
10/14/2024

1

Preview

 Process Termination

 Zombie Process

 wait() and waitpid() System Call

 Orphan Process

 exec System Calls
◼ execl()

◼ execv()

◼ execle()

◼ execve()

◼ execlp()

◼ execvp()

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

1

Process Termination

 No matter how a process terminated normally or
abnormally, kernel execute a code closes all the
open descriptors, release the memory used and
so on.

 When a process terminated, the parents can
obtain child’s status from either the wait() or the
waitpid() system call.

 If a parent terminates before the child,
systemd(init in Unix)process becomes the
parent process of any process whose parent

terminated.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

2

Process Termination

 When a parent process terminate, the parent
process ID of the surviving process is changed to
be 1 (Guaranteed every process has a parent)

◼ Process ID = 0 : scheduler process

◼ Process ID = 1 : systemd (init in Unix) process

 If a child terminate before parent, the kernel
save a child’s information (ID, termination status,
CPU time) for the parent process termination.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

3

Process Termination

 When a child process finishes execution, it will
have an exit status to report to its parent
process.

 Because of this last little bit of information, the
process will remain in the operating system’s
process table as a zombie process.

 A zombie process will not to be scheduled for
further execution, but that it cannot be
completely removed

 ps –el |grep ‘Z’ can prints the status of zombie.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

4

Process Termination

 When a child exits, its parent is supposed
to use the "wait" system call and collect
the child process's exit information.

 The subprocess exists as a zombie process
until this happens.

 However, if the parent process isn't
programmed properly or has a bug and
never calls "wait," the zombie process
remains, eternally waiting for its
information to be collected by its parent.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

5

Process Termination

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

6

/* zombie.c: create a zombie process */

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

int pid;

pid=fork();

/* parent sleep 100 sec */

if(pid>0)

{

sleep(100);

}

/* a child terminate parent don't have time to save a child info */

/* child remains as a zombie */

else

{

exit(0);

}

}

10/14/2024

2

Process Termination

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

7

/* zombie0.c: create a zombie process */

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

int pid, pid1;

pid=fork(); //create the first child

if(pid>0)

{

pid1=fork(); //create the second child

if (pid1 >0) //parent runs forever

{

while (1)

;

}

else // for second child

{

_exit(0);

}

}

else //for first child

{

_exit(0);

}

}

/* zombie01.c: create a zombie process */

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

int pid, pid1;

pid=fork();

if(pid>0)

{

pid1=fork();

if (pid1 >0)

{

while (1)

{

printf("I (%d) am running \n", getpid());

sleep (1);

}

}

else //second child

{

printf("I (%d) done my job \n", getpid());

sleep (1);

_exit(0);

}

}

else //first child

{

printf("I (%d) done my job \n", getpid());

sleep(1);

_exit(0);

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

8

Process Termination

 The exit status of a child will be used for parent
process termination.

 When a child exits, the parent process will
receive a SIGCHLD signal to indicate that one of
its children has finished executing; the parent
process will typically call the wait() system call at
this point.

 That call will provide the parent with the child’s
exit status, and will cause the child to be reaped,
or removed from the process table.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

9

wait and waitpid() System Call

 When a process terminate either normally
or abnormally, the kernel sent a signal
(SIGCHD) to a parent.

 A parent can ignore the signal or call a
function (wait or waitpid) to take care the
signal.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

10

#include <sys/wait.h>

pid_t wait (int *status);

pid_t waitpid(pid_t pid, int *status, int option);

wait and waitpid() System Call

 The execution of wait() could have two
possible situations.

◼ If there are at least one child processes, the
caller will be blocked until one of its child
processes exits.

◼ If there is no child process running, then this
wait() has no effect at all.

 The status is the pointer where terminated
process’s status is saved.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

11

Process Termination

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

12

/* zombie1.c: create a zombie process */

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

int pid, pid1;

pid=fork(); //create the first child

if(pid>0)

{

pid1=fork(); //create the second child

if (pid1 >0) //parent runs forever

{

wait();

while (1)

;

}

else // for second child

{

_exit(0);

}

}

else //for first child

{

_exit(0);

}

}

10/14/2024

3

wait and waitpid() System Call

 By using macros in <sys/wait.h>, we can
check a terminated process’s status.

 The status field will be filled in by wait or
waitpid function.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

13

#include <sys/wait.h>

int WIFEXITED(int status);

if child process terminate normally, return true

int WIFSIGNALED(int status);

if child process terminate abnormally, return true

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

14

/*wait.c demonstrate wait() system call */

#include <stdio.h>

#include <string.h>

#include <sys/wait.h>

#include <unistd.h>

#include <sys/types.h>

#define MAX_COUNT 1000

#define BUF_SIZE 100

void main(void)

{

pid_t pid1, pid, p1;

int status;

int i;

char buf[BUF_SIZE];

printf("*** Parent is about to fork ***\n");

if ((pid1 = fork()) < 0)

{

printf("Failed to fork process 1\n");

exit(1);

}

else if (pid1 == 0) /* child's part */

{

p1= getpid();

for (i = 1; i <MAX_COUNT; i++)

{

sprintf(buf,"child %d is running\n", p1);

write(1, buf, strlen(buf));

}

_exit(0);

}

else /* parent's part */

{

sprintf(buf, "*** Parent enters waiting status\n");

write(1, buf, strlen(buf));

pid = wait(&status); /*wait for child finish it's job */

if (WIFEXITED(status))

printf(" A child process terminate normally\n");

else

printf(" A child process terminate abnormally\n");

sprintf(buf, "*** Parent detects process %d was done ***\n", pid);

write(1, buf, strlen(buf));

printf("*** Parent exits ***\n");

exit(0);

}

}

Orphan Process

 An Orphan Process is nearly the same
thing which we see in real world.

 Orphan means someone whose parents
are dead.

 The same way this is a process, whose
parents are dead, that means parents are
either terminated, killed or exited but the
child process is still alive.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

15

Orphan Process

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

16

/* orphan.c shows example orphan call */

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

int main (int argc, const char *argv[])

{

pid_t pid;

char buf[100];

if ((pid = fork()) < 0) /* create child */

{

printf("fork error\n");

exit (1);

}

if (pid == 0) /* child process */

{

while (1)

{

sprintf(buf, "*** Child %d is running. Its parent is %d\n", getpid(), getppid());

write(1, buf, strlen(buf));

sleep(1);

if (getppid() == 1)

printf("My parent is passed away. Now, I am a orphan with step parent %d\n", getppid());

}

}

else /* parent process */

{

while (1)

{

sprintf(buf, "***I %d am still alive\n", getpid());

write(1, buf, strlen(buf));

sleep(1);

}

}

exit (0);

}

exec System Call

 By using exec system call, a child process can execute

another program.

 Once a process call a exec system call, that process is
completely replaced by the new program.

 The new program starts executing at its main function. The

main function might need arguments.

 The process ID does not change across an exec system call,

since it is not created.

 The content of text, data, heap and stack segment will be
replaced by new program.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

17

exec System Call
#include <unistd.h>

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ... /*, (char *)0, char

const envp[]/);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);

int execvp(const char *file, char *const argv[]);

Return -1 on error, no return on success

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

18

10/14/2024

4

exec System Call

 Six system call can be recognized by

◼ Argument list or Argument vector

◼ File name or path name

◼ With or without environment

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

19

exec System Call

 If filename contains a slash, it is consider
as a pathname.

 Otherwise, the executable file is searched
for the directory specified PATH
environment variable.

 If a file name find out but not executable,
then it is consider as shell script and tries
to invoke /bin/sh.

 With execle and execve, environment
variable can be passed to the function.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

20

exec System Call

 Normally, a process allows its
environment to be propagated to its
children.

 But some cases, a process need to specify
a certain environment for a child.

Ex) the login program need create
different environment for each user’s
login.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

21 COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

22

/* execex.c shows execv system call */

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

int main (int argc, const char *argv[])

{

pid_t pid;

int mult = 1, i;

if (argc == 1)

{

printf("argument error \n");

exit (1);

}

if ((pid = fork()) < 0) /* create child */

{

printf("fork error\n");

exit (1);

}

else if (pid == 0)

{

/* a child execute different program */

if (execv ("/home/separk/Lecture/cosc350/example/ch4/summation", argv) <0)

{

printf ("execl ERROR");

exit (1);

}

}

for (i = 1; i <argc; i++)

mult *= atoi(argv[i]);

printf ("The multiplication of arguments is %d \n", mult);

exit (0);

}

