
11/6/2024

1

Preview

 Producer-Consumer Problem

◼ Race condition in Producer-Consumer Problem

 Semaphores

◼ Concept of Semaphores

◼ Semaphore Operation

◼ Producer-Consumer Problem with Semaphore

 Dinning Philosopher’s Problems

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

1

The Producer-Consumer Problem

 The producer-consumer problem is a classic
example of a multi-process synchronization
problem

Description
◼ Two processes (or threads) share a common, fixed-sized

buffer.

◼ Producer puts information into the buffer, and consumer
takes it out.

Troubles arises
◼ When the producer wants to put a new item in the

buffer, but it is already full.

◼ When the consumer tries to take a item from the buffer,
but buffer is already empty.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

2

The Producer-Consumer Problem

 When the producer wants to put a new
item in the buffer, but it is already full.
◼ Solution – producer is go to sleep, awakened

by consumer when consumer has removed on
or more items.

 When the consumer tries to take a item
from the buffer, but buffer is already
empty.
◼ Solution – consumer is go to sleep, awakened

by the producer when producer puts one or
more information into the buffer.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

3

The Producer-Consumer Problem
#define N 100

int count = 0;

void producer()

{

int item

while (true)

{

item = produce_item();

if (count == N)

sleep();

insert_item(item)

count = count + 1;

if (count ==1)

wakeup(consumer);

}

}

void consumer()

{

int item;

while(true)

{

if (count == 0)

sleep();

item = remove_item();

count = count – 1;

if (count == N – 1)

wakeup(producer);

consume_item(item);

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

4

Race condition
(in producer-consumer problems)

1. At time T0 buffer is empty (count = 0)

2. The consumer just read count = 0, since the consumer’s
CPU time is over, scheduler assign a CPU time to producer.

3. Producer produce item and check count, count = 0. insert
item to buffer. Increase count = count +1. since count =1,
it calls wakeup(consumer). Since the consumer is not
sleeping yet, consumer miss the wakeup signal.

4. The consumer get CPU time. Consumer already read
count =0, consumer go to sleep

5. the producer keep produce items and finally buffer
become full. The producer go to sleep

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

5

Semaphores – by E. W. Dijkstra

 A semaphore is an integer variable which
could have value

◼ 0: no wakeups are saved

◼ + i: i wakeups are pending

 A semaphore is accessed only through two
standard atomic operations down (or P)
and up (or V).

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

6

11/6/2024

2

Concept of Semaphores

 Modification to the integer value of the
semaphore in the down and up operations
are executed indivisibly.

 Which means that when a process is
modifying the semaphore value, no other
process can simultaneously modify that
same semaphore value.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

7

Semaphore Operation

void down (S)

{

If S ≤ 0

{
1. Add this process to the

sleeping list (queue)

2. block;

}

S = S – 1;

}

void up (S)

{

S = S + 1;

If S = 1

{
1. choose one process P

from the sleeping list

2. wakeup(P) to finish down
operation

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

8

Process Scheduling
(Scheduling Queues)

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

9

Ready Queue CPU

I/O

Interrupt
Occur

Child

terminate

I/O request

Time term
expired

Semaphore value
is zero

Wait for interrupt

Create child
process

I/O wait Queue

Child termination
wait Queue

Interrupt
wait Queue

Semaphore
wait Queue

Semaphore

>0

… …

Queueing-diagram of process
scheduling

Semaphore Implementation

The normal way for implementing a
semaphore

 Implement semaphore operations up and
down as system call.

 operating system briefly disabling all
interrupts while it is testing the
semaphore, updating it and putting the
process to sleep.

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

10

Usages of semaphore

semaphore mutex = 1

repeat

down (mutex);

up (mutex);

until false

void down (S)

{

If S ≤ 0

{

1. Add this process to the sleeping list

2. block;

}

S = S – 1;

}

void up (S)

{

S = S + 1;

If S = 1

{

1. choose one process P from the
sleeping list

2. wakeup(P) to finish down operation

}

}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

11

Critical Section

Remainder Section

Solving the Producer-Consumer

Problem using Semaphores
#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;
void producer ()
{

int item;

while (ture)
{

item = produce_item();

down (&empty);
down (&mutex);
insert_item(item);
up(&mutex);
up(&full);

}
}

void consumer()
{

int item;

while (true)
{

down(&full)
down(&mutex)
item = remove_item();
up(&mutex);
up(&empty);
consume_item(item);

}
}

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

12

11/6/2024

3

Dining Philosophers Problem

COSC350 System Software, Fall 2024

Dr. Sang-Eon Park

13

