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Preview

 Shared File in multiuser system

◼ Save i-node index

◼ Symbolic link

 Log-Structured File System (extension of i-node + contiguous)

 Journaling File System

 Disk Space Management

◼ Block size

◼ Free block management

 Linked List

 Bit Map

COSC450 Operating System, Fall 2024                                              

Dr. Sang-Eon Park

1

Shared Files

 To share a file, it is convenient to appear simultaneously 
in different directories  belongs to different users.
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• Assume user B and C are same group member working 
on same project.

• User C create a file which is shared with user B.
• Assume a file information is saved in two directories

Shared Files

 Shared file idea is convenient but it produce problems 
when a shared user modifies the shared file.
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• Lets assume a shared file (purple)  
shared with user B and user C.
• Then file information must be 
saved in both directory B and 
directory C.
• If user B modify shared file,  only 
the shared file information  in 
directory B will be modified.

Shared Files

 There are two solutions

◼ Disk block information for a file are saved not in the directory 
but in the i-node.

◼ A system create a symbolic link to a shared file. 

 The symbolic link is a file which contains the path name of the shared 
file.

 Both solutions still have problems
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Shared Files
(with i-node)

 Lets assume user C create a file and it is shred with user B.

 i-node number must be saved in both directory.

 If user C remove the shared file then i-node used for shared file can be used for 

other new file. 

◼ Ex) If a user create a new  file and system assign the same i-node for new file, B is pointing to a 
wrong  file.
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C’s Directory B’s Directory

Owner = C

Name = abc.cpp

i-node for a shared file

C’s Directory B’s Directory

Freed i-node

abc.cpp is deleted.

i-node is freed.

C cerate a new file 

wxy.txt using the freed 

i-node

C’s Directory B’s Directory

Owner = C

Name = wxy.txt

Now B is pointing to a 

wrong file

Shared Files
(with i-node)

 Solution 

◼ System check the number of user for a file in i-node

◼ If the number of user is > 0,  the file can be retained.

 Still there is a problem.

◼ Even though C remove a shared file (from previous example), that space is count as C’s space 
since it is owned by C.

◼ It is used for counting the quota for C.
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C’s Directory

Owner = C

Name = abc.cpp
Count =1

i-node for a file

C’s Directory B’s Directory

Owner = C

Name = abc.cpp
Count =2

i-node for a shared file

User C delete abc.cpp

C’s Directory B’s Directory

Owner = C

Name = abc.cpp
Count =1

i-node for a file

User C create abc.cpp User C and B share abc.cpp
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Shared Files
(with Symbolic Link)

 With symbolic link, the same problem with i-node does 
not arise since only real owner has pointer to the i-node.

 With Symbolic Link, extra overhead is required

◼ To read or write a file

1. Get a path

2. Parse the path from the root

◼ Extra block for a i-node is required for each Symbolic link to 

store only path – wasting disk space!
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The link() System Call
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i-node list Data 
block

Direct
block

Data 
block

Direct 
Block

i-node 

number

i-node i-node … i-node

separk

i-node 

number

link.c

Direct
block

i-node 

number

home

/

i-node

home separk

link ("link.c", "../link.c")

Data and Directory Block

/

directory

i-node 

number

link.c

The symlink() System Call
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i-node list Data 
block

Direct
block

Data 
block

Direct 
Block

i-node 

number

i-node i-node … i-node

separk

i-node 

number

link.c

Direct
block

i-node 

number
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/

i-node
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/

directory

i-node 

number
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Data block
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Data and Directory Block

Log-structured file systems

 CPU speeds have increased dramatically while disk access 
times (seek time) have only improved slowly. 

 This will cause more and more applications to become 
disk-bound.

 Log-Structured file system is designed to reduce the 
impact of this problem.

 (This idea is for HDD but this idea is used in SSD!)
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Log-structured file systems

 Log-structured file systems are based on the 
assumption that files are cached in main memory.

 As a result, disk traffic will become dominated by writes. 

 A log-structured file system writes all new information to 
disk in a sequential structure called the log.(contiguous 
blocks)

 This approach increases write performance speed 
dramatically by eliminating almost all seeks.
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Log-structured file systems

 The sequential nature of the log also permits much faster crash 
recovery:

◼ UNIX : scan the entire disk to restore consistency after a crash.

◼ LSF (Log-Structured File): examine the most recent portion of the log.

 Some file system use a log as a temporary storage to speed up 
write and crash recovery.

 LSF system stores data permanently in the log: there is no other 
structure on disk.

COSC450 Operating System, Fall 2024                                              
Dr. Sang-Eon Park

12



10/17/2024

3

Log-structured file systems

 For a log-structured file system to operate efficiently, it must 
ensure that there are always large extents of free space available 
for writing new data.

 A segment cleaner thread continually regenerates empty 

segments.

◼ Start out by reading the summary of the first segment.

◼ Check i-node map to find out it is currently used  segment. 

◼ If not, it set as a available segment for write operation
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Log-Structured File System

 The basic idea is to structure the entire disk as a log.

 All writes are initially buffered in memory.

 Periodically, all buffered writes are written to the disk in a 
single segment at the end of log.

 A single segment contains i-nodes, directory blocks, and 
data blocks, all mixed together
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Log-Structured File System

 In Unix file system, each i-node is at a fixed location on 
disk.

 In LSF, each i-node is not at a fixed location; they are 
written to the log.

 LFS uses a data structure called an i-node map to 
maintain the current location of each i-node for each file.

 Opening a file consists of using the map to locate the i-
node for the file.
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Log-Structured File System

 Once a existing file is open for update, a segment of the 
file is load to the memory (file cache).

 It always write back to the disk at the end of log.

 Which means that updated file will not copy back to the 
previous location.
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Journaling File System

 When a system using non-journaling file system is improperly shut 
down, the operating system detects this and performs a 
consistency check using the fsck utility.

 The fsck scans the file system and fixes any issues that can be 

safely corrected.

 In some cases, the file system can be in such bad shape that the 
operating system boots into single user mode to allow the user to 
further the repair process. 
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Journaling File System

 To see the nature of problem with non-journaling file 
system in Unix: removing a file need three steps.

1. Remove the file from its directory

2. Release the i-node

3. Return all disk block to the free block list

 If there is a crash after any of these step, system need 
scan entire file system to recover!!!
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Journaling File System
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Journaling File System

 In general, journaling file systems avoid file system corruption by 
maintaining a journal.

 The journal is a special file that logs the changes destined for the 
file system in a circular buffer. 

 At periodic intervals, the journal is committed to the file system. 

 If a crash occurs, the journal can be used as a checkpoint to 
recover unsaved information and avoid corrupting file system 
metadata. 
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Disk Space Management

 Disk is divided into same size blocks.

 We need to decide size of a block .

◼ Larger block size, internal fragmentation!!

◼ Smaller block size, need more seek and rotational delay!! 
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Disk Space Management

 Larger block size, internal fragmentation!!

◼ Lets consider disk space efficiency.

◼ With 4 KB files with 1KB, 2KB and 4KB per block- no wasting 

space

◼ With 4 KB file with a 8 KB block – 50% wasting space.

◼ With 5 KB file with 1 KB, 2 KB, 4KB, 8KB block

 With 1 KB – need 5 blocks : no wasting space.

 With 2 KB – need 3 blocks : 1KB wasting space

 With 4 KB – need 2 blocks : 3kB wasting space

 With 8 KB – need 1 block: 3 KB wasting space
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Disk Space Management

 Using a small block means that each file will consist of 
many blocks.

 Reading each block requires more seek and rotation delay 
in HDD.

ex) a disk with 1MB per track, a rotation time of 8.33 msec and 
average seek time of 5 msec.  The time in msec to read a block of 

k bytes is sum of seek rotation and transfer time:

5 + (220 /k)  8.33 + 4.165(half of 8.33)

Seek time number of block   Rotation time    initial Rotation time

per track
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Free Block Management

 System reserve spaces (blocks in secondary memory) to 
save free block information.

◼ Linked-List – free block information is saved in the blocks

◼ Bitmap – system keep Bitmap for saving free block information 
(1 for used block 0 for available block)
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File System Layout
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MBR

Logical space

Partition Table
Space Partitions

Boot block Super block Free space mgmt I-Nodes / Directory Files and Directories

Master Boot Record

Free Block Management
(Linked List)
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1KB=210  8   210  8 /32 =256

Free Block Management
(Linked List)

 Each block for free blocks list holding as many free disk block 
numbers as will fit.

Ex)

◼ With a 1 KB block size and a 32 bit disk block number.

◼ A block can hold 8  210 / 32 = 256 -1 = 255 free blocks numbers (1 slot for 
next free block pointer)!!!

◼ 16 GB disk has 234/210 = 224 blocks

◼ Needs 224/255 = 65794 blocks to hold free block numbers

◼ Need 65794 KB 
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Free Block Management
(Linked List Implementation)

 When the free list method is used, only one block of pointers need 
be kept in main memory.

 When a file is created, the needed block blocks are taken from the 
block of pointers.

 When it runs out, a new block of pointer is read in from the disk. 

 When a file is deleted, its blocks are freed and added to the block 
of pointer in the main memory.
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Free Block Management
(Bit Map)

Ex)

◼ 16 GB disk

◼ Size of block = 1KB

◼ There are 234/210 = 224 KB blocks

◼ Need 224 bit (for bit map) = 224 / 23 Byte

= 211  210 Byte = 211 KB 

Need  2048 blocks for the bitmap.
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Free Block Management
(Linked List Implementation)
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Under certain circumstances, linked method leads to unnecessary disk I/O 

After delete a file with 3 blocks
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Free Block Management
(Linked List Implementation)
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Free Block Management
(Bit Map)
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A disk with n block requires a bitmap with n 
bits. a free blocks are represented by 1s in 
the map, allocated blocks by 0 (or vice 

versa).


