

□Set of tests that are rerun every time the

software is changed

□Makes sure that things that are fixed stay

fixed

□Each new bug results in an addition to the

regression tests

Regression tests: can be bad

□Can take a long time to run

◊ Select a subset

◊ Remove obsolete tests

□Can be expensive to maintain

◊ Changes to program can invalidate tests

◊ Fix or delete?

□If it will never fail, why test it?

10/5/2015

32

What kind of tests?

□Manual

◊ Good for exploratory

◊ Good for testing GUI

◊ Manual regression testing is BORING

□Automatic

◊ Test is a program

◊ Test is created by a tool that records user
actions

Test automation

□Tests are code or scripts (which is code)

□Real projects can often have more test

code than production code

□Test code is boring

◊ Build some complex data values

◊ Run a function

◊ Check the result

10/5/2015

33

xUnit testing tools

□Programmer’s testing tools

□Automated testing!

□Unit testing, but also integration testing

and functional testing

□Regression testing

□Test-first design

□Each code unit requires several tests

JUnit

□Unit testing framework for Java

□Test is a method annotated with @Test
(use JUnit 4, not JUnit 3), check assert

□Can extract common pieces into setup
and teardown methods (@Before, @After)

□More on Wiki

□Please ask TAs or instructors for help if
needed

