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Review

 Command Line Argument

 sat, fsat, lsat system Call

 ID’s for a process

 File Access permission

 access System Call
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Preview

 umask() system call

 chmod(), fchmod() system call

 File truncation with truncate()

 File system in Linux

 link(), unlink() system calls

 remove() and rename() system calls
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A System Call umask

 Nine permission bits are associated with a file.

 A umask system call set the file mode creation mask for the 
process and return the previous value

 Prototype

 Most user does not deal with umask value.

 When writing a programs that create new files, if we want 
to assure that specific access permission bits are not 

enabled, we must modify the umask value while the 

process is running.
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#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);

Returns: previous file mode creation

A System Call umask()

 We can check current mask value with shell command 
umask. It shows current mask value for file creation.

 If the mask is cleared (0000) then we can create a file with 
any mode.

 But if mask is (0020), write protected for group.  A file will 

be created without group write permission.

 touch shell command create a file with rw-rw-rw with 

cleared mask. But if mask is 0022, a file will be created 
with rw-r—r--.

 When writing a programs that create new files, if we want 

to assure that specific access permission, you must clear 

the file mode creation mask by umask() system call before 
creating a new file.
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A System Call umask()
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/*******************************************************

umask.c : change a file permission inside a process 

*******************************************************/

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

int main ()

{

umask(0);

if (creat("foo",S_IRUSR |S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) <0)

err_sys ("creat Error for foo ");

umask(S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH); */ same as 0033 */

if (creat ("bar",S_IRUSR |S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) <0)

err_sys ("creat Error for bar ");

exit(0);

}
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chmod, fchmod System Call

 These two function allow us to change the file 
access permissions for an existing file.

 fchmod() operate on a file that has already 

opened.

Prototype:
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#include<sys/types.h>

#include<sys/stat.h>

int chmod (const char *pathname, mode_t mode)

int fchmod (int filedes, mode_t mode)

Return 0 if OK, - 1 on a error

chmod, fchmod System Call

 To change the permission bit of a file, the 
effective user ID of the process must 
equal the owner of the file or process 
must have superuser permission.

 Since chmod() only update only the time 
that the i-node was last changed, the time 
a file was modified will not change.
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chmod, fchmod System Call

 The mode constants for chmod from <sys/sat.h>
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//chmode.c demonstrate how to use fchmod() system call

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

void err_sys(char *str)

{

printf ("%s",str);

exit (1);

}

int main() 

{

int fd;

struct stat info;

umask(0);

if ((fd = creat("test.file", 0660)) <0) //rw-rw----

err_sys("Creat File Open Error");

fstat(fd, &info);

printf("original permissions were: %o\n", info.st_mode);

if (fchmod(fd, 0770) != 0) //rwxrwx---

err_sys("chmod() error");

fstat(fd, &info);

printf("after chmod(), permissions are: %o\n", info.st_mode);

close(fd);

}
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/*chmodex.c  demonstrate how to use chmod system call*/

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

int main()

{

struct stat buff;

/*turn on set-group-ID and turn off group execute */

if (stat ("foo", &buff) < 0)

err_sys("stat error for foo");

if (chmod ("foo", (buff.st_mode & -S_IXGRP) |S_ISGID) <0)

err_sys("chomd error for foo");

/*set absolute mode to "rw-r-----" */

if (chmod ("bar", S_IRUSR|S_IWUSR|S_IRGRP) < 0)

err_sys("chmod error for bar");

exit (0);

}

chmod, fchmod System Call

Sticky bit : S_ISVTX

 If a sticky bit for an executable file is set, 
then the first time the program was 
executed, a copy of the executable file  
was saved into swap area when the 
process terminate.

 If this process become active again, it will 
be loaded from the swap area in the 
memory.

 Text editor, C compiler,… 
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chmod, fchmod System Call

 If we try to set the sticky bit of a regular 
file, the sticky bit in the mode is 
automatically turned off.

 Only super user can turn on sticky bit to 
prevent malicious users from setting the 
sticky bit and trying to fill up the swap 
area..
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chown, fchown, lchown System Call

 The chown functions allows us to change the user ID and 

group ID of a file.

 Unix only allows super user to change the ownership of a 
file.

 Prototype:
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#include <sys/types.h>

#include <unistd.h>

int chown (const char *pathname, uid_t owner, gid_t group);

int fchown (int filedes, uid_t owner, gid_t group);

/*change ownership of symbolic link) */

int lchown (const char *pathname, uid_t owner, gid_t group);

Return 0 if OK, else return -1

File truncation with truncate()

 We can chopping off data at the end of file 
by using truncate() system call.

 If the previous size of the file was greater than length, the 
data beyond length is no longer accessible. 

 If the previous size was less than length, the file size will 

increase and the data between the old end of file and the 

new end of file will read as 0
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#include <sys/types.h>

#include <unistd.h>

int truncate (const char *pathname, off_t length);

int ftruncate (int fd, off_t length);

Return 0 if OK, else return -1

File truncation with truncate()

 Test with following program with two text file.

◼ Text file “aaa” contains 20 character

◼ Text file “bbb” contains 10 character
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#include <unistd.h>

#include<sys/types.h>

int main()

{

truncate ("aaa", 10);

truncate ("bbb", 20);

return 0;

}

File System

 Various implementations of the UNIX file system 
are in use today.

 We can think of a disk drive being divided into 
one or more partitions. Each partition can contain 
a file system

 The i-nodes are fixed-length entries that contain 
most of the information about a file.

◼ Attributes

◼ Block addresses used to save a file.

COSC350 System Software, Fall 2020                       

Dr. Sang-Eon Park

17

File System
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partition partition partition

i-node list Directory and data blocks

Boot block

Super block

i-node1 i-node2 … i-noden

Disk drive

File system
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File System
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File System

 Following figure shows the i-node and data block portion of 

partition in more detail.

 Two directory entries point to the same i-node entry.

 Every i-node has a link count that contains the number of 
directory entries that point to it. The link count is contained 

in the st_nlink in the stat data structure

 A file be deleted when the link count is 0.

 Unlinking means delete a file entry from a directory.

 If  link count is > 1, unlinking file does not delete the file.
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File System
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i-node list Data 
block

Direct
block

Data 
block

Direct 
Block

Data 
block

i-node 
number

i-node0 i-node1 … i-noden

File name

i-node 
number

File name

Data and Directory Block

File System
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struct stat {
mode_t st_mode;   /*file type & mode (permissions) */

ino_t st_ino;     /* i-node number */
dev_t st_dev;     /* device number (file system) */

dev_t st_rdev;    /* device number for special files */
nlink_t st_nlink; /* number of links */

uid_t st_uid;     /* user ID of owner */
gid_t st_gid;     /* group ID of owner */

off_t st_size;    /* size in bytes, for regular files */
time_t st_atime;  /* time of last access */

time_t st_mtime;  /* time of last modification */
time_t st_ctime;  /* time of last file status change */

blksize_t st_blksize; /* best I/O block size */
blkcnt_t st_blocks; /*number of 512 byte blocks allocated */

mode_t st_attr;   /* The DOS-style attributes for this file */
}; 

File System

 The i-node contains most of information 
(attributes) about the file: the file type, 
the file’s access permission bit,…and so 
on.

 But only two information are stored in the 
directory entry: the filename and the i-
node number.

 When move a file from one directory to 
another directory need only change 
directory entry point.
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File System
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File System
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File System
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link, unlink, remove and rename

 Any file can have multiple directory entries 
pointing to its i-node.

 The way we can create a link to an 
existing file is with the link system call.

 Prototype:
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#include <unistd.h>

int link (const char *existingpath, const char *newpath)

Return 0 if there is no error, else retun -1

link, unlink, remove and rename
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// creatlink.c two path to create a new pass from different location

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

void err_sys(char *str)

{

printf ("%s\n",str);

exit (1);

}

//

int main (int argc, char *argv[])

{

struct stat buff;

if (argc < 2)

err_sys ("Less than two argument Error");

/* increase the number of link  by one */

if (stat (argv[1], &buff) < 0)

err_sys("stat error for foo");

printf ("link count for a file %s was %d \n",argv[1], buff.st_nlink);

if (link (argv[1], argv[2]) <0)

err_sys("Link Error");

if (stat (argv[1], &buff) < 0)

err_sys("stat error for foo");

printf ("link count for a file %s is now %d \n",argv[1], buff.st_nlink);

return 0;

}

link, unlink, remove and rename

 The link() system call create a new 
directory entry newpath that references 
the existing file existingpath.

 The creation and increment of the link 
count be done automatically by kernel.

 Only a superuser process can create a 
new link that points to a directory. 
Because link system calls can cause loops 
in the filesystem.
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link, unlink, remove and rename

 By using the unlink system call, we can 
remove an existing directory entry.

 Prototype:
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#include <unistd.h>

int unlink (const char *pathname)

return 0 if no error, return -1 if error
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link, unlink, remove and rename

 The unlink system call removes the 
directory entry and decrement the link 
count of the file referenced by pathname.

 To unlink a file, we must have write 
permission and execute permission in the 
directory containing the directory entry.
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