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Preview

 Process Termination

 Zombie Process

 wait() and waitpid() System Call

 Orphan Process

 exec System Calls
◼ execl()

◼ execv()

◼ execle()

◼ execve()

◼ execlp()

◼ execvp()
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Process Termination

 No matter how a process terminated normally or 
abnormally, kernel execute a code closes all the 
open descriptors, release the memory used and 
so on.

 When a process terminated, the parents can 
obtain child’s status from either the wait() or the 
waitpid() system call.

 If a parent terminates before the child, 
systemd(init in Unix)process becomes the 
parent process of any process whose parent 

terminated.
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Process Termination

 When a parent process terminate, the parent 
process ID of the surviving process is changed to 
be 1 (Guaranteed every process has a parent)

◼ Process ID = 0 : scheduler process

◼ Process ID = 1 : systemd (init in Unix) process

 If a child terminate before parent, the kernel 
save a child’s information (ID, termination status, 
CPU time) for the parent process termination.  
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Process Termination

 When a child process finishes execution, it will 
have an exit status to report to its parent 
process. 

 Because of this last little bit of information, the 
process will remain in the operating system’s 
process table as a zombie process.

 A zombie process will  not to be scheduled for 
further execution, but that it cannot be 
completely removed

 ps –el |grep ‘Z’ can prints the status of zombie.
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Process Termination

 When a child exits, its parent is supposed 
to use the "wait" system call and collect 
the child process's exit information. 

 The subprocess exists as a zombie process 
until this happens. 

 However, if the parent process isn't 
programmed properly or has a bug and 
never calls "wait," the zombie process 
remains, eternally waiting for its 
information to be collected by its parent.
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Process Termination
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/* zombie.c: create a zombie process */

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

int main(void)

{

int pid; 

pid=fork(); 

/* parent sleep 100 sec */

if(pid>0)

{   

sleep(100); 

} 

/* a child terminate parent don't have time to save a child info */

/* child remains as a zombie */

else

{   

exit(0); 

}

}
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Process Termination
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/* zombie0.c: create a zombie process */

#include  <stdio.h>

#include <string.h>

#include <unistd.h>

#include  <sys/types.h>

int main(void)

{

int pid, pid1; 

pid=fork(); //create the first child 

if(pid>0)

{    

pid1=fork(); //create the second child

if (pid1 >0) //parent runs forever

{

while (1)

;

}

else // for second child

{

_exit(0);

}

} 

else //for first child

{

_exit(0); 

}

}

/* zombie01.c: create a zombie process */

#include  <stdio.h>

#include  <string.h>

#include <unistd.h>

#include  <sys/types.h>

int main(void)

{

int pid, pid1; 

pid=fork(); 

if(pid>0)

{      

pid1=fork();

if (pid1 >0)

{

while (1)

{

printf("I (%d) am running \n", getpid());

sleep (1);

}

}

else //second child

{

printf("I (%d) done my job \n", getpid());

sleep (1);

_exit(0);

}

}

else //first child

{

printf("I (%d) done my job \n", getpid());

sleep(1);

_exit(0); 

}

}
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Process Termination

 The exit status of a child will be used for parent 
process termination.

 When a child exits, the parent process will 
receive a SIGCHLD signal to indicate that one of 
its children has finished executing; the parent 
process will typically call the wait() system call at 
this point.

 That call will provide the parent with the child’s 
exit status, and will cause the child to be reaped, 
or removed from the process table.
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wait and waitpid() System Call

 When a process terminate either normally 
or abnormally, the kernel sent a signal 
(SIGCHD) to a parent.

 A parent can ignore the signal or call a 
function (wait or waitpid) to take care the 
signal.
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#include <sys/wait.h>

pid_t wait (int *status);

pid_t waitpid(pid_t pid, int *status, int option); 

wait and waitpid() System Call

 The execution of wait() could have two 
possible situations. 

◼ If there are at least one child processes, the 
caller will be blocked until one of its child 
processes exits. 

◼ If there is no child process running, then this 
wait() has no effect at all.

 The status is the pointer where terminated 
process’s status is saved. 
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Process Termination
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/* zombie1.c: create a zombie process */

#include  <stdio.h>

#include <string.h>

#include <unistd.h>

#include  <sys/types.h>

int main(void)

{

int pid, pid1; 

pid=fork(); //create the first child 

if(pid>0)

{    

pid1=fork(); //create the second child

if (pid1 >0) //parent runs forever

{

wait();

while (1)

;

}

else // for second child

{

_exit(0);

}

} 

else //for first child

{

_exit(0); 

}

}
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wait and waitpid() System Call

 By using macros in <sys/wait.h>, we can 
check a terminated process’s status.

 The status field will be filled in by wait or 
waitpid function.
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#include <sys/wait.h> 

int WIFEXITED(int status); 

if child process terminate normally, return true

int WIFSIGNALED(int status); 

if child process terminate abnormally, return true 
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/*wait.c  demonstrate wait() system call */

#include <stdio.h>

#include <string.h>

#include <sys/wait.h>

#include <unistd.h>

#include <sys/types.h>

#define MAX_COUNT  1000

#define BUF_SIZE   100

void main(void)

{  

pid_t   pid1, pid,  p1;

int status;

int i;

char buf[BUF_SIZE];

printf("*** Parent is about to fork  ***\n");

if ((pid1 = fork()) < 0) 

{

printf("Failed to fork process 1\n");

exit(1);

}

else if (pid1 == 0) /* child's part */

{

p1= getpid();

for (i = 1; i <MAX_COUNT; i++)

{  

sprintf(buf,"child %d is running\n", p1);

write(1, buf, strlen(buf));

}

_exit(0);

}

else /* parent's part */

{

sprintf(buf, "*** Parent enters waiting status .....\n");

write(1, buf, strlen(buf));

pid = wait(&status); /*wait for child finish it's job */

if (WIFEXITED(status))

printf(" A child process terminate normally\n");

else

printf(" A child process terminate abnormally\n");

sprintf(buf, "*** Parent detects process %d was done ***\n", pid);

write(1, buf, strlen(buf));

printf("*** Parent exits ***\n");

exit(0);

}

}

Orphan Process

 An Orphan Process is nearly the same 
thing which we see in real world. 

 Orphan means someone whose parents 
are dead. 

 The same way this is a process, whose 
parents are dead, that means parents are 
either terminated, killed or exited but the 
child process is still alive.
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Orphan Process
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/* orphan.c shows  example orphan call */

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

int main (int argc, const char *argv[])

{

pid_t pid;

char buf[100];

if ( (pid = fork()) < 0)  /* create child */

{

printf("fork error\n");

exit (1);

}

if (pid == 0) /* child process */

{

while (1)

{

sprintf(buf, "*** Child %d is running. Its parent is %d .....\n", getpid(), getppid());

write(1, buf, strlen(buf));

sleep(1);

if (getppid() == 1)

printf("My parent is passed away. Now, I am a orphan with step parent %d\n", getppid());

}

}

else /* parent process */

{

while (1)

{

sprintf(buf, "***I %d  am still alive\n", getpid());

write(1, buf, strlen(buf));

sleep(1);

}

}

exit (0);

}

exec System Call

 By using exec system call, a child process can execute 

another program.

 Once a process call  a exec system call, that process is 
completely replaced by the new program.

 The new program starts executing at its main function. The 

main function might need arguments.

 The process ID does not change across an exec system call, 

since it is not created. 

 The content of text, data, heap and stack segment will be 
replaced by new program.
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exec System Call
#include <unistd.h>

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

int execv(const char *path, char *const argv[]);

int execle(const char *path, const char *arg0, ... /*, (char *)0, char 

*const envp[]*/);

int execve(const char *path, char *const argv[], char *const envp[]);

int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);

int execvp(const char *file, char *const argv[]);

Return -1 on error, no return on success
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exec System Call

 Six system call can be recognized by

◼ Argument list or Argument vector

◼ File name or path name

◼ With or without environment
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exec System Call

 If filename contains a slash, it is consider 
as a pathname.

 Otherwise, the executable file is searched 
for the directory specified PATH 
environment variable.

 If a file name find out but not executable, 
then it is consider as shell script and tries 
to invoke /bin/sh.

 With execle and execve, environment 
variable can be passed to the function.

COSC350 System Software, Fall 2024                                        

Dr. Sang-Eon Park

20

exec System Call

 Normally, a process allows its 
environment to be propagated to its 
children.

 But some cases, a process need to specify 
a certain environment for a child.

Ex) the login program need create 
different environment for each user’s 
login.
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/* execex.c shows execv system call */

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

int main (int argc, const char *argv[])

{

pid_t pid;

int mult = 1, i;

if (argc == 1)

{    

printf("argument error \n");

exit (1);

}

if ( (pid = fork()) < 0)  /* create child */

{

printf("fork error\n");

exit (1);

}

else if (pid == 0)

{   

/* a child execute different program */

if (execv ("/home/separk/Lecture/cosc350/example/ch4/summation", argv) <0)         

{                     

printf ("execl ERROR");

exit (1);

}

}

for (i = 1; i <argc; i++)       

mult *= atoi(argv[i]);

printf ("The multiplication of arguments is %d \n", mult);

exit (0);

}


