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CS427: 

Software Engineering I 

Core XP Practices 

This lecture’s goals 

□What is traditional waterfall process? 

□What is eXtreme Programming (XP)? 

□How extremely does XP differ? 

□When (not) to use XP? 
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Software development processes 

□Many ways to develop software 

◊Plan-driven / agile 

◊Centralized / distributed 

◊High math / low math 

◊Close / little interaction with customers 

◊Much testing / little testing 

◊Organize by architecture / features 

Waterfall process activities 

□Requirements – what software should do 

□Design – structure code into modules 

□Implementation – hack code 

□Integration – put modules together 

□Testing – check if code works 

□Maintenance – keep making changes 
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eXtreme Programming (XP) 

□Radically different from waterfall 

□Big ideas 

◊ Don’t write much documentation 

○Working code is the main written product 

◊ Implement features one by one 

◊ Release code frequently 

◊ Work closely with the customer 

◊ Communicate a lot with team members 

Main figure 

Kent Beck 
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XP: Some key practices 

□Planning game for requirements 

□Test-driven development for design and 

testing 

□Refactoring for design 

□Pair programming for development 

□Continuous integration for integration 

XP is an iterative process 

□Iteration = two week cycle (1-3 weeks) 

□Plan each iteration in an iteration meeting 
that is held at the start 

□Iteration is going to implement set of user 
stories 

□Divide work into tasks small enough to 
finish in a day 

□Each day, programmers work in pairs to 
finish tasks 
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Group Discussion: Pros/Cons in Team 

Work vs. Solo Work 

□Requirement: get into a group of three 
neighbor students 

□share and discuss respective answers 
based on your current/past team/solo work 
experiences either at school or outside of 
school 

 

 

□Instructor will call for volunteer groups and 
sometimes randomly pick groups 

5 minutes for discussion 

©L. Williams 

What Is Pair Programming? 

 "Pair programming is a simple, straightforward 

concept.  Two programmers work side-by-side at 

one computer, continuously collaborating on the 

same design, algorithm, code, and test.  It allows 

two people to produce a higher quality of code than 

that produced by the summation of their solitary 

efforts.“ 

Driver: types or writes 

Navigator: observer (looking for tactical & strategic defects) 

□ Periodically switch roles of driver and navigator  

◊ possibly every 30 minutes or less 

□ Pair coding, design, debugging, testing, etc. 
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Pairs (should) rotate 

Pair Programming 

©L. Williams 
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This is NOT Pair Programming 

©L. Williams 

The Benefits of Pair Programming 

©L. Williams 
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Research Findings to Date 

Strong anecdotal evidence from industry  

“We can produce near defect-free code in less 

than half the time.” 

Empirical Study 
◊ Pairs produced higher quality code 

○15% fewer defects 

◊ Pairs completed their tasks in about half the time 

○58% of elapsed time 

◊ Pair programmers are happier programmers 

○Pairs enjoy their work more (92%) 

○Pairs feel more confident in their work products (96%) 

 
©L. Williams 

Expected Benefits of Pair-

Programming  

Higher product quality 

Improved cycle time 

Increased programmer satisfaction 

Enhanced learning 

Pair rotation 
Ease staff training and transition 

Knowledge management/Reduced product risk  

Enhanced team building 

©L. Williams 
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Issues: Partner Work 

Expert paired with an Expert 

Expert paired with a Novice 

Novices paired together Professional Driver Problem Culture 

©L. Williams 

Issues: Process 

 

□Used in eXtreme Programming 

 

□Used in the Collaborative Software 

Process 

 

□Pair programming can be added to any 

process 

©L. Williams 
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How does this work? 

Pair Pressure 
 Keep each other on task and focused 
 Don’t want to let partner down 
 “Embarrassed” to not follow the prescribed process  

 
Pair Negotiation 

 Distributed Cognition:  “Searching Through Larger Spaces of Alternatives” 
Have shared goals and plans 
 Bring different prior experiences to the task  
Different access to task relevant information  
Must negotiate a common shared of action 

 
Pair Courage 

 “if it looks right to me and it looks right to you – guess what? It’s probably 
right!” 

©L. Williams 

How does this work (part two)? 

Pair Reviews 
 “Four eyeballs are better than two” 

 Continuous design and code reviews 

 Removes programmers’ distaste for reviews 

 80% of all (solo) programmers don’t do them regularly or at all 

 

Pair Debugging 
 Explaining the problems to another person  “Never mind; I see what’s 

wrong. Sorry to bother you.” 

 

Pair-Learning 
 Continuous reviews  learn from partners techniques, knowledge of 

language, domain, etc. 

 Take turns being the teacher and the student minute by minute 

 

 

©L. Williams 
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Pairs means working together 

XP is an iterative process 

□Iteration = two week cycle (1-3 weeks) 

□Plan each iteration in an iteration meeting 
that is held at the start 

□Iteration is going to implement set of 

user stories 
□Divide work into tasks small enough to finish 

in a day 

□Each day, programmers work in pairs to finish 
tasks 
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What are User Stories? 

A user story represents  

◊ a feature customers want in the software 

A user story is the smallest amount of information 

(a step) necessary to allow the customer to 

define (and steer) a path through the system 

□Written by our customers (communication w/ 

developers) 

□Typically written on index cards 

 
 System 

©L. Williams 

Writing User Stories 

Materials 
◊ A stack of blank index cards 

◊ Pens or pencils 

◊ Rubber bands 

□Start with a goal of the system (e.g., 

Applicant submits a loan application) 

□Think about the steps that the user takes 

as he/she does the activity 

□Write no more than one step on each card 

© Randy Miller ©L. Williams 
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Format of a User Story 

□Title: 2-3 words 

□Acceptance test 

□Priority: 1-2-3 (1 most important) 

□Story points (can mean #days of ideal development 

time) 

□Description: 1-2 sentences (a single step towards 

achieving the goal) 

©L. Williams 

Ex. Acceptance Test for a Story 

Create Receipt                       

Keep a running receipt with a short 
description of each scanned item and its 
price.  

Setup: The cashier has a new customer 

Operation: The cashier scans three cans of beans @ 
$.99, two pounds of spinach @ $.59/lb, and a 
toothbrush @$2.00 

Verify: The receipt has all of the scanned items and 
their correctly listed prices 

© Randy Miller ©L. Williams 
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XP is an iterative process 

□Iteration = two week cycle (1-3 weeks) 

□Plan each iteration in an iteration 

meeting that is held at the start 

□Iteration is going to implement set of user 
stories 

□Divide work into tasks small enough to finish 
in a day 

□Each day, programmers work in pairs to finish 
tasks 

Estimating size:  concepts   

□ Story point:  unit of measure for expressing the overall 
size of a user story, feature, or other piece of work.  
The raw value of a story point is unimportant.  What 
matters are the relative values. 
◊ Related to how hard it is and how much of it there is 

◊ NOT related to amount of time or # of people 

◊ Unitless, but numerically-meaningful   

□ Ideal time:  the amount of time “something” takes when 
stripped of all peripheral activities 
◊ Example:  American football game = 60 minutes 

□ Elapsed time: the amount of time that passes on the 
clock to do “something”  
◊ Example:  American football game = 3 hours 

□ Velocity:   measure of a team’s rate of progress 

©L. Williams 
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Priorities 

□High 
◊ “Give us these stories to provide a minimal 

working system.” 

□Medium  
◊ “We need these stories to complete this 

system.” 

□Low 
◊ “Bells and whistles? Which stories can come 

later?” 

© Randy Miller ©L. Williams 

Coming up with the plan 

Desired  

Features 

©L. Williams 
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Coming up with the plan 

Desired  

Features 

©L. Williams 

Estimating story points 

□Choose a medium-size story and assign 

it a “5” 

□Estimate other stories relative to that 
◊ Twice as big 

◊ Half as big 

◊ Almost but not quite as big 

◊ A little bit bigger 

□Only values: 

◊ 0, 1, 2, 3, 5, 8, 13, 20, 40, 100 

Near term iteration 

       “stories” 

A few iterations away 

           “epic” 
©L. Williams 
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Estimating ideal days 

□Ideal days vs. elapsed time in software 
development 
◊ Supporting current release 

◊ Sick time 

◊ Meetings  

◊ Demonstrations 

◊ Personal issues 

◊ Phone calls 

◊ . . . . 

□When estimating ideal days, assume: 
◊ The story being estimated is the only thing you’ll work on 

◊ Everything you need will be on hand when you start 

◊ There will be no interruptions 

 

Ideal days vs. Story points 

□Favoring story points: 
◊ Help drive cross-functional behavior 

◊ Do not decay (change based on experience) 

◊ Are a pure measure of size (focus on feature, not person) 

◊ Estimation is typically faster in the long run 

◊ My ideal days are not your ideal days (focus on person and 

their speed ) 

□Favoring ideal days: 
◊ Easier to explain outside of team 

◊ Estimation is typically faster at first 
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Deriving an estimate for a user story 

□Expert opinion 
◊ Rely on gut feel based on (extensive) experience 

◊ Disadvantage for agile:  need to consider all aspects of developing the 
user story, so one expert will likely not be enough 

□Analogy 
◊ Relative to (several) other user stories 

◊ Triangulation:  little bigger than that “3” and a little smaller than that “8”  

□Disaggregation 
◊ Break up into smaller, easier-to-estimate pieces/tasks. 

◊ Need to make sure you don’t miss any tasks. 

◊ Sanity check:  does the sum of all the parts make sense? 

□Planning poker 
◊ Combines expert opinion, analogy, disaggregation 

©  Laurie Williams 2007 

©L. Williams 

Planning Poker 

(http://planningpoker.com) 
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Playing Planning Poker 

□Include all players on the development team (but 
less than 10 people overall): 
◊ Programmers 

◊ Testers 

◊ Database engineers 

◊ Requirements analysts 

◊ User interaction designers . . .  

□Moderator (usually the product owner or analyst) 
reads the description and answers any questions 

□Each estimator privately selects a card with their 
estimate 

□All cards simultaneously turned over 

□Re-estimate  

□Repeat until converge 
©L. Williams 

Coming up with the plan 

Desired  

Features 

©L. Williams 



10/5/2015 

21 

Velocity 

□Velocity is a measure of a team’s rate of 
progress. 

□Velocity is calculated by summing the number of 
story points assigned to each user story that the 
team completed during the operation.   

□We assume that the team will produce in future 
iterations at the rate of their past average 
velocity. 
◊ “Yesterday’s weather”  

 

http://agilesoftwaredevelopment.com/blog/pbielicki/predicting-
team-velocity-yesterday-weather-method 

 

©L. Williams 

Coming up with the plan 

Desired  

Features 

©L. Williams 
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Prioritization 

□Driven by customer, in conjunction with developer 

□Choose features to fill up velocity of iteration, based 

on: 

◊ Desirability of the feature to a broad base of customers or 

users 

◊ Desirability of a feature to a small number of important 

customers or users 

◊ The cohesiveness of the story in relation to other stories.   

Example: 
○ “Zoom in” a high priority feature 

○ “Zoom out” not a high priority feature 

– But it becomes one relative to “Zoom in” 

Coming up with the plan 

Desired  

Features 

30 story points 6 iterations 

5 story points/two- 

week iteration 
October 

30 

©L. Williams 
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Planning game 

□Customer writes user stories 

□Programmers estimate time to do each 

story 

□If story is too big, customer splits it  

□Customer chooses stories to match 

project velocity 

□Project velocity is amount of work done in 

the previous iteration(s) 

Planning 

□Programmers only worry about one 

iteration at a time 

□Customer can plan as many iterations as 

desired, but can change future iterations  
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Simplicity 

□Add one feature (user story) at a time 

□Don’t worry about future stories 

□Make program as simple as possible 

□The simplest thing that could possibly 

work 

Need educated customer 
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XP works best when 

□Educated customer on site 

□Small team 

□People who like to talk 

□All in one room (including customer) 

□Changing requirements 

Unit tests and refactoring 

□Because code is as simple as it can be, 

adding a new feature tends to make it less 

simple 

□To recover simplicity, you must refactor the 

code 

□To refactor safely, you should have a 

rigorous set of unit tests 
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Working software 

□All software has automated (unit) tests 

□All tests pass, all the time 

◊ Never check in broken code 

□How to work on a task 

◊ Get latest version of the code.  All tests pass. 

◊ Write test first.  It fails. 

◊ Write code to make test pass.  Now all tests pass. 

◊ Refactor (clean up) 

◊ Check in your code 

One key practice 

□Write tests first, then write code 

□Various names 

◊ Test-first programming 

◊ Test-driven development 

□Is it testing or designing? 

 

□Degree to which you stick to it for MP? 
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Why test? 

□Improve quality - find bugs 

□Measure quality 

◊ Prove there are no bugs? (Is it possible?) 

◊ Determine if software is ready to be released 

◊ Determine what to work on 

◊ See if you made a mistake 

□Learn the software 

What is a test? 

□Run program with known inputs, 

check results 

◊ Tests pass or fail 

□Tests can document bugs 

□Tests can document code 

□Some terminology 

◊ Failure, error, fault, oracle 
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Who should test? 

□Developer?  Separate “quality assurance” 

group? 

 

□Programmer?  User? Someone with a 

degree in “testing”? 

When to write tests 

□During requirements analysis 

□During architectural design 

□During component design 

□During coding 

□After all coding 
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Timing 

□Standard practice: 

◊ Worry about testing after you build the system 

□Testers tradition: 

◊ Plan tests early, before code is written 

□XP: 

◊ Write tests early, before code is written 

XP Testing 

□Write tests before code 

□A design technique, not a testing 

technique 

□Doesn’t find bugs, but eliminates them 

□Doesn’t measure quality, but improves it 
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What kind of tests? 

□Programmer tests / non-programmer tests 

□Developer / Tester 

□Unit tests / Integration tests / Functional 

tests / System tests 

□Automated tests / Manual tests 

□Regression tests 

□Exploratory testing 

New bugs or old bugs? 

□Regression tests – test to make sure that 

everything that worked in the past still 

works 

 

□Exploratory testing – look for new bugs 

◊ Name also used to contrast scripted testing 
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Regression tests: good 

□Should be automated 

□Set of tests that are rerun every time the 

software is changed 

□Makes sure that things that are fixed stay 

fixed 

□Each new bug results in an addition to the 

regression tests 

Regression tests: can be bad 

□Can take a long time to run 

◊ Select a subset 

◊ Remove obsolete tests 

□Can be expensive to maintain 

◊ Changes to program can invalidate tests 

◊ Fix or delete? 

□If it will never fail, why test it? 
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What kind of tests? 

□Manual 

◊ Good for exploratory 

◊ Good for testing GUI 

◊ Manual regression testing is BORING 

□Automatic 

◊ Test is a program 

◊ Test is created by a tool that records user 
actions 

 

Test automation 

□Tests are code or scripts (which is code) 

□Real projects can often have more test 

code than production code 

□Test code is boring 

◊ Build some complex data values 

◊ Run a function 

◊ Check the result 
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xUnit testing tools 

□Programmer’s testing tools 

□Automated testing! 

□Unit testing, but also integration testing 

and functional testing 

□Regression testing 

 

□Test-first design 

□Each code unit requires several tests 

JUnit 

□Unit testing framework for Java 

□Test is a method annotated with @Test 
(use JUnit 4, not JUnit 3), check assert 

 

□Can extract common pieces into setup 
and teardown methods (@Before, @After) 

□More on Wiki 

□Please ask TAs or instructors for help if 
needed 


