
11/6/2024

1

Preview

 Producer-Consumer Problem

◼ Race condition in Producer-Consumer Problem

 Semaphores

◼ Concept of Semaphores

◼ Semaphore Operation

◼ Producer-Consumer Problem with Semaphore

 Dinning Philosopher’s Problems

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

1

The Producer-Consumer Problem

 The producer-consumer problem is a classic
example of a multi-process synchronization
problem

Description
◼ Two processes (or threads) share a common, fixed-sized

buffer.

◼ Producer puts information into the buffer, and consumer
takes it out.

Troubles arises
◼ When the producer wants to put a new item in the

buffer, but it is already full.

◼ When the consumer tries to take a item from the buffer,
but buffer is already empty.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

2

The Producer-Consumer Problem

 When the producer wants to put a new
item in the buffer, but it is already full.
◼ Solution – producer is go to sleep, awakened

by consumer when consumer has removed on
or more items.

 When the consumer tries to take a item
from the buffer, but buffer is already
empty.
◼ Solution – consumer is go to sleep, awakened

by the producer when producer puts one or
more information into the buffer.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

3

The Producer-Consumer Problem
#define N 100

int count = 0;

void producer()

{

int item

while (true)

{

item = produce_item();

if (count == N)

sleep();

insert_item(item)

count = count + 1;

if (count ==1)

wakeup(consumer);

}

}

void consumer()

{

int item;

while(true)

{

if (count == 0)

sleep();

item = remove_item();

count = count – 1;

if (count == N – 1)

wakeup(producer);

consume_item(item);

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

4

Race condition
(in producer-consumer problems)

1. At time T0 buffer is empty (count = 0)

2. The consumer just read count = 0, since the consumer’s
CPU time is over, scheduler assign a CPU time to producer.

3. Producer produce item and check count, count = 0. insert
item to buffer. Increase count = count +1. since count =1,
it calls wakeup(consumer). Since the consumer is not
sleeping yet, consumer miss the wakeup signal.

4. The consumer get CPU time. Consumer already read
count =0, consumer go to sleep

5. the producer keep produce items and finally buffer
become full. The producer go to sleep

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

5

Semaphores – by E. W. Dijkstra

 A semaphore is an integer variable which
could have value

◼ 0: no wakeups are saved

◼ + i: i wakeups are pending

 A semaphore is accessed only through two
standard atomic operations down (or P)
and up (or V).

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

6

11/6/2024

2

Concept of Semaphores

 Modification to the integer value of the
semaphore in the down and up operations
are executed indivisibly.

 Which means that when a process is
modifying the semaphore value, no other
process can simultaneously modify that
same semaphore value.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

7

Semaphore Operation

void down (S)

{

If S ≤ 0

{
1. Add this process to the

sleeping list (queue)

2. block;

}

S = S – 1;

}

void up (S)

{

S = S + 1;

If S = 1

{
1. choose one process P

from the sleeping list

2. wakeup(P) to finish down
operation

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

8

Process Scheduling
(Scheduling Queues)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

9

Ready Queue CPU

I/O

Interrupt
Occur

Child

terminate

I/O request

Time term
expired

Semaphore value
is zero

Wait for interrupt

Create child
process

I/O wait Queue

Child termination
wait Queue

Interrupt
wait Queue

Semaphore
wait Queue

Semaphore

>0

… …

Queueing-diagram of process
scheduling

Semaphore Implementation

The normal way for implementing a
semaphore

 Implement semaphore operations up and
down as system call.

 operating system briefly disabling all
interrupts while it is testing the
semaphore, updating it and putting the
process to sleep.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

10

Usages of semaphore

semaphore mutex = 1

repeat

down (mutex);

up (mutex);

until false

void down (S)

{

If S ≤ 0

{

1. Add this process to the sleeping list

2. block;

}

S = S – 1;

}

void up (S)

{

S = S + 1;

If S = 1

{

1. choose one process P from the
sleeping list

2. wakeup(P) to finish down operation

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

11

Critical Section

Remainder Section

Solving the Producer-Consumer

Problem using Semaphores
#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;
void producer ()
{

int item;

while (ture)
{

item = produce_item();

down (&empty);
down (&mutex);
insert_item(item);
up(&mutex);
up(&full);

}
}

void consumer()
{

int item;

while (true)
{

down(&full)
down(&mutex)
item = remove_item();
up(&mutex);
up(&empty);
consume_item(item);

}
}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

12

11/6/2024

3

Dining Philosophers Problem

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

13

