
COSC 350 System Software (Mini Test #2)
10/2/23

Name: ___________________________

1. (1.5 pt.)

Contiguous Allocation

• Idea: Files are stored in consecutive blocks.

• Disadvantages: Can lead to external fragmentation, and it’s difficult to resize files as

they grow.

Linked-List Allocation

• Idea: Each file is stored as a linked list of blocks, where each block contains data and a

pointer to the next one.

• Disadvantages: Random access is slow because the system must follow the pointers

sequentially through the file blocks.

Linked-List Allocation with FAT

• Idea: The File Allocation Table (FAT) stores the pointers to the next blocks in a table

rather than in each block.

• Disadvantages: The FAT must be loaded into memory, which can be slow for large

disks, and still suffers from slow random access.

Index-Node Allocation (I-node)

• Idea: A structure (inode) contains pointers to the file’s blocks, allowing direct access to

file data blocks.

• Disadvantages: Indirect blocks may be needed for large files, increasing the overhead of

managing large files.

2. (0.5 pt.)

Answer) System calls are run on kernel’s mode, it use kernal’s space but library function are

run on user’s space, it use process’s own space.

3. (4 pt.)

#include <stdio.h>

#include <stdlib.h>

int st_to_int(char *); //function prototype

void main(int argc, char *argv[])

{

int i, num;

 int esum =0;

 int osum =0;

 if (argc <= 1){// argment must be at least two or more

 printf("argument number error \n");

 exit(1);

 } //endif

 for (i=1; i<argc; i++){//read command line input

 num = st_to_int(argv[i]);

 if ((num % 2)== 0)

 esum = esum + num;

 else

 osum =osum+ num;

 }//end for

 printf("The sum of even arguments is %d\n", esum);

 printf("The sum of odd arguments is %d\n", osum);

 return;

} //endof program

/* convert numberical c-string to number */

int st_to_int(char *str)

{

 int num =0;

 int i =0;

 int negative = 0;

 if (str[0]== '-'){

 i =1;

 negative =1;

 }//end if

 if (str[0]== '+')

 i =1;

 while (str[i]!='\0')

 {

 num = 10 * num + (str[i] - '0');

 i++;

 }//end of while

 if (negative == 1)

 num = num * -1;

 return num;

}

4. (3 pt.)

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/stat.h>

int main()

{

 int in, out, i; //file descriptors of files

 char c; //currently read character

 off_t offset; //current offset

 int size; //file size

 in = open("foo", O_RDONLY); //open input file

 umask(0); //clear mask

 out = open("palindrome", O_WRONLY|O_CREAT, 00600);

//rw-------

 while (read(in, &c, 1) ==1)

 write(out, &c, 1);

 //set offset to end of input file & get file size

 size = lseek(in, -1, SEEK_END)+1;

 for (i =1; i<=size; i++)

 {

 read(in, &c, 1);//read each char of input file

 write(out, &c, 1); //and write to output file

 lseek(in, -2, SEEK_CUR); //offset to previous char

 }

 //close open files

 close(in);

 close(out);

 exit(0);

}

}

5. (1 pt.)

#include <stdio.h>

#include<stdlib.h>

#include<fcntl.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

 int offset = 0;

 char a;

 int fd = open(argv[1],O_RDONLY);

 while(read(fd, &a, 1) == 1)

 offset++;

 printf("size of \"%s\" is %d bytes\n",argv[1], offset);

 close(fd);

 exit(0);

}

