
10/5/2015

1

CS427:

Software Engineering I

Core XP Practices

This lecture’s goals

□What is traditional waterfall process?

□What is eXtreme Programming (XP)?

□How extremely does XP differ?

□When (not) to use XP?

10/5/2015

2

Software development processes

□Many ways to develop software

◊Plan-driven / agile

◊Centralized / distributed

◊High math / low math

◊Close / little interaction with customers

◊Much testing / little testing

◊Organize by architecture / features

Waterfall process activities

□Requirements – what software should do

□Design – structure code into modules

□Implementation – hack code

□Integration – put modules together

□Testing – check if code works

□Maintenance – keep making changes

10/5/2015

3

Design

Theoretical waterfall model

Requirements

Implementation

Integration

OR Testing

Maintenance

Design

 Checking

Modified waterfall model

Requirements

Analysis

Implementation

Unit Testing

Integration

System Testing

Maintenance

Regression Testing

10/5/2015

4

eXtreme Programming (XP)

□Radically different from waterfall

□Big ideas

◊ Don’t write much documentation

○Working code is the main written product

◊ Implement features one by one

◊ Release code frequently

◊ Work closely with the customer

◊ Communicate a lot with team members

Main figure

Kent Beck

10/5/2015

5

XP: Some key practices

□Planning game for requirements

□Test-driven development for design and

testing

□Refactoring for design

□Pair programming for development

□Continuous integration for integration

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration meeting
that is held at the start

□Iteration is going to implement set of user
stories

□Divide work into tasks small enough to
finish in a day

□Each day, programmers work in pairs to
finish tasks

10/5/2015

6

Group Discussion: Pros/Cons in Team

Work vs. Solo Work

□Requirement: get into a group of three
neighbor students

□share and discuss respective answers
based on your current/past team/solo work
experiences either at school or outside of
school

□Instructor will call for volunteer groups and
sometimes randomly pick groups

5 minutes for discussion

©L. Williams

What Is Pair Programming?

 "Pair programming is a simple, straightforward

concept. Two programmers work side-by-side at

one computer, continuously collaborating on the

same design, algorithm, code, and test. It allows

two people to produce a higher quality of code than

that produced by the summation of their solitary

efforts.“

Driver: types or writes

Navigator: observer (looking for tactical & strategic defects)

□ Periodically switch roles of driver and navigator

◊ possibly every 30 minutes or less

□ Pair coding, design, debugging, testing, etc.

10/5/2015

7

Pairs (should) rotate

Pair Programming

©L. Williams

10/5/2015

8

This is NOT Pair Programming

©L. Williams

The Benefits of Pair Programming

©L. Williams

10/5/2015

9

Research Findings to Date

Strong anecdotal evidence from industry

“We can produce near defect-free code in less

than half the time.”

Empirical Study
◊ Pairs produced higher quality code

○15% fewer defects

◊ Pairs completed their tasks in about half the time

○58% of elapsed time

◊ Pair programmers are happier programmers

○Pairs enjoy their work more (92%)

○Pairs feel more confident in their work products (96%)

©L. Williams

Expected Benefits of Pair-

Programming

Higher product quality

Improved cycle time

Increased programmer satisfaction

Enhanced learning

Pair rotation
Ease staff training and transition

Knowledge management/Reduced product risk

Enhanced team building

©L. Williams

10/5/2015

10

Issues: Partner Work

Expert paired with an Expert

Expert paired with a Novice

Novices paired together Professional Driver Problem Culture

©L. Williams

Issues: Process

□Used in eXtreme Programming

□Used in the Collaborative Software

Process

□Pair programming can be added to any

process

©L. Williams

10/5/2015

11

How does this work?

Pair Pressure
 Keep each other on task and focused
 Don’t want to let partner down
 “Embarrassed” to not follow the prescribed process

Pair Negotiation

 Distributed Cognition: “Searching Through Larger Spaces of Alternatives”
Have shared goals and plans
 Bring different prior experiences to the task
Different access to task relevant information
Must negotiate a common shared of action

Pair Courage

 “if it looks right to me and it looks right to you – guess what? It’s probably
right!”

©L. Williams

How does this work (part two)?

Pair Reviews
 “Four eyeballs are better than two”

 Continuous design and code reviews

 Removes programmers’ distaste for reviews

 80% of all (solo) programmers don’t do them regularly or at all

Pair Debugging
 Explaining the problems to another person  “Never mind; I see what’s

wrong. Sorry to bother you.”

Pair-Learning
 Continuous reviews  learn from partners techniques, knowledge of

language, domain, etc.

 Take turns being the teacher and the student minute by minute

©L. Williams

10/5/2015

12

Pairs means working together

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration meeting
that is held at the start

□Iteration is going to implement set of

user stories
□Divide work into tasks small enough to finish

in a day

□Each day, programmers work in pairs to finish
tasks

10/5/2015

13

What are User Stories?

A user story represents

◊ a feature customers want in the software

A user story is the smallest amount of information

(a step) necessary to allow the customer to

define (and steer) a path through the system

□Written by our customers (communication w/

developers)

□Typically written on index cards

 System

©L. Williams

Writing User Stories

Materials
◊ A stack of blank index cards

◊ Pens or pencils

◊ Rubber bands

□Start with a goal of the system (e.g.,

Applicant submits a loan application)

□Think about the steps that the user takes

as he/she does the activity

□Write no more than one step on each card

© Randy Miller ©L. Williams

10/5/2015

14

Format of a User Story

□Title: 2-3 words

□Acceptance test

□Priority: 1-2-3 (1 most important)

□Story points (can mean #days of ideal development

time)

□Description: 1-2 sentences (a single step towards

achieving the goal)

©L. Williams

Ex. Acceptance Test for a Story

Create Receipt

Keep a running receipt with a short
description of each scanned item and its
price.

Setup: The cashier has a new customer

Operation: The cashier scans three cans of beans @
$.99, two pounds of spinach @ $.59/lb, and a
toothbrush @$2.00

Verify: The receipt has all of the scanned items and
their correctly listed prices

© Randy Miller ©L. Williams

10/5/2015

15

XP is an iterative process

□Iteration = two week cycle (1-3 weeks)

□Plan each iteration in an iteration

meeting that is held at the start

□Iteration is going to implement set of user
stories

□Divide work into tasks small enough to finish
in a day

□Each day, programmers work in pairs to finish
tasks

Estimating size: concepts

□ Story point: unit of measure for expressing the overall
size of a user story, feature, or other piece of work.
The raw value of a story point is unimportant. What
matters are the relative values.
◊ Related to how hard it is and how much of it there is

◊ NOT related to amount of time or # of people

◊ Unitless, but numerically-meaningful

□ Ideal time: the amount of time “something” takes when
stripped of all peripheral activities
◊ Example: American football game = 60 minutes

□ Elapsed time: the amount of time that passes on the
clock to do “something”
◊ Example: American football game = 3 hours

□ Velocity: measure of a team’s rate of progress

©L. Williams

10/5/2015

16

Priorities

□High
◊ “Give us these stories to provide a minimal

working system.”

□Medium
◊ “We need these stories to complete this

system.”

□Low
◊ “Bells and whistles? Which stories can come

later?”

© Randy Miller ©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

17

Coming up with the plan

Desired

Features

©L. Williams

Estimating story points

□Choose a medium-size story and assign

it a “5”

□Estimate other stories relative to that
◊ Twice as big

◊ Half as big

◊ Almost but not quite as big

◊ A little bit bigger

□Only values:

◊ 0, 1, 2, 3, 5, 8, 13, 20, 40, 100

Near term iteration

 “stories”

A few iterations away

 “epic”
©L. Williams

10/5/2015

18

Estimating ideal days

□Ideal days vs. elapsed time in software
development
◊ Supporting current release

◊ Sick time

◊ Meetings

◊ Demonstrations

◊ Personal issues

◊ Phone calls

◊

□When estimating ideal days, assume:
◊ The story being estimated is the only thing you’ll work on

◊ Everything you need will be on hand when you start

◊ There will be no interruptions

Ideal days vs. Story points

□Favoring story points:
◊ Help drive cross-functional behavior

◊ Do not decay (change based on experience)

◊ Are a pure measure of size (focus on feature, not person)

◊ Estimation is typically faster in the long run

◊ My ideal days are not your ideal days (focus on person and

their speed )

□Favoring ideal days:
◊ Easier to explain outside of team

◊ Estimation is typically faster at first

10/5/2015

19

Deriving an estimate for a user story

□Expert opinion
◊ Rely on gut feel based on (extensive) experience

◊ Disadvantage for agile: need to consider all aspects of developing the
user story, so one expert will likely not be enough

□Analogy
◊ Relative to (several) other user stories

◊ Triangulation: little bigger than that “3” and a little smaller than that “8”

□Disaggregation
◊ Break up into smaller, easier-to-estimate pieces/tasks.

◊ Need to make sure you don’t miss any tasks.

◊ Sanity check: does the sum of all the parts make sense?

□Planning poker
◊ Combines expert opinion, analogy, disaggregation

© Laurie Williams 2007

©L. Williams

Planning Poker

(http://planningpoker.com)

10/5/2015

20

Playing Planning Poker

□Include all players on the development team (but
less than 10 people overall):
◊ Programmers

◊ Testers

◊ Database engineers

◊ Requirements analysts

◊ User interaction designers . . .

□Moderator (usually the product owner or analyst)
reads the description and answers any questions

□Each estimator privately selects a card with their
estimate

□All cards simultaneously turned over

□Re-estimate

□Repeat until converge
©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

21

Velocity

□Velocity is a measure of a team’s rate of
progress.

□Velocity is calculated by summing the number of
story points assigned to each user story that the
team completed during the operation.

□We assume that the team will produce in future
iterations at the rate of their past average
velocity.
◊ “Yesterday’s weather”

http://agilesoftwaredevelopment.com/blog/pbielicki/predicting-
team-velocity-yesterday-weather-method

©L. Williams

Coming up with the plan

Desired

Features

©L. Williams

10/5/2015

22

Prioritization

□Driven by customer, in conjunction with developer

□Choose features to fill up velocity of iteration, based

on:

◊ Desirability of the feature to a broad base of customers or

users

◊ Desirability of a feature to a small number of important

customers or users

◊ The cohesiveness of the story in relation to other stories.

Example:
○ “Zoom in” a high priority feature

○ “Zoom out” not a high priority feature

– But it becomes one relative to “Zoom in”

Coming up with the plan

Desired

Features

30 story points 6 iterations

5 story points/two-

week iteration
October

30

©L. Williams

10/5/2015

23

Planning game

□Customer writes user stories

□Programmers estimate time to do each

story

□If story is too big, customer splits it

□Customer chooses stories to match

project velocity

□Project velocity is amount of work done in

the previous iteration(s)

Planning

□Programmers only worry about one

iteration at a time

□Customer can plan as many iterations as

desired, but can change future iterations

10/5/2015

24

Simplicity

□Add one feature (user story) at a time

□Don’t worry about future stories

□Make program as simple as possible

□The simplest thing that could possibly

work

Need educated customer

10/5/2015

25

XP works best when

□Educated customer on site

□Small team

□People who like to talk

□All in one room (including customer)

□Changing requirements

Unit tests and refactoring

□Because code is as simple as it can be,

adding a new feature tends to make it less

simple

□To recover simplicity, you must refactor the

code

□To refactor safely, you should have a

rigorous set of unit tests

10/5/2015

26

Working software

□All software has automated (unit) tests

□All tests pass, all the time

◊ Never check in broken code

□How to work on a task

◊ Get latest version of the code. All tests pass.

◊ Write test first. It fails.

◊ Write code to make test pass. Now all tests pass.

◊ Refactor (clean up)

◊ Check in your code

One key practice

□Write tests first, then write code

□Various names

◊ Test-first programming

◊ Test-driven development

□Is it testing or designing?

□Degree to which you stick to it for MP?

10/5/2015

27

Why test?

□Improve quality - find bugs

□Measure quality

◊ Prove there are no bugs? (Is it possible?)

◊ Determine if software is ready to be released

◊ Determine what to work on

◊ See if you made a mistake

□Learn the software

What is a test?

□Run program with known inputs,

check results

◊ Tests pass or fail

□Tests can document bugs

□Tests can document code

□Some terminology

◊ Failure, error, fault, oracle

10/5/2015

28

Who should test?

□Developer? Separate “quality assurance”

group?

□Programmer? User? Someone with a

degree in “testing”?

When to write tests

□During requirements analysis

□During architectural design

□During component design

□During coding

□After all coding

10/5/2015

29

Timing

□Standard practice:

◊ Worry about testing after you build the system

□Testers tradition:

◊ Plan tests early, before code is written

□XP:

◊ Write tests early, before code is written

XP Testing

□Write tests before code

□A design technique, not a testing

technique

□Doesn’t find bugs, but eliminates them

□Doesn’t measure quality, but improves it

10/5/2015

30

What kind of tests?

□Programmer tests / non-programmer tests

□Developer / Tester

□Unit tests / Integration tests / Functional

tests / System tests

□Automated tests / Manual tests

□Regression tests

□Exploratory testing

New bugs or old bugs?

□Regression tests – test to make sure that

everything that worked in the past still

works

□Exploratory testing – look for new bugs

◊ Name also used to contrast scripted testing

10/5/2015

31

Regression tests: good

□Should be automated

□Set of tests that are rerun every time the

software is changed

□Makes sure that things that are fixed stay

fixed

□Each new bug results in an addition to the

regression tests

Regression tests: can be bad

□Can take a long time to run

◊ Select a subset

◊ Remove obsolete tests

□Can be expensive to maintain

◊ Changes to program can invalidate tests

◊ Fix or delete?

□If it will never fail, why test it?

10/5/2015

32

What kind of tests?

□Manual

◊ Good for exploratory

◊ Good for testing GUI

◊ Manual regression testing is BORING

□Automatic

◊ Test is a program

◊ Test is created by a tool that records user
actions

Test automation

□Tests are code or scripts (which is code)

□Real projects can often have more test

code than production code

□Test code is boring

◊ Build some complex data values

◊ Run a function

◊ Check the result

10/5/2015

33

xUnit testing tools

□Programmer’s testing tools

□Automated testing!

□Unit testing, but also integration testing

and functional testing

□Regression testing

□Test-first design

□Each code unit requires several tests

JUnit

□Unit testing framework for Java

□Test is a method annotated with @Test
(use JUnit 4, not JUnit 3), check assert

□Can extract common pieces into setup
and teardown methods (@Before, @After)

□More on Wiki

□Please ask TAs or instructors for help if
needed

