
9/22/2020

1

Review

 Command Line Argument

 sat, fsat, lsat system Call

 ID’s for a process

 File Access permission

 access System Call

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

1

Preview

 umask() system call

 chmod(), fchmod() system call

 File truncation with truncate()

 File system in Linux

 link(), unlink() system calls

 remove() and rename() system calls

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

2

A System Call umask

 Nine permission bits are associated with a file.

 A umask system call set the file mode creation mask for the
process and return the previous value

 Prototype

 Most user does not deal with umask value.

 When writing a programs that create new files, if we want
to assure that specific access permission bits are not

enabled, we must modify the umask value while the

process is running.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

3

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

Returns: previous file mode creation

A System Call umask()

 We can check current mask value with shell command
umask. It shows current mask value for file creation.

 If the mask is cleared (0000) then we can create a file with
any mode.

 But if mask is (0020), write protected for group. A file will

be created without group write permission.

 touch shell command create a file with rw-rw-rw with

cleared mask. But if mask is 0022, a file will be created
with rw-r—r--.

 When writing a programs that create new files, if we want

to assure that specific access permission, you must clear

the file mode creation mask by umask() system call before
creating a new file.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

4

A System Call umask()

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

5 COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

6

/***

umask.c : change a file permission inside a process

***/

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

int main ()

{

umask(0);

if (creat("foo",S_IRUSR |S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) <0)

err_sys ("creat Error for foo ");

umask(S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH); */ same as 0033 */

if (creat ("bar",S_IRUSR |S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) <0)

err_sys ("creat Error for bar ");

exit(0);

}

9/22/2020

2

chmod, fchmod System Call

 These two function allow us to change the file
access permissions for an existing file.

 fchmod() operate on a file that has already

opened.

Prototype:

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

7

#include<sys/types.h>

#include<sys/stat.h>

int chmod (const char *pathname, mode_t mode)

int fchmod (int filedes, mode_t mode)

Return 0 if OK, - 1 on a error

chmod, fchmod System Call

 To change the permission bit of a file, the
effective user ID of the process must
equal the owner of the file or process
must have superuser permission.

 Since chmod() only update only the time
that the i-node was last changed, the time
a file was modified will not change.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

8

chmod, fchmod System Call

 The mode constants for chmod from <sys/sat.h>

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

9 COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

10

//chmode.c demonstrate how to use fchmod() system call

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

void err_sys(char *str)

{

printf ("%s",str);

exit (1);

}

int main()

{

int fd;

struct stat info;

umask(0);

if ((fd = creat("test.file", 0660)) <0) //rw-rw----

err_sys("Creat File Open Error");

fstat(fd, &info);

printf("original permissions were: %o\n", info.st_mode);

if (fchmod(fd, 0770) != 0) //rwxrwx---

err_sys("chmod() error");

fstat(fd, &info);

printf("after chmod(), permissions are: %o\n", info.st_mode);

close(fd);

}

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

11

/*chmodex.c demonstrate how to use chmod system call*/

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

int main()

{

struct stat buff;

/*turn on set-group-ID and turn off group execute */

if (stat ("foo", &buff) < 0)

err_sys("stat error for foo");

if (chmod ("foo", (buff.st_mode & -S_IXGRP) |S_ISGID) <0)

err_sys("chomd error for foo");

/*set absolute mode to "rw-r-----" */

if (chmod ("bar", S_IRUSR|S_IWUSR|S_IRGRP) < 0)

err_sys("chmod error for bar");

exit (0);

}

chmod, fchmod System Call

Sticky bit : S_ISVTX

 If a sticky bit for an executable file is set,
then the first time the program was
executed, a copy of the executable file
was saved into swap area when the
process terminate.

 If this process become active again, it will
be loaded from the swap area in the
memory.

 Text editor, C compiler,…
COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

12

9/22/2020

3

chmod, fchmod System Call

 If we try to set the sticky bit of a regular
file, the sticky bit in the mode is
automatically turned off.

 Only super user can turn on sticky bit to
prevent malicious users from setting the
sticky bit and trying to fill up the swap
area..

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

13

chown, fchown, lchown System Call

 The chown functions allows us to change the user ID and

group ID of a file.

 Unix only allows super user to change the ownership of a
file.

 Prototype:

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

14

#include <sys/types.h>

#include <unistd.h>

int chown (const char *pathname, uid_t owner, gid_t group);

int fchown (int filedes, uid_t owner, gid_t group);

/*change ownership of symbolic link) */

int lchown (const char *pathname, uid_t owner, gid_t group);

Return 0 if OK, else return -1

File truncation with truncate()

 We can chopping off data at the end of file
by using truncate() system call.

 If the previous size of the file was greater than length, the
data beyond length is no longer accessible.

 If the previous size was less than length, the file size will

increase and the data between the old end of file and the

new end of file will read as 0

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

15

#include <sys/types.h>

#include <unistd.h>

int truncate (const char *pathname, off_t length);

int ftruncate (int fd, off_t length);

Return 0 if OK, else return -1

File truncation with truncate()

 Test with following program with two text file.

◼ Text file “aaa” contains 20 character

◼ Text file “bbb” contains 10 character

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

16

#include <unistd.h>

#include<sys/types.h>

int main()

{

truncate ("aaa", 10);

truncate ("bbb", 20);

return 0;

}

File System

 Various implementations of the UNIX file system
are in use today.

 We can think of a disk drive being divided into
one or more partitions. Each partition can contain
a file system

 The i-nodes are fixed-length entries that contain
most of the information about a file.

◼ Attributes

◼ Block addresses used to save a file.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

17

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

18

partition partition partition

i-node list Directory and data blocks

Boot block

Super block

i-node1 i-node2 … i-noden

Disk drive

File system

9/22/2020

4

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

19

File System

 Following figure shows the i-node and data block portion of

partition in more detail.

 Two directory entries point to the same i-node entry.

 Every i-node has a link count that contains the number of
directory entries that point to it. The link count is contained

in the st_nlink in the stat data structure

 A file be deleted when the link count is 0.

 Unlinking means delete a file entry from a directory.

 If link count is > 1, unlinking file does not delete the file.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

20

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

21

i-node list Data
block

Direct
block

Data
block

Direct
Block

Data
block

i-node
number

i-node0 i-node1 … i-noden

File name

i-node
number

File name

Data and Directory Block

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

22

struct stat {
mode_t st_mode; /*file type & mode (permissions) */

ino_t st_ino; /* i-node number */
dev_t st_dev; /* device number (file system) */

dev_t st_rdev; /* device number for special files */
nlink_t st_nlink; /* number of links */

uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */

off_t st_size; /* size in bytes, for regular files */
time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last file status change */

blksize_t st_blksize; /* best I/O block size */
blkcnt_t st_blocks; /*number of 512 byte blocks allocated */

mode_t st_attr; /* The DOS-style attributes for this file */
};

File System

 The i-node contains most of information
(attributes) about the file: the file type,
the file’s access permission bit,…and so
on.

 But only two information are stored in the
directory entry: the filename and the i-
node number.

 When move a file from one directory to
another directory need only change
directory entry point.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

23

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

24

9/22/2020

5

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

25

i-node list Data
block

Data
block

Direct
Block

i-node
number

i-node i-node … i-node

separk

i-node
number

foo

Direct
block

i-node
number

home

/

i-node

home separk

Move /home/separk/foo to /home/foo

Data and Directory Block

/
directory

File System

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

26

Data
block

Data
block

Direct
Block

i-node
number

i-node i-node … i-node

separk

i-node
number

foo

Direct
block

i-node
number

home

/

i-node

home separk

Move /home/separk/foo to /home/foo

Data and Directory Block

i-node list
/

directory

link, unlink, remove and rename

 Any file can have multiple directory entries
pointing to its i-node.

 The way we can create a link to an
existing file is with the link system call.

 Prototype:

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

27

#include <unistd.h>

int link (const char *existingpath, const char *newpath)

Return 0 if there is no error, else retun -1

link, unlink, remove and rename

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

28

// creatlink.c two path to create a new pass from different location

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

//

int main (int argc, char *argv[])

{

struct stat buff;

if (argc < 2)

err_sys ("Less than two argument Error");

/* increase the number of link by one */

if (stat (argv[1], &buff) < 0)

err_sys("stat error for foo");

printf ("link count for a file %s was %d \n",argv[1], buff.st_nlink);

if (link (argv[1], argv[2]) <0)

err_sys("Link Error");

if (stat (argv[1], &buff) < 0)

err_sys("stat error for foo");

printf ("link count for a file %s is now %d \n",argv[1], buff.st_nlink);

return 0;

}

link, unlink, remove and rename

 The link() system call create a new
directory entry newpath that references
the existing file existingpath.

 The creation and increment of the link
count be done automatically by kernel.

 Only a superuser process can create a
new link that points to a directory.
Because link system calls can cause loops
in the filesystem.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

29

link, unlink, remove and rename

 By using the unlink system call, we can
remove an existing directory entry.

 Prototype:

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

30

#include <unistd.h>

int unlink (const char *pathname)

return 0 if no error, return -1 if error

9/22/2020

6

link, unlink, remove and rename

 The unlink system call removes the
directory entry and decrement the link
count of the file referenced by pathname.

 To unlink a file, we must have write
permission and execute permission in the
directory containing the directory entry.

COSC350 System Software, Fall 2020

Dr. Sang-Eon Park

31

