
10/7/2024

1

Preview

 Process Control

◼ What is process?

◼ Process identifier

◼ The fork() System Call

◼ File Sharing

◼ Race Condition

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

1

What is a Process

 A key concept in OS is the process

 Process – a program in execution

 Once a process is created, OS not only reserve
space (in Memory) for the process but also need
spaces (process table, page table …)to keep
tracking the process.

 Process associated with

◼ Address space – where the executable program,
program data, stack and heap are allocated in a memory

◼ Set of registers (Program counter, stack pointer, and

other registers)

◼ All other information for executing the process.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

2

What is a Process

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

3

Job1

Job2

Job3

OS
Control Unit

Registers

ALU

CPU
RAM

multiprogramming

What is a Process

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

4

Running

Blocked Ready

1

4

3

2

1. A process blocked for I/O

2. A process time out

3. A process scheduled

4. A process finish it’s I/O

Three States for a Process

A Computer System
(Computer Structure: Von Newmann Bottleneck)

 In the von Neumann architecture, programs and data
are held in memory; the processor and memory are
separate and data moves between the two.

 The von Neumann bottleneck (memory stall) is a
limitation on throughput caused by the standard

personal computer architecture.

◼ Throughput is a measure of how many units of

information a system can process in a given amount of
time.

 Since processor calculation speeds are much faster
than data movement between memory and CPU, it
cause bottleneck!

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

5

A Computer System
(Computer Structure: Von Newmann)

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

6

ALU

Control

Unit

Input/Output

RAM

Registers
R1

R2

R3

I

PC

CPU
Result of

operations

Instructions &

Data

InputOutput

https://searchnetworking.techtarget.com/definition/throughput

10/7/2024

2

A Computer System
(Computer Structure: Von Newmann)

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

7

• John von Neumann was a Hungarian-

American mathematician, physicist,

computer scientist, and polymath.

• He made major contributions to a

number of fields, including mathematics,

physics, economics, computing, and

statistics.

• Born: December 28, 1903, Budapest,

Hungary

• Died: February 8, 1957,

Process Instruction Cycle

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

8

•The microprocessor’s main task is to execute instructions.

•The instruction cycle is therefore at the heart of understanding

the function and operation of the microprocessor.

Instruction Cycle

Fetch Cycle Execute Cycle

Process Instruction Cycle

Fetch cycle

1. Reading the address of the instruction in
(PC) to be executed from the memory
and

2. Loading it into the Instruction register
(IR).

3. Program Counter register (PC) is
modified to point at the next valid
instruction.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

9

Process Instruction Cycle

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

10

0020 0020

Load
Accumulator
with M(A)

Load
Accumulator
with M(A)

0020

Load Accumulator with
M(A)

(7) PC=PC+1

Load Accumulator with
M(A)PC

(2)
(1)

MAR Address Bus
(3)

(4)

0020

Data Bus
MDR

IR

(5)(6)

Process Instruction Cycle

Execute cycle

 The contents of the IR are decoded and
executed.

 The execution may result in a variety of
actions depending on the type of
instruction.

 It may be a self contained instruction, or it
can involve interaction with memory and
ALU.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

11

What is a Process

 All information about each process is
stored in an operating system table called
process table (process control block).

 If a process is suspended (ready or block
state), information for the snapshot of the
process are stored in its process table.

 Once the process resume a CPU time, all
information for the process execution are
copy back from its process table

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

12

10/7/2024

3

Process Identifiers

 When a process is created, kernel provides
unique process ID, a non-negative integer.

 When a process terminate, its ID becomes
reusable for a newly created process.

 There are couple of process ID numbers which is
used by system itself.

◼ Process ID 0: a process scheduler (CPU scheduler)

◼ Process ID 1: the systemd in LINUX (init in

UNIX)process

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

13

Process Identifiers

 The ps command show the process we are
running, the another user is running, or all the
process on the system.
◼ To see every process on the system using standard syntax:

 ps -e

 ps -ef

 ps -eF

 ps -ely

◼ To see every process on the system using BSD syntax:
 ps ax

 ps axu

◼ To print a process tree:
 ps -ejH

 ps axjf

◼ To get security info:
 ps axZ

 ps -eM

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

14

Process Identifiers

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

15

/* processid.c get a process information */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main()

{

/* Process ID of calling process */

printf ("Process ID = %d \n", getpid());

/* Parent’s ID of calling process */

printf ("Parent's ProcessID = %d \n", getppid());

/* Real user’s ID of calling process */

printf ("Real User's ID = %d \n", getuid());

/* Effective user’s ID of calling … */

printf ("Effective User's ID = %d \n", geteuid());

/* Real group ID */

printf ("Real Group's ID = %d \n", getgid());

/* Effective group ID of calling …*/

printf ("Effective Group ID = %d \n", getegid());

return 0;

}

The fork() System Call

 An existing process can create a new process
by calling the fork() system call.

 The fork() calls once but returns twice: a child
returns 0 to its parent and a parent returns
child’s process ID number to the child.

 The child process get a copy of the data space
heap and stack and they don’t share the
memory space.

 They only share the text segment.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

16

The fork() System Call

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

17

stack

heap

text

Initialized data

Uninitialized data (bss)

low address

high address

read from program file

by exec

Initialized to zero by

exec

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

18

/* fork.c demonstrate fork() system call */

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

#include <unistd.h>

#define MAX_COUNT 1000

void ChildProcess(); /* child process prototype */

void ParentProcess(); /* parent process prototype */

void main(void)

{

pid_t pid;

ppid = getpid(); /* get parent process ID */

pid = fork(); /* create a child */

if (pid == 0) /* means a child process*/

ChildProcess();

else

ParentProcess();

}

void ChildProcess()

{

int i;

for (i = 1; i <= MAX_COUNT; i++)

printf(" This line is from child process value = %d\n", i);

printf(" *** Child process is done ***\n");

}

void ParentProcess()

{

int i;

for (i = 1; i <= MAX_COUNT; i++)

printf("This line is from parent process value = %d\n", i);

printf("*** Parent is done ***\n");

}

10/7/2024

4

The fork() System Call

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

19

void main()
{

pid_t pid;

pid = fork();
if (pid == 0)

ChildProcess();
else

ParentProcess();
}

void ChildProcess()
{

...
}

void ParentProcess()
{

...
}

void main()
{

pid_t pid;

pid = fork();
if (pid == 0)

ChildProcess();
else

ParentProcess();
}

void ChildProcess()
{

...
}

void ParentProcess()
{

...
}

Parent child

pid = 3469 pid = 0

The fork() System Call

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

20

void main()
{

pid_t pid;

pid = fork();
if (pid == 0)

ChildProcess();
else

ParentProcess();
}

void ChildProcess()
{

...
}

void ParentProcess()
{

...
}

void main()
{

pid_t pid;

pid = fork();
if (pid == 0)

ChildProcess();
else

ParentProcess();
}

void ChildProcess()
{

...
}

void ParentProcess()
{

...
}

Parent child

pid = 3469 pid = 0

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

21

/* fork2.c */

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#define MAX_COUNT 200

#define BUF_SIZE 100

int main(void)

{

pid_t pid, ppid;

int i;

char buf[BUF_SIZE];

ppid = getpid(); /* this is parent process ID */

fork(); /*create a child */

for (i = 1; i <= MAX_COUNT; i++)

{

pid = getpid();

if (pid == ppid)/* parent works here */

{

sprintf(buf, "Parent(%d) process executed %d times\n", ppid, i);

write(1, buf, strlen(buf));

}

else /* child work here */

{

sprintf(buf, "Child(%d) process executed %d times\n", pid, i);

write(1, buf, strlen(buf));

}

}

return 0;

}

File Sharing

 Consider a process that has two different
files opened for input and output.

 On return from fork, parent and child
process share file table, since a child copy
all from its parent.

 Even offset of file will be shared with both
processes.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

22

File Sharing

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

23

Parent Process Table

fd0

fd1

Child Process Table

fd0

fd1

File status flags

File offset

V-nod pointer

File table

File status flags

File offset

V-nod pointer

V-Node Information

I-Node Information

File size …

V-Node Information

I-Node Information

File size …

V-node table

File Sharing

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

24

Parent Process Table

fd0

fd1

Child Process Table

fd0

fd1

File status flags

File offset

V-nod pointer

File table

File status flags

File offset

V-nod pointer

V-Node Information

I-Node Information

File size …

V-Node Information

I-Node Information

File size …

V-node table

File status flags

File offset

V-nod pointer

V-Node Information

I-Node Information

File size …

Shared input file table

Output file table for parent

Output file table for child

10/7/2024

5

File Sharing

 If both parent and child write to the same file
descriptor, without any form of synchronization
what will be happen?

 The output will be intermixed between child and
parent’s works.

 Solution:

◼ The parent waits for the child to complete

◼ Both the parent and the child go their own ways

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

25 COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

26

//fileshare1.c

include <unistd.h>

#include <fcntl.h>

#include <ctype.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

void error_sys(char *msg)

{

printf("%s\n", msg);

exit(1);

}

int main(int argc, char *argv[])

{

int input, chout, nbyte, pout;

int i;

char buff[1];

if (argc != 2)

error_sys("usage: Argument number error\n");

input = open(argv[1], O_RDONLY);

pid_t pid;

pid = fork(); /* create a child */

if (pid == 0) /* child process */

{

if ((chout = open("child.txt", O_WRONLY|O_CREAT, S_IREAD|S_IWRITE)) == -1)

error_sys("Output File Create Error");

while ((nbyte = read(input, buff, 1)) > 0)

{

if (write(chout, buff, 1) != 1)

error_sys("Write Error");

}

}

else /* parent */

{

if ((pout = open("parent.txt", O_WRONLY|O_CREAT, S_IREAD|S_IWRITE)) == -1)

error_sys("Output File Create Error");

while ((nbyte = read(input, buff, 1)) > 0)

{

if (write(pout, buff, 1) != 1)

error_sys("Write Error");

}

}

return 0;

}

File Sharing

 There are two uses for fork:

◼ When a process want to duplicate itself so that
parent and child can each execute different
section of code at the same time – Network
Server

◼ When a process wants to execute a different
program –the child does an exec right after it
returns from the forks

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

27

The vfork() System Call

 The semantics of vfork() differs from the
system call fork().

◼ vfork() system call is used to create a new
process when the purpose of the new process
is to exec a new program.

◼ vfork() function create a process without
copying the address space of the parent.

◼ A child runs in the address space of the parent.

◼ vfork guarantees that the child runs first, until
the child calls exec or _exit – it might lead to
deadlock.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

28

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

29

/* fork3.c */

#include <stdio.h>

#include <stdlib.h>

int glob =6; /*global variable */

int main()

{

int local;

pid_t pid;

local =88; /*local variable */

printf ("before vfork\n");

if ((pid = vfork())<0) /* create a child */

{

printf("vfork error");

exit (1);

}

else if (pid == 0) /* for child process */

{

glob++;

local++;

printf("Child pid = %d, global = %d, local = %d\n",getpid(),glob, local);

_exit(0);

}

/* for parent process */

printf(" Parent pid = %d, global = %d, local = %d\n",getpid(),glob, local);

exit(0);

}

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

30

/* fileshare3.c child process run different program

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

void error_sys(char *msg)

{

printf("%s\n", msg);

exit(1);

}

int main(int argc, char *argv[])

{

int input, chout, nbyte, pout;

int i;

char buff[1];

if (argc != 2)

error_sys("usage: Argument number error\n");

input = open(argv[1], O_RDONLY);

pid_t pid;

pid = vfork(); /* create a child */

if (pid == 0) /* child process */

{

execv("reverse", argv); /* child process run different program

_exit(0);

}

else /* parent */

{

if ((pout = open("parent.txt", O_WRONLY|O_CREAT, S_IREAD|S_IWRITE)) == -1)

error_sys("Output File Create Error");

lseek(input, 0, SEEK_SET);

while ((nbyte = read(input, buff, 1)) > 0)

{

if (write(pout, buff, 1) != 1)

error_sys("Write Error");

}

}

return 0;

}

10/7/2024

6

Race Condition

Race Condition

 A situation where two or more processes
are reading or writing some shared data
and the final result depends on who runs
precisely when, are called race condition.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

31

Race Condition

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

32

Slots for file names

• When a process want
to print a file, it enter a

file name in a special
spooler directory

• Printer daemon
periodically check

spooler directory any file
need to be printed.

Race Condition
 Process A tried to send a job

to spooler, Process A read in
= 7, process A time out and
go to ready state before
updating in = in + 1.

 Process B tried to send a job
to spooler. Process B read in
= 7, load its job name in slot
7, update in = in + 1 = 8
and then go to block state
for waiting for job.

 Process A is rescheduled by
scheduler. Process A already
read in = 7, Process A load
its job name in slot 7,
update i = i + 1 = 9 and
then go to blocked state
waiting for this job finish.

COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

33

/*race.c : shows example of race condition*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

static void charatatime(char *);

int main()

{

pid_t pid;

/* create a child */

if ((pid = fork()) < 0)

{

printf("fork error");

exit (1);

}

/* a child and parent call same function */

if (pid == 0)

charatatime("output from child\n");

else

charatatime("output from parent\n");

exit(0);

}

static void charatatime(char *str)

{

char *ptr; /* child and parent has its own buffer but using same stdout */

int c;

setbuf(stdout, NULL); /*set unbuffered */

for (ptr =str; c = *ptr++;)

putc(c, stdout);

} COSC350 System Software, Fall 2024

Dr.Sang-Eon Park

34

