10/17/2024

Review

o The waitpid() System Call

o The system() System Call

o Concept of Signals

Linux Signals

Signal() System Call

The kill() and raise() System Call
The alarm() System Call

The pause() System Call

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

Preview

o The pause () System call

o The signal () system call

o Signal set

o The sigprocmask () system call
o The sigaction () system call

o Interprocess Communication

o The sigsuspend () system call
o The abort () system call

€OSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The pause() System Call

o The pause() system call suspends the
calling process until a signal is caught

#include <unistd.h>
int pause (void);

Return -1 with error

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The pause() System Call

#include <sys/types.h>

void ding (int sig)
{

printf("alarm fired signal number = %d\n", sig);
}

int main()

printf("set alram 5 second for a process\n");
alarm(s) ;

signal (SIGALRM, ding);

pause () ;

exit (0);

€OSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The signal() System Call

#include <signal.h>

void (*signal (int signo, void (*func(int))) (int);
signo: name of signal SIG..

func: pointer to siglal handler function

o Function signal accept two arguments and return a pointer
to a function that returns nothing.

o Second argument is pointer to a function that take a single
integer argument and return nothing.

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The signal () System Call

#include <time.h
0id sig_handler (int)

if == s16TNm)
(

sleep (1);

time_t t =time((time_t %)0);

NT, sig_handler) == SIG_ERR)
aten S o

pause (1) 7

DT SangeEoTPar

10/17/2024

The signal () System Call

#include<stdio.
#include<signa
#includecunistd
#include <time
void sig_handler (int)
if (s1eINT)
(
sleep (1);
time_t t =time((time_t *)0);

printf ("receis v

sctime (Loc.

1 ine (£))) 5
)
signal (SIGINT, SIG_DFL); // back to default action
)
int main (void)
t

£ (signal (STGINT,

printf("\nc

while(1)

DrSaTy=roTFaTe

nelude <stdlib.h>
ude <signal.n
nelude <stdio.h>

int alarm_fired =

arm application start
((pid = fork()) <0)

(pid >0)

time_t t =time((time_t *)0);
printf ("waiting for alarm from child at
signal (STGALRM, ding);
pause ()

(alarm_fired)

,asctine (Localtime (5t))) ;

t =time((time_t *)0);
y child send SIGALRM at &s \n", me (localtine (5t)));

is about to sleep 5 second\n");

exit(0);

finclude <stdlib.h>
finclude <signal.h>
#include <stdio.h>
#include <time.h>

#include <unistd.h>

time_t t =time ((time_t *)0);
prints ("My chi

nd SIGALRM at $s \n",asctime(localtime(st)));

)

int main()
i

pid t p
printf("alarm application s
if ((pid = fork()) <0)

nm)

r ("for
exit (1);

rrort);

ime((time € *)0);
g for alarm from c

d at $s \n",asctime (localtime (&t)));

exit (0);
)
else
t
printf("child is about to sleep 5 second\n");
sleep(5);
kill(getppid(), SIGALRM);
exit (0);

de <stdlib.h>
:de <signal.h>

<stdio
rclude <time
rclude <unistd.h>

d dead (int sig)

time_t t =time((time_t *)0);
printf("My child terminated at s \n",asctime (Localtime(st)));

t main()

pid_t pid;
printf("alarm application start \n");
£ ((pid = fork() <0)

perror ("fork error");
exit (1);
)
£ (pid >0
time_t t =time((time_t *)0);
printf("waiting for child termination at $s \n",asctime(localtime(st)));
signal (SIGCHID, dead);

print
sleep(5);
exit(0);

("child is about to sleep 5 second\n

4io

#incluc nal

c void sig_usr(int); /*

int main(void)

{

if (signal (SIGUSRL, sig_usr) S1G_ERR)

printf("c.
exit (1)

i

)
if (signal (SIGUSR2, sig usr)
¢

S1G_ERR)

printf("can't ca
exit (1)

)
for (i i)
pause(); /* can wait for

sinal ha
tatic void sig_usr(int signo)

ler must have o

single integer *

printf("rece JSRIAN") ;

else if (signo == SIGUSR2)
printf("received SIGUSR2\n");
printf("received not SIGU o R2\n") ;

The signal() System Call

*signal
#include
#include
#include
#include <

int main()

int pid =11294;
int i;

if (i%2==1)
Kill (pid, STGUSRI);

Kill(pid, SIGUSR2);

sleep(1);
}

return 0;

€OSC350 System Software, Fall 2024
Dr. Sang-Eon Park

10/17/2024

Signal Set

o POSIX define the data type sigset_t to contain
a signal set.
o There are five functions to manipulate signal set.

Signal Set

#include <signal.h>

int sigemptyset(sigset_t *set); /*set all signals are excluded */

int sigfillset(sigset_t *set); /*set all signals are included */

int sigaddset (sigset_t *set, int signo) /* set a signal set */

int sigdelset (sigset t *set, int signo) /* reset a signal */

int sigismember (const sigset_t *set, int signo) /*check membership */

COSC350 System Software, Fall 2024 13
Dr. Sang-Eon Park

o Either sigemptyset() or sigfillset() must be called for

every object of type sigset_t before any other use of the

object.

The sigemptyset() function initializes a signal set to be empty.

The sigfillset() function initializes a signal set to contain all sig-

nals.

The sigaddset() function adds the specified signal signo to the

signal set.

The sigdelset() function deletes the specified signal signo from

the sig- nal set.

o The sigismember() function returns whether a specified signal
signo is contained in the signal set.

oo

o

o

€OSC350 System Software, Fall 2024 14
Dr. Sang-Eon Park

The sigprocmask() System Call

o Signal mask of a process is the set of
signals currently blocked from delivery to
that process.

o The sigprocmask() system call
examines, or changes, or both examines
and changes the signal mask of the calling
process.

The sigprocmask() System Call

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

return 0 for ok, -1 for error

COSC350 System Software, Fall 2024 15
Dr. Sang-Eon Park

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

return 0 for ok, -1 for error

o how (Input) The way in which the signal set is changed.
o The possible value of how are
= SIG_BLOCK:Indicates that the set of signals given by set should be
blocked
= SIG_UNBLOCK:Indicates that the set of signals given by set should not
be blocked
= SIG_SETMASK:the set of signals given by set should replace the old
set of signals being blocked
o *set (Input) A pointer to a set of signals to be used to change the
currently blocked set. May be NULL.
o *oset (Output) A pointer to the space where the previous signal
mask is stored. May be NULL.

€OSC350 System Software, Fall 2024 16
Dr. Sang-Eon Park

The sigaction() System Call

o We can modify or examine the action
associated with a particular signal by
using system call sigaction().

#include <s .h>
int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact);

The sigaction() System Call

struct segaction{
void (*sa_handler) (int)
sigset_t sa_ma
int sa_flag; / /
void (*sa_sigaction) (int siginfo_t *, void *);/* alternate handler *

COSC350 System Software, Fall 2024 17
Dr. Sang-Eon Park

#include <signal.h>
int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact);

o

signo (Input) A signal from the list

*act (Input) A pointer to the sigaction structure that describes
the action to be taken for the signal. Can be NULL. If act is a NULL
pointer, signal handling is unchanged. sigaction() can be used to
inquire about the current handling of signal sig. If act is not NULL,
the action specified in the sigaction structure becomes the new
action associated with sig.

o *oact (Output) A pointer to a storage location where sigaction()
can store a sigaction structure. This structure contains the action
currently associated with signo. Can be NULL. If oact is a NULL
pointer, sigaction() does not store this information.

o

€OSC350 System Software, Fall 2024 18
Dr. Sang-Eon Park

10/17/2024

nt main(arge, char *argv(]) int main(int arge, char *argvll)

(scinish));
wo signals

return(0);

) COSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park

Interprocess Communication

Interprocess Communication (the Producer-Consumer Problem)
o Three issues in interprocess Description
communication o Two processes (or threads) share a common,

fixed-sized buffer.

1. How one process can pass information to o Producer puts information into the buffer, and

another consumer takes it out.

2. How to make sure two or more processes do Troubles arises
not ge_t into the critical section (mutual o When the producer wants to put a new item in
exclusion) the buffer, but it is already full.

3. Proper sequencing when dependencies are o When the consumer tries to take a item from the
present (ex. Producer-Consumer problem, buffer, but buffer is already empty.

Dinning Philosopher problem)

COSC350 System Software, Fall 2024 23 €OSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park Dr. Sang-Eon Park

10/17/2024

Interprocess Communication
(the Producer-Consumer Problem)

o When the producer wants to put a new
item in the buffer, but it is already full.

m Solution — producer is go to sleep, awakened
by consumer when consumer has removed on
or more items.

o When the consumer tries to take a item
from the buffer, but buffer is already
empty.

m Solution — consumer is go to sleep, awakened
by the producer when producer puts one or
more information into the buffer.

COSC350 System Software, Fall 2024 25
Dr. Sang-Eon Park

Interprocess Communication
(Dining Philosophers Problem)

6 g

Dr. Sang-Eon Park

Interprocess Communication
(Dining Philosophers Problem)

o Five silent philosophers sit at a round table with bowls
of spaghetti. Chopsticks are placed between each pair of adjacent
philosophers.

o Each philosopher must alternately think and eat. However, a
philosopher can only eat spaghetti when they have both left and
right chopsticks.

o Each chopstick can be held by only one philosopher and so a
philosopher can use the chopstick only if it is not being used by
another philosopher.

o After an individual philosopher finishes eating, they need to put
down both chopsticks so that the chopstick s become available to
others. A philosopher can take the chopstick on their right or the
one on their left as they become available, but cannot start eating
before getting both chopsticks.

COSC350 System Software, Fall 2024 27
Dr. Sang-Eon Park

Interprocess Communication

o Critical section (critical region) — The
part of program where the shared
memory is accessed.

o If we could arrange matters such that no
two processes were ever in their critical
sections at the same time, we can avoid
races condition.

€OSC350 System Software, Fall 2024 28
Dr. Sang-Eon Park

Interprocess Communication

o We can change the signal mask for a
process to block and unblock selected
signal by sequence of system calls.

o It might be possible to use this technique
to protect critical region (critical section).

COSC350 System Software, Fall 2024 2
Dr. Sang-Eon Park

Interprocess Communication

sigset_t newmask, oldmask;

sigemptyset (&newmask) ;

sigaddset (&newmask, SIGINT);

/*block SIGINT and save current signal mask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask)<0)
error_sys (" SIG_BLOCK ERROR ");

/**** Critical Region of code *******x%/

/*reset signal mask, which unblocks SIGINT */

if (sigprocmask (SIG_SETMASK, &oldmask, NULL)<O0)
error_sys (" SIG_BLOCK ERROR ");

/* hole */

pause () ;

€OSC350 System Software, Fall 2024 30
Dr. Sang-Eon Park

10/17/2024

Interprocess Communication

o If a signal is sent to the process while it is
blocked, the signal delivery will be differed
until the signal is unblocked.

o If a signal does occur between the
unblocking and the pause, the signal can
be lost.

o The result is pause forever!!!

o The sigsuspend() system guarantee both
reset and put a process to sleep.

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The sigsuspend() System Call

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

o The sigsuspend() function replaces the
current signal mask of a process with the
signal set given by *sigmask and then

suspends processing of the calling
process.

o The process does not resume running until
a signal is delivered

€OSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The sigsuspend() System Call

sigset_t newmask, oldmask;

sigemptyset (&newmask) ;

sigaddset (&newmask, SIGINT);

/*block SIGINT and save current signal mask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask)<0)
error_sys (“SIG_BLOCK ERROR”);

/**** Critical Region of code **x¥¥*xx/

/*reset signal mask, which unblocks SIGINT */

if (sigsuspend (&oldmask)<0)
error_sys (“SIG_SUSPEND ERROR”);

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

int main(int arge, char *argv(])

printf("inside ca

void timestamp(char *str) {
time_t t;

time(&t);

printz(" n", str, ctime(st));

struct sigaction sigact; /* for
sigset_t block

€OSC350 System Software, Fall 2024
Dr. Sang-Eon Park

The abort() System Call

The abort() system call cause abnormal
program termination.

The abort() system call send SIGABRT
signal to caller process

#include <stdlib.h>
void abort (void);

COSC350 System Software, Fall 2024
Dr. Sang-Eon Park

