
10/30/2024

1

Preview

 FIFOs

 XSI IPC

◼ Message Queue

◼ Semaphore

◼ Shared Memory

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

1

FIFOs

 Pipes can be used only between related
processes when a common ancestor has
created the pipe.

 FIFOs (Named pipes) allow two unrelated
processes to communicate with each
other.

 Since FIFO is a type of file, creating a
FIFO is similar to creating a file.

 Two unrelated processes can open a FIFO
and begin communication.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

2

FIFOs

 The specification of mode argument is the
same as for the open system call.

 The rule for user and group ownership of a
FIFO are the same as in a file.

 Once we create a FIFO by using mkfifo,
we can open it by using open().

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

3

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);
Return 0 if Ok, -1 error

FIFOs

 A FIFO supports blocked read and write
operations by default: if a process opens the
FIFO for reading, it is blocked until another
process opens the FIFO for writing, and vice
versa.

 However, it is possible to make FIFOs support
non-blocking operations by specifying the
O_NONBLOCK flag while opening them.

 A FIFO must be opened either read-only or write-
only. It must not be opened for read-write
because it is half-duplex, that is, a one-way
channel.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

4

FIFOs

◼ In the normal case (O_NONBLOCK not
specified)

 An FIFO open for read-only blocks until some other

process opens the FIFO for writing.

 An FIFO open for write-only blocks until some other

process open the FIFO for reading.

◼ If O_NONBLOCK is specified

 An open for read-only returns immediately.

 An open for write-only returns –l with errno set to

ENXIO if no process has the FIFO open for reading.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

5

FIFOs

 FIFOs are used by shell commands to
pass data from one shell pipleline to
another without creating intermediate
temporary files.

 FIFOs are used as rendezvous point in
client-server applications to pass data
between the clients and the servers.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

6

10/30/2024

2

FIFOs

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

7

Server

Well-known
FIFO

client client…

write request

read request

FIFOs

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

8

Server

Well-known
FIFO

client client…

write request

read request

Client-specific
FIFO

Client-specific
FIFO

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

9

/* server.c create a FIFO to communicate with client*/

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define MAX_BUF_SIZE 255

int main(int argc, char *argv[])

{

int fd, ret_val, count, numread;

char buf[MAX_BUF_SIZE];

/* Create the FIFO(named – pipe) */

ret_val = mkfifo(HALF_DUPLEX, 0666);

if ((ret_val == -1) && (errno != EEXIST)) {

perror("Error creating the named pipe");

exit (1);

}

/* Open the FIFO for reading */

fd = open(HALF_DUPLEX, O_RDONLY);

/* Read from the FIFO */

numread = read(fd, buf, MAX_BUF_SIZE);

buf[numread] = ‘\0';

printf("Half Duplex Server : Read From the pipe : %s\n", buf);

/* Convert to the string to upper case */

count = 0;

while (count < numread) {

buf[count] = toupper(buf[count]);

count++;

}

printf("Half Duplex Server : Converted String : %s\n", buf);

return 0;

}

FIFOs

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

10

/* client.c write a string to FIFO */

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define MAX_BUF_SIZE 255

int main(int argc, char *argv[])

{

int fd;

/* Check if an argument was specified. */

if (argc != 2) {

printf("Usage : %s <string to be sent to the server>n", argv[0]);

exit (1);

}

/* Open the pipe for writing */

fd = open(HALF_DUPLEX, O_WRONLY);

/* Write to the pipe */

write(fd, argv[1], strlen(argv[1]));

return 0;

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

11

/*server1.c which receive two integer through FIFO and calculate it’s sum.

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define BFFERSIZE 20

int main(int argc, char *argv[])

{

int fd, ret_val, count, numread;

char line[BFFERSIZE];

/* Create the named - pipe */

ret_val = mkfifo(HALF_DUPLEX, 0666);

if ((ret_val == -1) && (errno != EEXIST)) {

perror("Error creating the named pipe");

exit (1);

}

/* Open the FIFO for reading */

fd = open(HALF_DUPLEX, O_RDONLY);

int int1, int2, n, sum;

while((n=read(fd, line, BFFERSIZE))>0)

{

line[n]='\0';

if (sscanf(line, "%d %d", &int1, &int2)== 2)

{

sprintf(line, "The sum is %d\n", int1+int2);

write(1, line, strlen(line));

}

else

write(1, "invalid arguments\nEnter two integers\n", 37);

}

return o;

}

FIFOs

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

12

/*client1.c which send two integer through FIFO to server1.

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#define HALF_DUPLEX "halfduplex"

#define BFFERSIZE 20

int main(int argc, char *argv[])

{

int fd, n;

char line[BFFERSIZE];

/* Open the FIFO for writing */

fd = open(HALF_DUPLEX, O_WRONLY);

printf("Enter to integers\n Press Ctrl+D to exit\n");

while(fgets(line, BFFERSIZE, stdin)!=NULL)

{

n=strlen(line);

write(fd,line,n); //pass information from to child through FIFO

}

10/30/2024

3

XSI Interprocess Communication

 There are three types of XSI IPC

◼ Message queue

◼ Semaphore

◼ Shared memory

 Each IPC structure in the kernel is referred to by
a non-negative identifier.

 When a given IPC structure is created and then
removed, the identifier associated with that
structure continually increase up to the maximum
positive integer, and then wraps around to 0.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

13

XSI Interprocess Communication

 When an XSI IPC structure is created (by
calling msgget(), semget() or shmget()),

a key must be specified.

 The data type key_t for a key is specified
in the header file <sys/types.h>.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

14

XSI Interprocess Communication

 The ftok() function return a key based on path
and id that is usable in subsequent calls to

msgget(), semget(), and shmget().

 The application shall ensure that the path
argument is the pathname of an existing file.

 Only lower 8 bit of id are used when generating a
queue (we can path a character).

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

15

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

Return key if Ok, -1 error

XSI Interprocess Communication

 XSI IPC associated with ipc_perm structure.

 This structure defines the permissions and owner
and so on.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

16

struct ipc_perm {

uid_t uid; /* owner’s effective user ID*/

gid_t gid; /* owner’s effective group ID */

uid_t cuid; /* creator effective user ID */

gid_t cgid; /* creator effective group ID */

mode_t mode /* access mode */

};

XSI Interprocess Communication

 All the fields are initialized when the IPC
structure is created.

 We can modify the uid, gid, and mode filed by
calling msgctl(), semctl() or shmctl().

 The value of mode fields are:

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

17

Operation permissions Octal value

Read by user 00400 = 000 000 100 000 000

Write by user 00200 = 000 000 010 000 000

Read by group 00040 = 000 000 000 100 000

Write by group 00020 = 000 000 000 010 000

Read by others 00004 = 000 000 000 000 100

Write by others 00002 = 000 000 000 000 010

XSI IPC (Message Queue)

 A message queue is a linked list of message
stored within the kernel’s space and identified by
a message queue ID.

 A new message queue is created or opened by
msgget().

 A new messages are added to the end of a queue
by msgsnd().

 Messages are fetched from a queue by msgrcv().

 We don’t have to fetch the message in a First In
First Out order. Instead, we can fetch messages
based on their type field.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

18

10/30/2024

4

XSI IPC (Message Queue)

 Each queue has the msqid_ds structure
associated with it.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

19

struct msqid_ds {

struct ipc_perm msg_perm;

struct msg *msg_first; /* first message on queue */

struct msg *msg_last; /* last message in queue */

time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrcv time */

time_t msg_ctime; /* last change time */

struct wait_queue *wwait;

struct wait_queue *rwait;

ushort msg_cbytes;

ushort msg_qnum; /* number of message on queue */

ushort msg_qbytes; /* max number of bytes on queue */

ushort msg_lspid; /* pid of last msgsnd */

ushort msg_lrpid; /* last receive pid */

};

XSI IPC (Message Queue)

 msg_next: This is a pointer to the next message in the queue

 msg_type: This is the message type, as assigned in the user
structure msgbuf

 msg_spot: A pointer to the beginning of the message body.

 msg_ts: The length of the message text, or body.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

20

/* one msg structure for each message */

struct msg {

struct msg *msg_next; /* next message on queue */

long msg_type;

char *msg_spot; /* message text address */

short msg_ts; /* message text size */

};

XSI IPC (Message Queue)

 We can create or open a message queue.

 If a new queue is created, the msqid_ds structure
are initiated.

◼ msg_qnum, msg_lspid, msg_lrpid, msg_stime, and

msg_rtime are all set to 0.

◼ msg_ctime is set to the current time

◼ msg_qbyte is set to the system limit.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

21

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget (key_t key, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The msgctl() system call provides a variety of

message control operations as specified by cmd.
◼ IPC_STAT Copies the current attributes of the message

queue associated with msqid into the structure that buf points
to

◼ IPC_SET Sets the attributes of the associated with msqid
from the values found in the structure that buf points to

◼ IPC_RMID Removes the message queue identifier specified
by msqid from the system and destroys the message queue

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

22

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The msgsnd() function sends a message to the queue

associated with message queue identifier msqid.

 If the call completes successfully, the following actions are
taken with respect to msqid_ds associated with msqid:

◼ msg_qnum is incremented by 1.

◼ msg_lspid is set to the process ID of the calling process.

◼ msg_stime is set to the current time.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

23

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 The argument msgp must point to a user-defined buffer

that must contain first a field of type long int that specifies
the type of the message, and then a data portion that holds

the data bytes of the message.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

24

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

Return key if Ok, -1 error

struct mymsg {

long int mtype; /* positive message type */

char mtext[n]; /* message data of n bytes */

}

10/30/2024

5

XSI IPC (Message Queue)

 The msgrcv() function reads a message from the queue

associated with msqid and places it in the user-defined
structure that msgp points to.

 When successfully completed, the following actions are

taken with respect to the data structure associated with

msqid:
◼ msg_qnum is decremented by 1.

◼ msg_lrpid is set to the process ID of the calling process.

◼ msg_rtime is set to the current time.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

25

#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, int msgsz, long msgtyp, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 msgtyp Specifies the type of message requested as

follows:
◼ If msgtyp is 0, the first message on the queue is received.

◼ If msgtyp is greater than 0, the first message of type equal to msgtyp

is received.

◼ If msgtyp is less than 0, the first message of the lowest type that is
less than or equal to the absolute value of msgtyp is received.

 msgflg Specifies the action to be taken if a message of the

desired type is not in the queue.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

26

#include <sys/msg.h>

int msgrcv(int msqid, void *msgp, int msgsz, long msgtyp, int msgflg);

Return key if Ok, -1 error

XSI IPC (Message Queue)

 Kirk

◼ Create a message queue and send messages
as many as possible.

◼ Message queue created by Kirk will save
messages.

 Spock

◼ Open the message queue.

◼ Receive messages from message queue.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

27

/* kirt.c get lines of text and added into the message queue */

/* Then, the message queue is then read by spock.c */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

/* user message type with 200 byte per message */

struct my_msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct my_msgbuf buf;

int msqid;

key_t key;

/*create a key for create message queue */

if ((key = ftok("kirk.c", 'B')) == -1) {

perror("ftok error");

exit(1);

}

/*create a message queue */

if ((msqid = msgget(key, 0644 | IPC_CREAT)) == -1) {

perror("msgget error");

exit(1);

}

printf("Enter lines of text, ^D to quit:\n");

buf.mtype = 1; /* we don't really care in this case, just used as FIFO*/

while(gets(buf.mtext), !feof(stdin)) {

if (msgsnd(msqid, (struct msgbuf *)&buf, sizeof(buf), 0) == -1)

perror("msgsnd error");

}

/* Now remove message queue by calling msgclt */

if (msgctl(msqid, IPC_RMID, NULL) == -1) {

perror("msgctl error");

exit(1);

}

exit(0);

}
COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

28

/*spock.c read message from the message queue */

/* created by kirt.c */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

struct my_msgbuf {

long mtype;

char mtext[200];

};

int main(void)

{

struct my_msgbuf buf;

int msqid;

key_t key;

/* create a key same as kirt.c */

if ((key = ftok("kirk.c", 'B')) == -1) {

perror("ftok error");

exit(1);

}

/* open message queue already created by kirk.c */

if ((msqid = msgget(key, 0644)) == -1) {

perror("msgget error");

exit(1);

}

printf("spock: ready to receive messages, captain.\n");

for(;;) {

/* get each message from the message queue */

if (msgrcv(msqid, (struct msgbuf *)&buf, sizeof(buf), 0, 0) == -1) {

perror("msgrcv error");

exit(1);

}

printf("spock: \"%s\"\n", buf.mtext);

}

return 0;

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

29

XSI IPC (Shared Memory)

 There are two fundamental models of
interprocess communication:

◼ Shared Memory- a region of memory is shared
by processes with read /write operations. It is
useful for exchanging smaller amount of data
since no conflicts need be avoided.

◼ Message Passing - communication takes place
by means of messages exchanged between the
cooperating processes (Message Queue). It is
also easier to implement in a distributed
system than shared memory.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

30

10/30/2024

6

XSI IPC (Shared Memory)

 Shared memory can be faster than message
passing, since message-passing systems are
typically implemented using system calls (shared
memory are located in user’s space).

 In shared-memory systems, system calls are
required only to establish shared memory
regions.

 Once shared memory is established, all accesses
are treated as routine memory accesses, without
kernel’s assistance.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

31

…
…

XSI IPC (Shared Memory)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

32

Process A

Process B

Shared memory

kernel Kernel’s space

Process A

Process B

kernel

…
…

m0 mnm1 m2 …

Message queue in

kernels space

Kernel’s space

Communication Model

Shared memory Message Passing

XSI IPC (Shared Memory)

 Shared memory allows two or more processes to share a

given region of memory. This is the fastest form of IPC,
because the data does not need to be copied between the

client and the server (or between processes).

 The only trick in using shared memory is synchronizing

access to a given region among multiple processes.

 Since OS does not support mutual exclusion, programmer
must take care mutual exclusion of the region between

multiple processes by using a semaphore.

 The kernel maintains a structure shmid_ds with at least the

following members for each shared memory segment:

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

33

XSI IPC (Shared Memory)
struct shmid_ds {

struct ipc_perm shm_perm; /* Ownership and permissions */

size_t shm_segsz; /* Size of segment (bytes) */

time_t shm_atime; /* Last attach time */

time_t shm_dtime; /* Last detach time */

time_t shm_ctime; /* Last change time */

pid_t shm_cpid; /* PID of creator */

pid_t shm_lpid; /* PID of last shmat(2)/shmdt(2) */

shmatt_t shm_nattch; /* No. of current attaches */

...

};

struct ipc_perm {

key_t __key; /* Key supplied to shmget(2) */

uid_t uid; /* Effective UID of owner */

gid_t gid; /* Effective GID of owner */

uid_t cuid; /* Effective UID of creator */

gid_t cgid; /* Effective GID of creator */

unsigned short mode; /* Permissions + SHM_DEST and

SHM_LOCKED flags */

unsigned short __seq; /* Sequence number */

};

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

34

XSI IPC (Shared Memory)

 Before using the shared memory what we
needs to be done with the system calls,

◼ Create the shared memory segment or use an
already created shared memory segment
(shmget())

◼ Attach the process to the already created
shared memory segment (shmat())

◼ Detach the process from the already attached
shared memory segment (shmdt()).

◼ Control operations on the shared memory
segment (shmctl())

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

35

XSI IPC (Shared Memory)

 We can create or open a shared memory with shmget() system call.

 The key can be either an arbitrary value or one that can be derived from the
library function ftok().

 The size parameter is the size of the shared memory segment in bytes.
◼ If a new segment is being created (server), we must specify its size.

◼ If we are referencing an existing segment (a client), we can specify size as 0.

 The shmflg parameter specifies the required shared memory flags such as
◼ IPC_CREAT :creating new segment

◼ IPC_EXCL: used with IPC_CREAT to create new segment and the call fails, if the segment
already exists).

#include <sys/shm.h>

#include <sys/ipc.h>

int shmget (key_t key, size_t size, int shmflg);

Return shared memory ID if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

36

10/30/2024

7

XSI IPC (Shared Memory)

 If a new shared memory is created, the ipc_perm

structure are initiated.
◼ shm_lpid, shm_nattch, shm_atime, and shm_dtime are all set

to 0.

◼ shm_ctime is set to the current time.

◼ shm_segsz is set to the size requested.

#include <sys/shm.h>

#include <sys/ipc.h>

int shmget (key_t key, size_t size, int shmflg);

Return shared memory ID if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

37

XSI IPC (Shared Memory)

 Once a shared memory segment has been created, a process
attaches it to its address space by calling system call shmat().

◼ shmid: ID return by shmget() system call.

◼ addr: is to specify the attaching address. If addr is
NULL, the system chooses the suitable address to attach

the segment by default. If it is not NULL and SHM_RND is

specified in flag, attach is equal to the address of the
nearest multiple of SHMLBA(Lower Boundary Address).

#include <sys/shm.h>

#include <sys/ipc.h>

void *shmat(int shmid, const void *addr, int flag);

Return the address of attached shared memory if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

38

XSI IPC (Shared Memory)

 flag: specifies the required shared memory flags

◼ SHM_RND (rounding off address to SHMLBA)

◼ SHM_EXEC (allows the contents of segment to be executed)

◼ SHM_RDONLY (attaches the segment for read-only purpose, by

default it is read-write)

◼ SHM_REMAP (replaces the existing mapping in the range

specified by shmaddr and continuing till the end of segment).

#include <sys/shm.h>

#include <sys/ipc.h>

void *shmat(int shmid, const void *addr, int flag);

Return the address of attached shared memory if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

39

XSI IPC (Shared Memory)

 shmdt() system call detach the shared memory

segment from the address space of calling
process.

#include <sys/shm.h>

#include <sys/ipc.h>

int shmdt(const void *addr);

Return 0 if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

40

XSI IPC (Shared Memory)

 The shmctl function is used for various shared memory
operations.

 The cmd argument specifies one of the following five commands

to be performed, on the segment specified by shmid.

◼ IPC_STAT : Fetch the shmid_ds structure for this segment, storing it in the
structure pointed to by buf.

◼ IPC_SET: Set the three fields from the structure pointed to by buf:

shm_perm.uid, shm_perm.gid, and shm_perm.mode. (only possible to
modify when a process is supper user or effective user id is same as
shm_perm.cuid or shm_perm.uid)

#include <sys/shm.h>

int shctl (int shmid, int cmd, struct shmid_ds *buf);

Return shared memory ID or 0 if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

41

XSI IPC (Shared Memory)

 The cmd argument continue
◼ IPC_RMID − Marks the segment to be destroyed. The segment

is destroyed only after the last process has detached it.

◼ IPC_INFO − Returns the information about the shared memory
limits and parameters in the structure pointed by buf.

◼ SHM_LOCK :Lock the shared memory segment in memory.
This command can be executed only by the superuser

◼ SHM_UNLOCK :Unlock the shared memory segment in
memory. This command can be executed only by the

superuser

#include <sys/shm.h>

int shctl (int shmid, int cmd, struct shmid_ds *buf);

Return shared memory ID if Ok, -1 error

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

42

10/30/2024

8

XSI IPC (Shared Memory)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

43

// header.h

#define NOT_READY -1

#define FILLED 0 //when sender fill data

#define TAKEN 1 //when receiver take data

#define GO 2 // when sender keep sending

#define STOP 3 // when sender stop sending data

struct student {

int id;

char lname[20];

char fname[20];

};

struct Memory {

int status; //FILLED or TAKEN

int gostop; //GO or STOP

struct student data;

};

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

44

//buildsm.sh

#include<stdio.h>

#include<stdlib.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid;

key_t key;

struct Memory *shm;

key = ftok(".", 'x'); //create a key value

//create a shared memory

if ((shmid = shmget(key, sizeof(struct Memory), IPC_CREAT | 0666)) <0)

{

perror("shmget error \n");

exit (1);

}

shm = (struct Memory *) shmat(shmid, NULL, 0); //attach to shared memory

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}

shm->status = NOT_READY;

shm->gostop = GO;

return 0;

}

XSI IPC (Shared Memory)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

45

// removesm.c

#include<stdio.h>

#include<sys/shm.h>

#include<errno.h>

#include<stdlib.h>

#include "header.h"

int main(int argc, char *argv[]) {

key_t key;

int shmid;

struct Memory shm;

key = ftok(".", 'x');

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0)

{

perror("shmget error \n");

exit (1);

}

shmctl(shmid, IPC_RMID, NULL);

return 0;

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

46

//sender.c

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid;

key_t key;

struct Memory *shm;

char name[20];

int n, id, more, i;

key = ftok(".", 'x'); //get key value

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0) //open shared memory

{

perror("shmget error \n");

exit (1);

}

shm = (struct Memory *) shmat(shmid, NULL, 0); //attach to shared memory

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}

shm->gostop = GO;

shm->status = NOT_READY;

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

47

printf("Number of Student Data?");

scanf("%d",&more);

for (i=0; i <more; i++)

{

printf("Student's ID ? ");

scanf("%d", &id);

shm->data.id = id;

printf("Last Name? ");

scanf("%s",name);

strcpy(shm->data.lname, name);

printf("First Name? ");

scanf("%s",name);

strcpy(shm->data.fname, name);

shm->status = FILLED;

while (shm->status != TAKEN)

;

printf("Data is taken by other process\n");

}

shm->gostop = STOP;

shmdt((void *) shm); //detach

return 0;

}

XSI IPC (Shared Memory)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

48

//receiver.c

#include<stdio.h>

#include<stdlib.h>

#include<sys/shm.h>

#include<errno.h>

#include "header.h"

int main(int argc, char *argv[])

{

int shmid, n, int1, int2;

key_t key;

struct Memory *shm;

key = ftok(".", 'x’); //get key value

// open existing shared memory

if ((shmid = shmget(key, sizeof(struct Memory), 0)) <0)

{

perror("shmget error \n");

exit (1);

}

//a pointer is attach to shared memory

shm = (struct Memory *) shmat(shmid, NULL, 0);

if ((long)shm == -1)

{

perror("shmat error \n");

exit (1);

}

10/30/2024

9

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

49

//continue…

// read from the shared memory

while (shm->gostop == GO)

{

while (shm->status != FILLED)

{

if (shm->gostop == STOP)

break;

;

}

printf ("Student ID: %d \n", shm->data.id);

printf ("Student Last Name: %s\n", shm->data.lname);

printf ("Student First Name: %s\n",shm->data.fname);

shm->status = TAKEN;

}

shmdt((void *) shm); //detach

return 0;

}

XSI IPC (Shared Memory)
//server.c create a shared memory and write on shared memory

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<sys/ipc.h>

#include<sys/shm.h>

#include<sys/types.h>

#include<errno.h>

#define SHSIZE 100

int main(int argc, char *argv[])

{

int shmid;

key_t key;

char *shm, *s;

key = ftok(".", 'x'); //create a key value

//create a shared memory with size 100 byte

if ((shmid = shmget(key, SHSIZE, IPC_CREAT | 0666)) <0)

{

perror("shmget error \n");

exit (1);

}

shm = shmat(shmid, NULL, 0); //attach pointer to the shared memory

if (shm == (char*) -1)

{

perror("shmat error \n");

exit (1);

}

memcpy (shm, "Hello World", 11); //write to shared memory you can use write system call

s = shm;

s+=11;

*s = 0;

while (*shm != '*’) //server will wait until client read and type * in shared memory

sleep (1);

printf("Server has detected the completion of its child...\n");

shmdt((void *) shm); //detach shared memory

printf("Server has detached its shared memory...\n");

shmctl(shmid, IPC_RMID, NULL); //remove shared memory

printf("Server has removed its shared memory...\n");

return 0;

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

50

// client.c ; open shared memory and read data

#include<string.h>

#include<sys/ipc.h>

#include<sys/shm.h>

#include<sys/types.h>

#include<errno.h>

#define SHSIZE 100

int main(int argc, char *argv[])

{

int shmid;

key_t key;

char *shm, *s;

key = ftok(".", 'x’); //create a key value

if ((shmid = shmget(key, SHSIZE,0666)) <0) //open shared variable created by server

{

perror("shmget error \n");

exit (1);

}

shm = shmat(shmid, NULL, 0); // attach a pointer to shared memory

if (shm == (char*) -1)

{

perror("shmat error \n");

exit (1);

}

for (s =shm; *s != 0; s++) //read available data from the shared memory

printf("%c", *s);

printf("\n");

shm = '’; // write a ‘*’ to shared memory which inform to server that client done its job

return 0;

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

51

XSI IPC (Semaphore)

 A semaphore is not a form of IPC similar
to the others (pipes, FIFOs or message
queue, shared memory).

 A semaphore is a counter used to protect
to a shared data object for multiple
processes.

 To access (read or write) a shared data
object, a process must check semaphore.

 Modification to the a semaphore are
executed indivisibly.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

52

XSI IPC (Semaphore)

 To access a shared resources, a process
needs to do the followings:

◼ Test the semaphore that controls the
resources.

◼ If the value of the semaphore is >0, the
process reduce the value by 1 and access
resources. Check and modification to the a
semaphore are executed indivisibly.

◼ If the value of the semaphore is 0, the process
need go to sleep on the semaphore until the
value becomes greater than 0.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

53

XSI IPC (Semaphore)

Ex)

 Lets there are two processes P1, P2

working on their job and , and two
resource R1 and R2.

 Both P1 and P2 need R1 and R2 to finish
their job.

 Each resource is associated with a
semaphore.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

54

10/30/2024

10

XSI IPC (Semaphore)

Case 1)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

55

XSI IPC (Semaphore)

Case 2)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R2);

down(&R1);

use_both_resource();

up(&R1);

up(&R2);

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

56

