Preview

o The waitpid() System Call
o The system() System Call
o Concept of Signals
= Linux Signals
= The signal System Call
= Unreliable Signals
o Signal() System Call
o The kill() and raise() System Call
o The alarm() System Call
o The pause() System Call

COSC350 System Software, Fall 2024

wait and waitpid() System Call

o When a process terminate either normally
or abnormally, the kernel sent a signal
(SIGCHD) to a parent.

o A parent can ignore the signal or call a
function (wait or waitpid) to take care the

signal.

#include <sys/wait.h>
pid_t wait (int *status);
pid t waitpid(pid_t pid, int *status, int option);

Returns ID if OK, -1 on error

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

3

if (pidl == 0)

10/17/2024

Process Termination

o The exit status of a child will be used for parent
process termination

o When a child exits, the parent process will
receive a SIGCHLD signal to indicate that one of
its children has finished executing; the parent
process will typically call the wait() system call at
this point.

o That call will provide the parent with the child’s
exit status, and will cause the child to be reaped,
or removed from the process table.

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

wait and waitpid() System Call

o The execution of wait() could have two
possible situations.

m If there are at least one child processes, the
caller will be blocked until one of its child
processes exits.

m If there is no child process running, then this
wait() has no effect at all.

o The status is the pointer where
terminated process’s status is saved.

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

waitpid() System Call

o If a parent create more than one child,
wait returns on termination of any of
children process.

o waitpid() system call can be used to wait
for specific process to terminate.

#include <sys/wait.h>
pid t waitpid(pid t pid, int *status, int option);

Returns ID if OK, -1 on error

COSC350 System Software, Fall 2024
Or. Sang-Eon Park

waitpid() System Call

o The differences between wait() and
waitpid()
= The wait can block the caller(parent) until a
child process terminates.
m The waitpid() has option that prevents it from
blocking

= The waitpid() function doesn’t wait for the
child that terminate first; it has options that
control which process parent wait for.

COSC350 System Software, Fall 2024

10/17/2024

waitpid() System Call

o The waitpid() system call provides three
features that does not by the wait()
m Wait for one particular process
m Provide non blocking version of wait
m Provides support for job control
o Options
= 0: wait one by one until all terminated
m WNOHANGE: will not block if the child is not available immediately
m WCONTINUED: i implementation support job control,
m WUNTRACED : if implementation support job control,

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

COSC350 System Software, Fall 2024
Or. Sang-Eon Park

10/17/2024

The system() System Call

o We can execute bash commands inside c
program by using system() system call.
o The system() is implemented by calling
fork(), exec, and waitpid, there are three
types of return value
m - 1: If either the fork() or waitpid() failed.
m 127: if the exec failed
m Other: the termination status of waitpid()

COSC350 System Software, Fall 2024 13

int main()
int status;

if ((status =
{

printf ("
exit(l);
)

printf ("

exit(0);

COSC350 System Software, Fall 2024 14
Dr. Sang-Eon Park

Concepts of Signal

o Signals are software interrupts.

o Signals provide a way of handling
asynchronous event.

o Signals are a fundamental method for
interprocess communication.

o Each signal names begin with SIG.

o Linux support 31 standard signals
(signal.h) and additional application
defined signals.

COSC350 System Software, Fall 2024 15
Dr. Sang-Eon Park

Concepts of Signal

SIGHUP 1 Hangup (POSIX)
SIGINT 2 Terminal interrupt (ANSI)

SIGQUIT 3 Terminal quit (POSIX)

SIGILL 4 Illegal instruction (ANSI)

SIGTRAP 5 Trace trap (POSIX)

SIGIOT 6 IOT Trap (4.2 BSD)

SIGBUS 7 BUS error (4.2 BSD)

SIGFPE 8 Floating point exception (ANSI)

SIGKILL 9 Kill(can't be caught or ignored) (POSIX)
SIGUSR1 10 User defined signal 1 (POSIX)

SIGSEGV 11 Invalid memory segment access (ANSI)
SIGUSR2 12 User defined signal 2 (POSIX)

SIGPIPE 13 Write on a pipe with no reader, Broken pipe (POSIX)
SIGALRM 14 Alarm clock (POSIX)

SIGTERM 15 Termination (ANSI)

[= I T I = O T = = O = Y =

COSC350 System Software, Fall 2024 16
Dr. Sang-Eon Park

Concepts of Signal

SIGSTKFLT 16 Stack fault

SIGCHLD 17 Child process has stopped or exited, changed (POSIX)
SIGCONT 18 Continue executing, if stopped (POSIX)

SIGSTOP 19 Stop executing(can't be caught or ignored) (POSIX)
SIGTSTP 20 Terminal stop signal (POSIX)

SIGTTIN 21 Background process trying to read, from TTY (POSIX)
SIGTTOU 22 Background process trying to write, to TTY (POSIX)
SIGURG 23 Urgent condition on socket (4.2 BSD)

SIGXCPU 24 CPU limit exceeded (4.2 BSD)

SIGXFSZ 25 File size limit exceeded (4.2 BSD)

SIGVTALRM 26 Virtual alarm clock (4.2 BSD)

SIGPROF 27 Profiling alarm clock (4.2 BSD)

SIGWINCH 28 Window size change (4.3 BSD, Sun)

SIGIO 29 I/0 now possible (4.2 BSD)

SIGPWR 30 Power failure restart (System V)

OoooooDOoDOoDOoODOoODOoDOoDOoOOaO0

COSC350 System Software, Fall 2024 17
Or. Sang-Eon Park

Concepts of Signal

o Conditions for generating signal

= The terminal-generated signals occur when users
press certain terminal key (ctr-z (SIGTSTP), ctr-c
(SIGINT), ctr-d (EOF)...).
Hardware exception generate signals - invalid
memory reference.
kill system call allows a process to send a signal to
a process or group of process
kill command (bash) allows us to send signals to
other process.
Software condition can generate signal when
something happened - out of band data arrived over
network

COSC350 System Software, Fall 2024 1
Or. Sang-Eon Park

10/17/2024

Concepts of Signal

o Kernel do one of three things for a signal

= Ignore the signal - This works for most of
signal except SIGKILL and SIGSTOP.

= Catch the signal - ask the kernel to call a
function of ours (signal handler) whenever the
signal occurs. When a child process terminate,
the SIGCHILD can catch by signal() or
sigaction() system call and this signal can be
used to initiate a user defined function.

u Let default action apply - every signal has a
default action, such as terminate or ignore.

COSC350 System Software, Fall 2024 19

The kill() and raise() System Calls

o The kill() system call send a signal to a
specific process or a group of processes.

o The raise() system call allows a process
to send a signal to itself.

#include <signal.h>
int kill (pid t pid, int signo);
int raise (int signo);

Return 0 if ok else return -1

COSC350 System Software, Fall 2024 20
Dr. Sang-Eon Par}

The kill() and raise() System Calls

o There are four different condition for the pid

argument to kill().

= pid >0: The signal send to the process with ID = pid.

= pid ==0: The signal send to all process whose process
group ID equal to sender’s group ID with sender has
permission to send.

= pid <0: The signal send to all processes whose process
group ID equal to the absolute value of pid with sender
has permission to send.

= pid == -1:The signal send to all processes on the
system with sender has permission to send.

COSC350 System Software, Fall 2024 21
Dr. Sang-Eon Park

The kill() and raise() System Calls

o Permission to send
m The super-user can send a signal to any
processes
m If real or effective ID of a sender’s ID is same
as receiver process, the sender send signal to
them.

COSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park

The alarm() System Call

o The alarm() system call allows to set a
timer that will expire at a specified time in
the future.

o When the timer expires, the SIGALAM
signal is generated.

#include <unistd.h>
unsigned int alarm (unsigned int seconds);

Return 0 or number of seconds

COSC350 System Software, Fall 2024 2
Or. Sang-Eon Park

The alarm() System Call

o There is only one of alarm clocks per a
process.

o When we call alarm() system call and if a
previously registered clock for the process
has not yet expired, the remaining time
will be return as a value of this function.

COSC350 System Software, Fall 2024 2
Or. Sang-Eon Park

10/17/2024

The pause() System Call

o The pause() system call suspends the
calling process until a signal is caught

#include <unistd.h>
int pause (void);

Return -1 with error

COSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park

The signal () System Call

#include <signal.h>
typedef void (*sighandler t) (int);

sighandler_t signal (int signo, sighandler_t);

Return -1 with error

signo: name of signal SIG...

o Function signal accept two arguments and return a pointer
to a function that returns nothing.

o Second argument is pointer to a function that take a single
integer argument and return nothing.

COSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park

The pause() System Call

ystem call*

void ding (int sig)
{

time_t t =time((time_t *)0);
printf("alarm fired at by
)

nal = %d\n", asctime(localtime(st)),sig);

int main()

time_t t = time((time_t

at time %s\n", asctime(localtime(st)));

signal (SIGALRM, ding);
pause () ;
exit(0);

COSC350 System Software, Fall 2024 27
Dr. Sang-Eon Park

The signal () System Call

o Most of the Linux users use the key
combination ctrl+c to terminate processes
in Linux.

o Whenever ctrl+c is pressed, a signal
SIGINT is sent to the process.

o The default action of this signal is to
terminate the process.

o But this signal can also be handled. The
following code demonstrates this case

COSC350 System Software, Fall 2024 28
Dr. Sang-Eon Park

The signal () System Call

DrSangEoTPaT

COSC350 System Software, Fall 2024 0
Or. Sang-Eon Park

bid = o

getpid();
(signal (STGUSR, sig_handle:

S11(pid, SIGKILL);
v

10/17/2024

static void sig_usr(int);

int main(void

pause(); /* can

must h

sig_usr (

(signo == SIGUSR1)

printf("received not

SIGUSR2)

/* signal handler

if (signal (SIGUSRL, sig_usr) SIG_ERR)
«

printf(“can't catch SR1Y) ¢

exit (1);
)

(signal (SIGUSR2, sig_usr) == SIG_ERR)
(

printf(“can’t catch SIGUSR

exit(1);
}

one single in

nt signo)

SR1\n") ;

SR2\n") ;

SIGUSRL or

The signal () System Call

*signal.
#include
#include
#include
#include <

int main ()

{
int pid =11294;
nt i;
for (i 1<=20 i++)
(
if (1%2-=1)
kill (pid, SIGUSR1);
else
kill(pid, SIGUSR2);
sleep (1)
)
return 0;
)

COSC350 System Software, Fall 2024
. Sang-Eon Park

1
bt

void ding (int sig)

alarm fired = 1
}
int main()
(

pid t pid;

printf(“alarn application start \n");

if ((pid = fork() <0))

(
prints
sleep(20);
Kill(getppid(),
exit(0);

Printf(" w

aiting for alarm
signal (SIGALRM, ding);

time_t t =time((time_t
Printf("My child send S

from child at $s \n",asctime(localtime(st)));

$0);
GALRM at %s \n",asctime (localtime (st)));

