
10/7/2024

1

Review

 Virtual Memory with Paging

◼ Page Table with Hardware Support

 Translation Look-Aside Buffer

◼ Shared Pages

◼ Page Table Structure

 Multilevel Page Table

 Hashed Page Table

 Inverted Page table

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

1

Preview

 Demand Page and Page Fault

 Free-Frame List

 Performance of Demand Page with Page Fault

 Swapping with Paging

 Copy-on-Write between Parent and Child

 Page Table Entries

 Page Replacement Algorithms

◼ Optimal Algorithm

◼ Not Recently Used

◼ First In First Out

◼ Second Change

◼ The Clock Page Replacement

◼ Least Recently Used

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

2

Demand Page & Page Fault

 Virtual memory and demand paging are memory management techniques used
in operating system.

 Demand paging is a type of swapping done in virtual memory systems.

 In demand paging, the data is not copied from the secondary memory (HDD,
SSD) to the main memory until they are needed or being demanded by some
program.

 While a process is executing, some pages will be in memory, and some will be in
secondary storage.

 For a reference, system check whether a corresponding page is in the memory or
not.

 Page fault is a situation such that process tries to access a page that was not
brought into memory.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

3

Demand Page & Page Fault

1) Check the location of the referenced page
in the page table

2) If a page fault occurred, call on the
operating system to fix it

3) Using the frame replacement algorithm,
find the frame location

4) Read the data from the secondary
memory to memory

5) Update the page map table for the
process

6) The instruction that caused the page fault
is restarted when the process resumes
execution.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

4

Demand Page & Page Fault

 The operating system sets the instruction pointer to the first
instruction of the process (which is on a page in secondary
memory) before the process running, the process immediately
faults for the page.

 Pure demand paging –

◼ After this page is brought into memory, the process continues to execute,
faulting as necessary until every page that it needs is in memory.

◼ At that point, it can execute with no more faults (never bring a page into
memory until it is required).

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

5

Demand Page & Page Fault

 A given simple instruction could access multiple pages which might
cause multiple page faults.

 Consider a three-address instruction such as ADD content of A to B
and placing the result in C

◼ Fetch and decode instruction ADD

◼ Fetch A

◼ Fetch B

◼ Add A and B

◼ Store C

 What if A and B are located in the same page but not C.
This instruction might cause two page faults.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

6

10/7/2024

2

Free-Frame List

 When a page fault occurs, the operating system must
bring the desired page from secondary storage into to a
free page frame in main memory.

 What if there is no free page frame, operating system
need extra effort to create a free page frame.

 To resolve page faults with no free page frame, most
operating systems maintain a free-frame list, a pool of
free frames for satisfying such requests.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

7

Performance of Demand Paging with Page Fault

 Steps for performance of Demand paging with page fault

1. Trap to the operating system (control change from a process to kernel)
 OS save the process status in process table

2. Check page fault or not by checking page table for the process.

3. Check that the page reference was legal and determine the location of the
page on the disk (the secondary memory).

4. Issue a read from the disk (the secondary memory) to a free frame

5. Correct the page table. (now the process is ready to implement)

6. Restore the process status

7. The process start to run the instruction.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

8

Performance of Demand Paging with Page Fault

 Three major task components of the page-fault service time

1. Service the page-fault interrupt.
 Save the process status

 Find free page frame

 If there is no page frame, decide victim frame based on replacement algorithm

2. Read in the page.

3. Restart the process.

 In case HDD (Hard drive disk)

◼ page switch time about 8 milliseconds.

◼ A memory access time of 200 nanoseconds.

◼ Page-Fault rate = p

◼ Effective access time = (1 – p) x 200 +8,000,000 x p

= 200 + 7,999,800 x p

◼ Effective access time is directly proportional to the page-fault rate p

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

9

Performance of Demand Paging with Page Fault

 Effective access time = (1 – p) x 200 +8,000,000 x p

= 200 + 7,999,800 x p

 Effective access time is directly proportional to the page-fault rate p.

 It is important to keep the page-fault rate low in a demand-paging system.
Otherwise, the effective access time increases, slowing process execution
dramatically.

 An additional aspect of demand paging is the handling and overall use of swap
space.

 I/O to swap space is generally faster than that to the file system.

 It is faster because swap space is allocated in much larger blocks, and file
lookups and indirect allocation methods are not used

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

10

Performance of Demand Paging with Page Fault

 Options to improve better paging throughput with swap space.

◼ Copy an entire file image into the swap space at process startup
– all demand paging from swap space – overheads for start-up
to copy image into the swap space.

◼ Initially, demand-page from the file system but to write the
pages to swap space as they are replaced. – Linux or Window

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

11

Swapping with Paging

 Process instructions and the data must be in memory to be
executed. However, a process, or a portion of a process, can be
swapped temporarily out of memory to a backing store and then
brought back into memory for continued execution.

 Swapping makes it possible for the total physical address space of
all processes to exceed the real physical memory of the system.

 Standard swapping involves moving entire processes between main
memory and a backing store.

 But it is no longer used in contemporary operating systems,

because the amount of time required to move entire processes
between memory and the backing store is prohibitive.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

12

10/7/2024

3

Swapping with Paging

 Most systems, including Linux and Windows, now use a variation of
swapping in which pages of a process—rather than an entire
process.

 Linux uses virtual memory, so that disk area (swap space) is used

as an extension of physical memory for temporary storage when
the operating system tries to keep track of processes requiring
more physical memory than what is available. When this happens
the swap space is used for swapping and paging.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

13

Copy-on-Write between Parent and Child

 Traditionally, fork() worked by creating a copy of the parent’s
address space for the child, duplicating the pages belonging to the
parent.

 Since many child process runs different program by invoking

exec() system call, coping of the parent’s address space may be
unnecessary.

 Copy-on write idea works by allowing the parent and child
processes initially to share the same pages.

 These shared pages are marked as copy-on-write pages, meaning

that if either process writes (modifies) to a shared page, a copy of
the shared page is created.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

14

Copy-on-Write between Parent and Child

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

15

Page C

Page B

Page APage table for P1

Physical Memory

Page table for P2

• When process P1 create a child process p2 by calling fork() , pages are shared between.
• When process p2 tries to modify page C in RAM, OS find out free page frame and copy page

C, then P2 can modify the space now.

Page C

Page B

Page APage table for P1

Physical Memory

Page table for P2

Copy of Page C

Copy-on-Write between Parent and Child

 When a child is created by calling vfork(), the parent
process is suspended and the child process use the
address space of the parent.

 Since vfork() does not use copy-on-write, if the child
process modify any pages of the parent’s address space,
modified page will be visible to the parent once it resume.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

16

Structure of Page Table Entry

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

17

Page Replacement Algorithms

 When a page fault occurs and if there is no free frame,
OS need do following steps
1. Choose a victim page currently allocated in a page frame

2. If the page has been modified in the memory, rewritten to the
disk (secondary memory or swapping area in secondary
memory).

3. A page is allocated into the page frame which was used by the
victim page

4. Change page table.

 First step is dependant on replacement algorithm

 If no frames are free, two page transfers (one for the
page-out and one for the page-in) are required.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

18

10/7/2024

4

Page Replacement Algorithms

 A process’s Memory access can be characterized by an
list of page number

 This list is called the reference string (sequence of
page number).

 A paging system can be characterized by three items

1. The reference string of the executing process

2. The page replacement algorithm

3. The number of page frames available in memory for a process

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

19

Page Replacement Algorithms
(Optimal Algorithm)

Optimal Algorithm

 Replace the page that will not be used for the longest period of

time.

 Optimal algorithm always guarantees the lowest possible page-
fault rate for a fixed number of frames

 Unfortunately, the optimal replacement algorithm is difficult to
implement, since it requires future knowledge of the reference

string.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

20

Page Replacement Algorithms
(Optimal Algorithm)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

2

0

1

7

1

2

0

1

2

7

1

0

or

Optimal Algorithm

10 page Faults

21

Page Replacement Algorithms
(Not Recently Used (NRU))

Not Recently Used (NRU)

 When page fault occurs, the operating system inspects all the
pages and classified into four group base on the page table
information (Modified bit, Reference bit).
◼ Class 0: Not referenced, not modified

◼ Class 1: not referenced, modified

◼ Class 2: referenced, not modified

◼ Class 3: referenced, modified

 The NRU algorithm removes a page at random from the lowest
numbered nonempty class.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

22

Page Replacement Algorithms
(First In First Out (FIFO))

First In First Out (FIFO)

 Replace the oldest page frame

 The FIFO algorithm is easy to understand and easy to
program.

 However, its performance is not always good.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

23

Page Replacement Algorithms
(First In First Out (FIFO))

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

7 7

0

7

0

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

0

1

3

0

1

2

7

1

2

7

0

2

7

0

1

First In First Out

15 Page Faults

24

10/7/2024

5

Page Replacement Algorithms
(Second Chance)

Second Chance

 A simple modification of FIFO that avoids the problem of throwing

out a heavily used is to inspect the R bit of the oldest pages.

 If the oldest page’s R = 0, it is old and not referenced. So it
remove from the page frame.

 If the oldest page’s R = 1, it is old but referenced. So set R = 0
and set the page from oldest to newest page

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

25

Page Replacement Algorithms
(Second Chance)

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

Second Chance

26

Page Replacement Algorithms
(The Clock Page Replacement Algorithm)

The Clock Page Replacement Algorithm.

 Similar with second chance, but it keep all the page
frames on a circular list.

 When page fault occurs, the page the hands is pointing to
is inspected.

 Action taken depends on the Reference bit R.
◼ If R = 0 evict the page

◼ If R = 1, Clear R and advance hand

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

27

Page Replacement Algorithms
(The Clock Page Replacement Algorithm)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

The Clock Page Replacement Algorithm

28

Page Replacement Algorithms
(The Least Recently Used)

The Least Recently Used

◼ Replace the page that has not been used for the longest period
of time

◼ This is the optimal page replacement algorithm looking
backward in time.

◼ LRU algorithms works quiet good but it may require substantial
hardware assistance to keep track the information.

 LRU can be implemented by

◼ Counter – save the reference time

◼ Stack – keep a stack of page number

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

29

Page Replacement Algorithms
(The Least Recently Used)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

0

3

2

Least Recently Used

12 Page Faults

30

