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FIFOs

 Pipes can be used only between related 
processes when a common ancestor has 
created the pipe.

 FIFOs (Named pipes) allow two unrelated 
processes to communicate with each 
other.

 Since FIFO is a type of file, creating a 
FIFO is similar to creating a file.

 Two unrelated processes can open a FIFO 
and begin communication.
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FIFOs

 The specification of mode argument  is the 
same as for the open system call.

 The rule for user and group ownership of a 
FIFO are the same as in a file.

 Once we create a FIFO by using mkfifo, 
we can open it by using open().
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#include <sys/stat.h> 

int mkfifo(const char *pathname, mode_t mode);
Return 0 if Ok, -1 error

FIFOs

 A FIFO supports blocked read and write 
operations by default: if a process opens the 
FIFO for reading, it is blocked until another 
process opens the FIFO for writing, and vice 
versa. 

 However, it is possible to make FIFOs support 
non-blocking operations by specifying the 
O_NONBLOCK flag while opening them. 

 A FIFO must be opened either read-only or write-
only. It must not be opened for read-write 
because it is half-duplex, that is, a one-way 
channel. 
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FIFOs

◼ In the normal case (O_NONBLOCK not 
specified)

 An FIFO open for read-only blocks until some other 

process opens the FIFO for writing.

 An FIFO open for write-only blocks until some other 

process open the FIFO for reading.

◼ If O_NONBLOCK is specified

 An open for read-only returns immediately.

 An open for write-only returns –l with errno set to 

ENXIO if no process has the FIFO open for reading.
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FIFOs

 FIFOs are used by shell commands to 
pass data from one shell pipleline to 
another without creating intermediate 
temporary files.

 FIFOs are used as rendezvous point in 
client-server applications to pass data 
between the clients and the servers.
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/* server.c create a FIFO to communicate with client*/

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define MAX_BUF_SIZE 255

int main(int argc, char *argv[])

{

int fd, ret_val, count, numread;

char buf[MAX_BUF_SIZE];

/* Create the FIFO(named – pipe) */

ret_val = mkfifo(HALF_DUPLEX, 0666);

if ((ret_val == -1) && (errno != EEXIST)) {

perror("Error creating the named pipe");

exit (1);

}

/* Open the FIFO for reading */

fd = open(HALF_DUPLEX, O_RDONLY);

/* Read from the FIFO */

numread = read(fd, buf, MAX_BUF_SIZE);

buf[numread] = ‘\0';

printf("Half Duplex Server : Read From the pipe : %s\n", buf);

/* Convert to the string to upper case */

count = 0;

while (count < numread) {

buf[count] = toupper(buf[count]);

count++;

}  

printf("Half Duplex Server : Converted String : %s\n", buf);

return 0;

}

FIFOs
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/* client.c write a string to FIFO */

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define MAX_BUF_SIZE 255

int main(int argc, char *argv[])

{

int fd;

/* Check if an argument was specified. */

if (argc != 2) {

printf("Usage : %s <string to be sent to the server>n", argv[0]);

exit (1);

}

/* Open the pipe for writing */

fd = open(HALF_DUPLEX, O_WRONLY);

/* Write to the pipe */

write(fd, argv[1], strlen(argv[1]));

return 0;

}
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/*server1.c which receive two integer through FIFO and calculate it’s sum.

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define BFFERSIZE 20

int main(int argc, char *argv[])

{

int fd, ret_val, count, numread;

char line[BFFERSIZE];

/* Create the named - pipe */

ret_val = mkfifo(HALF_DUPLEX, 0666);

if ((ret_val == -1) && (errno != EEXIST)) {

perror("Error creating the named pipe");

exit (1);

}

/* Open the FIFO for reading */

fd = open(HALF_DUPLEX, O_RDONLY);

int int1, int2, n, sum;    

while((n=read(fd, line, BFFERSIZE))>0)

{

line[n]='\0';

if (sscanf(line, "%d %d", &int1, &int2)== 2)

{

sprintf(line, "The sum is %d\n", int1+int2);

write(1, line, strlen(line)); 

}

else

write(1, "invalid arguments\nEnter two integers\n", 37);  

}

return o;

}

FIFOs
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/*client1.c which send two integer through FIFO to server1.

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define BFFERSIZE 20

int main(int argc, char *argv[])

{

int fd, n;

char line[BFFERSIZE];

/* Open the FIFO for writing */

fd = open(HALF_DUPLEX, O_WRONLY);

printf("Enter to integers\n Press Ctrl+D to exit\n");

while(fgets(line, BFFERSIZE, stdin)!=NULL)

{

n=strlen(line);

write(fd,line,n); //pass information from  to child through FIFO

}
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XSI Interprocess Communication

 There are three types of XSI IPC

◼ Message queue

◼ Semaphore

◼ Shared memory 

 Each IPC structure in the kernel is referred to by 
a non-negative identifier.

 When a given IPC structure is created and then 
removed, the identifier associated with that 
structure continually increase up to the maximum 
positive integer, and then wraps around to 0.
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XSI Interprocess Communication

 When an XSI IPC structure is created (by 
calling msgget(), semget() or shmget()), 

a key must be specified.

 The data type key_t for a key is specified 
in the header file <sys/types.h>.
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XSI Interprocess Communication

 The ftok() function  return a key based on path
and id that is usable in subsequent calls to 

msgget(), semget(), and shmget().

 The application shall ensure that the path
argument is the pathname of an existing file.

 Only lower 8 bit of id are used when generating a 
queue (we can path a character).
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#include <sys/ipc.h> 

key_t ftok(const char *path, int id);

Return key if Ok, -1 error

XSI Interprocess Communication

 XSI IPC associated with ipc_perm structure. 

 This structure defines the permissions and owner 
and so on.
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struct ipc_perm { 

uid_t uid; /* owner’s effective user ID*/

gid_t gid; /* owner’s effective group ID */

uid_t cuid; /* creator effective user ID */

gid_t cgid; /* creator effective group ID */

mode_t mode /* access mode */

};

XSI Interprocess Communication

 All the fields are initialized when the IPC 
structure is created.

 We can modify the uid, gid, and mode filed by 
calling msgctl(), semctl() or shmctl().

 The value of mode fields are: 
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Operation permissions Octal value 

Read by user 00400 = 000 000 100 000 000

Write by user 00200 = 000 000 010 000 000

Read by group 00040 = 000 000 000 100 000

Write by group 00020 = 000 000 000 010 000

Read by others 00004 = 000 000 000 000 100

Write by others 00002 = 000 000 000 000 010

XSI IPC (Message Queue)

 A message queue is a linked list of message 
stored within the kernel’s space and identified by 
a message queue ID.

 A new message queue is created or opened by 
msgget().

 A new messages are added to the end of a queue 
by msgsnd().

 Messages are fetched from a queue by msgrcv().

 We don’t have to fetch the message in a First In 
First Out order. Instead, we can fetch messages 
based on their type field.
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XSI IPC (Message Queue)

 Each queue has the msqid_ds structure 
associated with it.
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struct msqid_ds {

struct ipc_perm msg_perm;

struct msg *msg_first;  /* first message on queue */

struct msg *msg_last;   /* last message in queue */

time_t msg_stime;       /* last msgsnd time */

time_t msg_rtime;       /* last msgrcv time */

time_t msg_ctime;       /* last change time */

struct wait_queue *wwait;

struct wait_queue *rwait;

ushort msg_cbytes;    

ushort msg_qnum;     /* number of message on queue */

ushort msg_qbytes;      /* max number of bytes on queue */

ushort msg_lspid;       /* pid of last msgsnd */

ushort msg_lrpid;       /* last receive pid */

};

XSI IPC (Message Queue)

 msg_next: This is a pointer to the next message in the queue

 msg_type: This is the message type, as assigned in the user 
structure msgbuf

 msg_spot: A pointer to the beginning of the message body.

 msg_ts: The length of the message text, or body.
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/* one msg structure for each message */

struct msg {

struct msg *msg_next;   /* next message on queue */

long msg_type;          

char *msg_spot;         /* message text address */

short msg_ts;           /* message text size */

};

XSI IPC (Message Queue)

 We can create or open a message queue.

 If a new queue is created, the msqid_ds structure 
are initiated.

◼ msg_qnum, msg_lspid, msg_lrpid, msg_stime, and 

msg_rtime are all set to 0.

◼ msg_ctime is set to the current time

◼ msg_qbyte is set to the system limit.
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#include <sys/types.h> 

#include <sys/ipc.h> 

#include <sys/msg.h> 

int msgget (key_t key, int msgflg); 

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The msgctl() system call provides a variety of 

message control operations as specified by cmd. 
◼ IPC_STAT Copies the current attributes of the message 

queue associated with msqid into the structure that buf points 
to

◼ IPC_SET Sets the attributes of the associated with msqid
from the values found in the structure that buf points to

◼ IPC_RMID Removes the message queue identifier specified 
by msqid from the system and destroys the message queue
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#include <sys/msg.h> 

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The msgsnd() function sends a message to the queue 

associated with message queue identifier msqid.

 If the call completes successfully, the following actions are 
taken with respect to msqid_ds associated with msqid: 

◼ msg_qnum is incremented by 1. 

◼ msg_lspid is set to the process ID of the calling process. 

◼ msg_stime is set to the current time. 
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#include <sys/msg.h> 

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg); 

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The argument msgp must point to a user-defined buffer 

that must contain first a field of type long int that specifies 
the type of the message, and then a data portion that holds 

the data bytes of the message. 
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#include <sys/msg.h> 

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg); 

Return key if Ok, -1 error

struct mymsg { 

long int mtype;  /* positive message type */

char mtext[n];   /* message data of n bytes */

} 
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XSI IPC (Message Queue)

 The msgrcv() function reads a message from the queue 

associated with msqid and places it in the user-defined 
structure that msgp points to.

 When successfully completed, the following actions are 

taken with respect to the data structure associated with 

msqid: 
◼ msg_qnum is decremented by 1. 

◼ msg_lrpid is set to the process ID of the calling process. 

◼ msg_rtime is set to the current time. 
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#include <sys/msg.h> 

int msgrcv(int msqid, void *msgp, int msgsz, long msgtyp, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 msgtyp Specifies the type of message requested as 

follows: 
◼ If msgtyp is 0, the first message on the queue is received. 

◼ If msgtyp is greater than 0, the first message of type equal to msgtyp

is received. 

◼ If msgtyp is less than 0, the first message of the lowest type that is 
less than or equal to the absolute value of msgtyp is received.

 msgflg Specifies the action to be taken if a message of the 

desired type is not in the queue.
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#include <sys/msg.h> 

int msgrcv(int msqid, void *msgp, int msgsz, long msgtyp, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 Kirk 

◼ Create a message queue and send messages 
as many as possible.

◼ Message queue created by Kirk will save 
messages.

 Spock

◼ Open the message queue.

◼ Receive messages from message queue.
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/* kirt.c get lines of text and added into the message queue */

/* Then, the message queue is then read by spock.c           */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

/* user message type with 200 byte per message */

struct my_msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct my_msgbuf buf;

int msqid;

key_t key;

/*create a key for create message queue */

if ((key = ftok("kirk.c", 'B')) == -1) {

perror("ftok error");

exit(1);

}

/*create a message queue */

if ((msqid = msgget(key, 0644 | IPC_CREAT)) == -1) {

perror("msgget error");

exit(1);

} 

printf("Enter lines of text, ^D to quit:\n");

buf.mtype = 1; /* we don't really care in this case, just used as FIFO*/

while(gets(buf.mtext), !feof(stdin)) {

if (msgsnd(msqid, (struct msgbuf *)&buf, sizeof(buf), 0) == -1)

perror("msgsnd error");

}

/* Now remove message queue by calling msgclt */

if (msgctl(msqid, IPC_RMID, NULL) == -1) {

perror("msgctl error");

exit(1);

}

exit(0);

}
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/*spock.c read message from the message queue */

/* created by kirt.c                          */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

struct my_msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct my_msgbuf buf;

int msqid;

key_t key;

/* create a key same as kirt.c */

if ((key = ftok("kirk.c", 'B')) == -1) {  

perror("ftok error");

exit(1);

}

/* open message queue already created by kirk.c */

if ((msqid = msgget(key, 0644)) == -1) {

perror("msgget error");

exit(1);

}

printf("spock: ready to receive messages, captain.\n");

for(;;) { 

/* get each message from the message queue */

if (msgrcv(msqid, (struct msgbuf *)&buf, sizeof(buf), 0, 0) == -1) {

perror("msgrcv error");

exit(1);

}

printf("spock: \"%s\"\n", buf.mtext);

}

return 0;

}
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XSI IPC (Shared Memory)

 There are two fundamental models of 
interprocess communication: 

◼ Shared Memory- a region of memory is shared 
by processes with read /write operations. It is 
useful for exchanging smaller amount of data 
since no conflicts need be avoided.

◼ Message Passing - communication takes place 
by means of messages exchanged between the 
cooperating processes (Message Queue). It is 
also easier to implement in a distributed 
system than shared memory.
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XSI IPC (Shared Memory)

 Shared memory can be faster than message 
passing, since message-passing systems are 
typically implemented using system calls (shared 
memory are located in user’s space).

 In shared-memory systems, system calls are 
required only to establish shared memory 
regions. 

 Once shared memory is established, all accesses 
are treated as routine memory accesses, without 
kernel’s assistance.
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…
…

XSI IPC (Shared Memory)
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XSI IPC (Shared Memory)

 Shared memory allows two or more processes to share a 

given region of memory. This is the fastest form of IPC, 
because the data does not need to be copied between the 

client and the server (or between processes).

 The only trick in using shared memory is synchronizing 

access to a given region among multiple processes. 

 Since OS does not support mutual exclusion, programmer 
must take care mutual exclusion of the region between 

multiple processes by using a semaphore.

 The kernel maintains a structure shmid_ds with at least the 

following members for each shared memory segment:
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XSI IPC (Shared Memory)
struct shmid_ds {

struct ipc_perm shm_perm;    /* Ownership and permissions */

size_t shm_segsz;   /* Size of segment (bytes) */

time_t shm_atime;   /* Last attach time */

time_t shm_dtime;   /* Last detach time */

time_t shm_ctime;   /* Last change time */

pid_t shm_cpid;    /* PID of creator */

pid_t shm_lpid;    /* PID of last shmat(2)/shmdt(2) */

shmatt_t shm_nattch;  /* No. of current attaches */

...

};

struct ipc_perm {

key_t __key;    /* Key supplied to shmget(2) */

uid_t uid;      /* Effective UID of owner */

gid_t gid;      /* Effective GID of owner */

uid_t cuid;     /* Effective UID of creator */

gid_t cgid;     /* Effective GID of creator */

unsigned short mode;     /* Permissions + SHM_DEST and

SHM_LOCKED flags */

unsigned short __seq;    /* Sequence number */

};
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XSI IPC (Shared Memory)

 Before using the shared memory what we 
needs to be done with the system calls,

◼ Create the shared memory segment or use an 
already created shared memory segment 
(shmget())

◼ Attach the process to the already created 
shared memory segment (shmat())

◼ Detach the process from the already attached 
shared memory segment (shmdt()).

◼ Control operations on the shared memory 
segment (shmctl())
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XSI IPC (Shared Memory)

 We can create or open a shared memory with shmget() system call.

 The key can be either an arbitrary value or one that can be derived from the 
library function ftok().

 The size parameter is the size of the shared memory segment in bytes.
◼ If a new segment is being created (server), we must specify its size. 

◼ If we are referencing an existing segment (a client), we can specify size as 0.

 The shmflg parameter specifies the required shared memory flags such as
◼ IPC_CREAT :creating new segment

◼ IPC_EXCL: used with IPC_CREAT to create new segment and the call fails, if the segment 
already exists).

#include <sys/shm.h>

#include <sys/ipc.h> 

int shmget (key_t key, size_t size, int shmflg); 

Return shared memory ID if Ok, -1 error
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XSI IPC (Shared Memory)

 If a new shared memory is created, the ipc_perm

structure are initiated.
◼ shm_lpid, shm_nattch, shm_atime, and shm_dtime are all set 

to 0.

◼ shm_ctime is set to the current time.

◼ shm_segsz is set to the size requested.

#include <sys/shm.h>

#include <sys/ipc.h> 

int shmget (key_t key, size_t size, int shmflg); 

Return shared memory ID if Ok, -1 error
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XSI IPC (Shared Memory)

 Once a shared memory segment has been created, a process 
attaches it to its address space by calling system call shmat().

◼ shmid: ID return by shmget() system call.

◼ addr: is to specify the attaching address. If addr is 
NULL, the system chooses the suitable address to attach 

the segment by default. If it is not NULL and SHM_RND is 

specified in flag, attach is equal to the address of the 
nearest multiple of SHMLBA(Lower Boundary Address).

#include <sys/shm.h>

#include <sys/ipc.h> 

void *shmat(int shmid, const void *addr, int flag); 

Return the address of attached shared memory if Ok, -1 error
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XSI IPC (Shared Memory)

 flag: specifies the required shared memory flags

◼ SHM_RND (rounding off address to SHMLBA) 

◼ SHM_EXEC (allows the contents of segment to be executed)

◼ SHM_RDONLY (attaches the segment for read-only purpose, by 

default it is read-write) 

◼ SHM_REMAP (replaces the existing mapping in the range 

specified by shmaddr and continuing till the end of segment).

#include <sys/shm.h>

#include <sys/ipc.h> 

void *shmat(int shmid, const void *addr, int flag); 

Return the address of attached shared memory if Ok, -1 error
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XSI IPC (Shared Memory)

 shmdt() system call detach the shared memory 

segment from the address space of calling 
process.

#include <sys/shm.h>

#include <sys/ipc.h> 

int shmdt(const void *addr); 

Return 0 if Ok, -1 error
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XSI IPC (Shared Memory)

 The shmctl function is used for various shared memory 
operations.

 The cmd argument specifies one of the following five commands 

to be performed, on the segment specified by shmid.

◼ IPC_STAT : Fetch the shmid_ds structure for this segment, storing it in the 
structure pointed to by buf.

◼ IPC_SET: Set the three fields from the structure pointed to by buf:  

shm_perm.uid, shm_perm.gid, and shm_perm.mode. (only possible to 
modify when a process is supper user or effective user id is same as 
shm_perm.cuid or shm_perm.uid)

#include <sys/shm.h> 

int shctl (int shmid, int cmd, struct shmid_ds *buf); 

Return shared memory ID or 0 if Ok, -1 error
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XSI IPC (Shared Memory)

 The cmd argument continue
◼ IPC_RMID − Marks the segment to be destroyed. The segment 

is destroyed only after the last process has detached it.

◼ IPC_INFO − Returns the information about the shared memory 
limits and parameters in the structure pointed by buf.

◼ SHM_LOCK :Lock the shared memory segment in memory. 
This command can be executed only by the superuser

◼ SHM_UNLOCK :Unlock the shared memory segment in 
memory. This command can be executed only by the 

superuser

#include <sys/shm.h> 

int shctl (int shmid, int cmd, struct shmid_ds *buf); 

Return shared memory ID if Ok, -1 error
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// header.h

#define  NOT_READY  -1

#define  FILLED     0 //when sender fill data

#define  TAKEN      1 //when receiver take data

#define  GO 2 // when sender keep sending

#define  STOP 3 // when sender stop sending data

struct student {

int id;

char lname[20];

char fname[20];

};

struct Memory {

int status; //FILLED or TAKEN

int gostop; //GO or STOP

struct student data;

};
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//buildsm.sh

#include<stdio.h>

#include<stdlib.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid;

key_t key;

struct Memory *shm;

key = ftok(".", 'x'); //create a key value

//create a shared memory 

if ((shmid = shmget(key, sizeof(struct Memory), IPC_CREAT | 0666)) <0)

{

perror("shmget error \n");

exit (1);

}

shm = (struct Memory *) shmat(shmid, NULL, 0); //attach to shared memory

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}

shm->status = NOT_READY;

shm->gostop = GO;

return 0;

}

XSI IPC (Shared Memory)
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// removesm.c

#include<stdio.h>

#include<sys/shm.h>

#include<errno.h>

#include<stdlib.h>

#include "header.h"

int main(int argc, char *argv[]) {

key_t key;

int shmid;

struct Memory shm;

key = ftok(".", 'x');

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0)

{

perror("shmget error \n");

exit (1);

}

shmctl(shmid, IPC_RMID, NULL);

return 0;

}
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//sender.c

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid;

key_t key;

struct Memory *shm;

char name[20];

int n, id, more, i;

key = ftok(".", 'x'); //get key value

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0) //open shared memory

{

perror("shmget error \n");

exit (1);

}

shm = (struct Memory *) shmat(shmid, NULL, 0); //attach to shared memory

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}

shm->gostop = GO;

shm->status = NOT_READY;
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printf("Number of Student Data?");

scanf("%d",&more);

for (i=0; i <more; i++)

{

printf("Student's ID ? ");

scanf("%d", &id);

shm->data.id = id;

printf("Last Name? ");

scanf("%s",name);

strcpy(shm->data.lname, name);

printf("First Name? ");

scanf("%s",name);

strcpy(shm->data.fname, name);

shm->status = FILLED;

while (shm->status != TAKEN)

;

printf("Data is taken by other process\n");

}

shm->gostop = STOP;

shmdt((void *) shm); //detach

return 0;

}

XSI IPC (Shared Memory)
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//receiver.c

#include<stdio.h>

#include<stdlib.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid, n, int1, int2;

key_t key;

struct Memory *shm;

key = ftok(".", 'x’); //get key value

// open existing shared memory

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0)

{

perror("shmget error \n");

exit (1);

}

//a pointer is attach to shared memory

shm = (struct Memory *) shmat(shmid, NULL, 0); 

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}
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//continue…

// read from the shared memory 

while (shm->gostop == GO)

{

while (shm->status != FILLED)

{

if (shm->gostop == STOP)

break;

;

}

printf ("Student ID: %d \n", shm->data.id);

printf ("Student Last Name: %s\n", shm->data.lname);

printf ("Student First Name: %s\n",shm->data.fname);

shm->status = TAKEN;

}

shmdt((void *) shm); //detach

return 0;

}

XSI IPC (Shared Memory)
//server.c create a shared memory and write on shared memory

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<sys/ipc.h>

#include<sys/shm.h>

#include<sys/types.h>

#include<errno.h>

#define SHSIZE 100

int main(int argc, char *argv[])

{

int shmid;

key_t key;

char *shm, *s;

key = ftok(".", 'x'); //create a key value

//create a shared memory with size 100 byte

if ((shmid = shmget(key, SHSIZE, IPC_CREAT | 0666)) <0)

{

perror("shmget error \n");

exit (1);

}

shm = shmat(shmid, NULL, 0); //attach pointer to the shared memory

if (shm == (char*) -1)

{

perror("shmat error \n");

exit (1);

}

memcpy (shm, "Hello World", 11); //write to shared memory you can use write system call

s = shm;

s+=11;

*s = 0;

while (*shm != '*’) //server will wait until client read and type * in shared memory

sleep (1);

printf("Server has detected the completion of its child...\n");

shmdt((void *) shm); //detach shared memory

printf("Server has detached its shared memory...\n");

shmctl(shmid, IPC_RMID, NULL); //remove shared memory

printf("Server has removed its shared memory...\n");

return 0;

}
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// client.c ; open shared memory and read data 

#include<string.h>

#include<sys/ipc.h>

#include<sys/shm.h>

#include<sys/types.h>

#include<errno.h>

#define SHSIZE 100

int main(int argc, char *argv[])

{

int shmid;

key_t key;

char *shm, *s;

key = ftok(".", 'x’); //create a key value

if ((shmid = shmget(key, SHSIZE,0666)) <0) //open shared variable created by server

{

perror("shmget error \n");

exit (1);

}

shm = shmat(shmid, NULL, 0); // attach a pointer to shared memory

if (shm == (char*) -1)

{

perror("shmat error \n");

exit (1);

}

for (s =shm; *s != 0; s++) //read available data from the shared memory

printf("%c", *s);

printf("\n");

*shm = '*’; // write a ‘*’ to shared memory which inform to server that client done its job

return 0;

}
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XSI IPC (Semaphore)

 A semaphore is not a form of IPC similar 
to the others (pipes, FIFOs or message 
queue, shared memory). 

 A semaphore is a counter used to protect 
to a shared data object for multiple 
processes.

 To access (read or write) a shared data 
object, a process must check semaphore.

 Modification to the a semaphore are 
executed indivisibly.
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XSI IPC (Semaphore)

 To access a shared resources, a process 
needs to do the followings:

◼ Test the semaphore that controls the 
resources.

◼ If the value of the semaphore is >0, the 
process reduce the value by 1 and access 
resources. Check and modification to the a 
semaphore are executed indivisibly.

◼ If the value of the semaphore is 0, the process 
need go to sleep on the semaphore until the 
value becomes greater than 0. 
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XSI IPC (Semaphore)

Ex)

 Lets there are two processes P1, P2

working on their job and , and two 
resource R1 and R2. 

 Both P1 and P2 need R1 and R2 to finish 
their job. 

 Each resource is associated with a 
semaphore.
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Case 1)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}
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XSI IPC (Semaphore)

Case 2)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R2);

down(&R1);

use_both_resource();

up(&R1);

up(&R2);

}
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