
10/17/2024

1

Preview

 Inter-process Communication

 The sigsuspend() System Call

 The abort() System Call

 Concept of Thread.

 Other View of Thread

 Summary of Thread

 Benefits with Multiple Threads

 What are Pthreads?

 The Thread ID

 The Thread Creation and Termination

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

1

Interprocess Communication

 Three issues in interprocess
communication

1. How one process can pass information to
another

2. How to make sure two or more processes do
not get into the critical region (critical
section)-Mutual Exclusion

3. Proper sequencing when dependencies are
present (ex. Producer-Consumer: a producer
produce outputs and save into a buffer, a
consumer consume outputs from the buffer)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

2

Interprocess Communication

 Critical section (critical region) – The

part of program where the shared
memory is accessed.

 If we could arrange matters such that no
two processes were ever in their critical
regions at the same time (mutual
exclusion), we can avoid races condition.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

3

Interprocess Communication

 We can change the signal mask for a
process to block and unblock selected
signal by sequence of system calls.

 It might be possible to use this technique
to protect critical region (critical section).

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

4

Interprocess Communication

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

5

sigset_t newmask, oldmask;

/* exclude all signal in signal set*/

sigemptyset(&newmask);

/* set SIGINT */

sigaddset(&newmask, SIGINT);

/*block SIGINT and save current signal mask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask)<0)

error_sys("SIG_BLOCK ERROR");

/**** Critical Region of code ********/

/*reset signal mask, which unblocks SIGINT */

if (sigprocmask(SIG_SETMASK, &oldmask, NULL)<0)

error_sys("SIG_SETMASK ERROR");

pause();

Interprocess Communication

 If a signal is sent to the process while it is
blocked, the signal delivery will be differed
until the signal is unblocked.

 If a signal does occur between the
unblocking and the pause, the signal can
be lost.

 The result is pause forever!!!

 The sigsuspend() system guarantee both
reset and put a process to sleep.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

6

10/17/2024

2

The sigsuspend() System Call

 The sigsuspend() function replaces the
current signal mask of a process with the
signal set given by *sigmask and then
suspends processing of the calling
process.

 The process does not resume running until
a signal is delivered

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

7

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

The sigsuspend() System Call

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

8

sigset_t newmask, oldmask;

/* exclude all signal set */

sigemptyset(&newmask);

/* include SIGINT signal */

sigaddset(&newmask, SIGINT);

/*block SIGINT and save current signal mask */

if (sigprocmask(SIG_BLOCK, &newmask, &oldmask)<0)

error_sys("SIG_BLOCK ERROR");

/**** Critical Region of code ********/

/*reset signal mask, which unblocks SIGINT */

if (sigsuspend(&oldmask)<0)

error_sys("SIG_SUSPEND ERROR");

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

9

/*sigsuspend.c */

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

printf("inside catcher() function\n");

}

void timestamp(char *str) {

time_t t;

time(&t);

printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[])

{

struct sigaction sigact; /* for sigaction call */

sigset_t block_set;

sigfillset(&block_set); /*set all signals are included */

sigdelset(&block_set, SIGALRM); /* exclude SIGALRM from signal set*/

sigact.sa_handler = catcher; /* set signal hadler*/

sigaction(SIGALRM, &sigact, NULL); /* set sigaction for SIGALRM signal */

timestamp("before sigsuspend()");

alarm(5);

sigsuspend(&block_set); /* replaces the current signal mask with block_set */

timestamp("after sigsuspend()");

return(0);

}

The abort() System Call

 The abort() system call cause abnormal
program termination.

 The abort() system call send SIGABRT
signal to caller process

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

10

#include <stdlib.h>

void abort(void);

Concept of Threads

 In a traditional OS, each process has an
address space and a single thread of
control.

 But in modern software, there are multiple
threads of control in the same addresses
space.

 Each threads inside a process need its
independent spaces for running but
sharing the same address space of
program.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

11

Concepts of Threads

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

12

kernel kernel

thread

Kernel

space

User

space

Process1 Process2 Process3

thread

Process

a) A process with one thread a) A process with multiple thread

10/17/2024

3

Concept of Threads

Threads

 Threads are processes in a process!!! – multiple
execution in the same process environment.

 It is made up with a thread ID, a program
counter, a register set, and a stack.

 Different threads are not quite as independent as
different processes since they share same
address space

 It shares with other threads belonging to the
same process its code section, data section and
other operating system resources such as files
and signals.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

13

Concept of Threads

 Multiple process running on a
computer –Process are share physical
memory, disks, printers and other
resources

 Multiple threads running on a process
– the threads are share an address space,
open files, and other recourses

 With thread – the ability for multiple
threads of execution to share a set of
resources so they can work together
closely to perform some task.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

14

Concepts of Threads

 The CPU switches rapidly back and forth
among the threads in the single CPU
system (Same idea as multiprogramming)

 No protection between threads – using
same address space (share the global
variables)

 A thread can be in any one of several
states: running, blocked, ready

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

15

Concepts of Threads

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

16

Concept of Threads

 Since each thread usually call different functions
from the same address space (each thread
executing different part of program), each thread
need its own stack.

 A multithread software start with single thread.

 The thread has ability to create new threads by
calling a library procedure (i.e. thread_create)

 When a thread has finish its work, it can exit by
calling a library procedure (i.e. thread_exit)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

17

Concept of Threads

 pthread functions for POSIX

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

18

10/17/2024

4

Concepts of Threads

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

19

Threads Implementation

 Implementing thread in user space

◼ Threads are handled by the run-time system

◼ OS does not know the existence of threads

 Implementing thread in the kernel

◼ Thread are handled by OS

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

20

Implementing Threads in User’s space

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

21

Implementing Threads in Kernel’s Space

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

22

Other View of Thread

1. A thread is defined as an independent
stream of instructions that can be
scheduled to run by the operating
system.

2. A function that runs independently
from its main program: can be scheduled
by Operating System.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

23

Motivation of Threads

Ex) A web browser
1. A thread for displaying images or text

2. A thread for retrieving data from network

Ex) Word processor
1. A thread for displaying graphics

2. A thread for reading input from keyboard

3. A thread for performing spelling and grammar
checking in the background

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

24

10/17/2024

5

Summary of Thread

 Exists within a process and uses the process resources

 Has its own independent flow of control as long as its
parent process exists and the OS supports it

 Duplicates only the essential resources it needs to be

independently schedulable

 Share the process resources with other threads that act

equally independently

 Dies if the parent process dies

 Is "lightweight" because most of the overhead has already
been accomplished through the creation of its process

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

25

Benefits with Multiple Threads.

 With multiple thread, we can design a program to
do more than one thing at a time within a single
process, with each thread handling a separate
task.

 We can simplify code that deal with asynchronous
events by assigning a separate thread to handle
each event type.

 In multi processor system, it is easy to apply
parallel processing with multiple threads. Each
thread can working with a processor.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

26

What are Pthreads?

 Hardware vendors had implemented their
own proprietary versions of threads.

 For a requirement of standardized
programming interface, this interface has
been specified by the IEEE POSIX 1003.1c
standard (1995) (POSIX thread).

 pthreads are defined as a set of C
language programming types and
procedure calls, implemented with a
header file <pthread.h>

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

27

The Thread ID

 A Process ID (pid_t) for a process is
unique in the system.

 But a thread ID (pthread_t) has
significance only within the context of the
process where it belongs.

 Even though unsigned long (Linux),
unsigned integer (Solaries 9) is used
represent a pthread_t, a function
ptread_equal() must be used to
compare thread ID.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

28

The Thread ID

#include <phread.h>

/*returns thread ID of the calling thread */

pthread_t prhread_self(void);

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

29

#include <phread.h>

/*returns non-zero if equal, return 0 otherwise */

int pthread_equal(pthread_t t1, pthread_t t2);

The thread Creation

 Initially, your main() program comprises a single,
default thread.

 All other threads must be explicitly created by
the programmer

 pthread_create() function creates a new thread
and makes it executable. This routine can be
called any number of times from anywhere within
your code.

 Once created, threads are peers, and may create
other threads. There is no implied hierarchy
or dependency between threads

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

30

10/17/2024

6

The thread Creation

 att point to structure of pthread atribute. If att is NULL, a default
attribute will be used

 start_routing point to address of a void function with no

parameter or

 We can save parameters to typeless pointer arg and be able to

pass to the function.

 If successful, return 0; otherwise return an error number
◼ [EAGAIN]: The system lacked the necessary resources to create another thread,

◼ [EPERM]: The caller does not have appropriate permission to set the required
scheduling parameters or scheduling policy.

◼ [EINVAL]The attributes specified by attr are invalid

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

31

#include <pthread.h>

int pthread_create (pthread_t *thread,

const pthread_attr_t *att,

void *(*start_routine)(void*), void *arg);

The thread Creation

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

32

struct pthread_attr_t{

{

int flags

int stacksize

int contentionscope

int inheritsched

int detachstate

int sched

struct sched_param param

struct timespec starttime deadline period

};

The thread Creation

 When multiple threads are created, there
is no guarantee which runs first. It is
depends on the thread scheduler.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

33

/**

CreatTh.c: Demonstrate creation of threads

**/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define NUM_THREADS 5

void *PrintHello(void *threadid)

{

int tid;

tid = (int)threadid;

printf("Hello World! It's me, thread #%d!\n", tid);

pthread_exit(NULL);

}

int main(int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int rc, t;

for(t=0;t<NUM_THREADS;t++)

{

printf("In main: creating thread %d\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t)

if (rc)

{

printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);

}

}

pthread_exit(NULL);

exit (0);

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

34

The thread Termination

 If any thread within a process call exit or
_exit system call, then the entire process
terminate.

 A single thread inside a process can
terminate three ways.

◼ The thread can simply return from the start
routine

◼ The thread can be cancelled by another thread
with pthread_cancel() in the same process.

◼ The thread can call phread_exit

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

35

The thread Termination

 The rval_ptr: typeless pointer. This
pointer is available to other threads in the
process by calling the pthread_join()
system call.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

36

#include <pthread>

void pthread_exit(void *rval_ptr);

