
10/17/2024

1

Preview

 Shared File in multiuser system

◼ Save i-node index

◼ Symbolic link

 Log-Structured File System (extension of i-node + contiguous)

 Journaling File System

 Disk Space Management

◼ Block size

◼ Free block management

 Linked List

 Bit Map

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

1

Shared Files

 To share a file, it is convenient to appear simultaneously
in different directories belongs to different users.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

2

• Assume user B and C are same group member working
on same project.

• User C create a file which is shared with user B.
• Assume a file information is saved in two directories

Shared Files

 Shared file idea is convenient but it produce problems
when a shared user modifies the shared file.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

3

• Lets assume a shared file (purple)
shared with user B and user C.
• Then file information must be
saved in both directory B and
directory C.
• If user B modify shared file, only
the shared file information in
directory B will be modified.

Shared Files

 There are two solutions

◼ Disk block information for a file are saved not in the directory
but in the i-node.

◼ A system create a symbolic link to a shared file.

 The symbolic link is a file which contains the path name of the shared
file.

 Both solutions still have problems

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

4

Shared Files
(with i-node)

 Lets assume user C create a file and it is shred with user B.

 i-node number must be saved in both directory.

 If user C remove the shared file then i-node used for shared file can be used for

other new file.

◼ Ex) If a user create a new file and system assign the same i-node for new file, B is pointing to a
wrong file.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

5

C’s Directory B’s Directory

Owner = C

Name = abc.cpp

i-node for a shared file

C’s Directory B’s Directory

Freed i-node

abc.cpp is deleted.

i-node is freed.

C cerate a new file

wxy.txt using the freed

i-node

C’s Directory B’s Directory

Owner = C

Name = wxy.txt

Now B is pointing to a

wrong file

Shared Files
(with i-node)

 Solution

◼ System check the number of user for a file in i-node

◼ If the number of user is > 0, the file can be retained.

 Still there is a problem.

◼ Even though C remove a shared file (from previous example), that space is count as C’s space
since it is owned by C.

◼ It is used for counting the quota for C.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

6

C’s Directory

Owner = C

Name = abc.cpp
Count =1

i-node for a file

C’s Directory B’s Directory

Owner = C

Name = abc.cpp
Count =2

i-node for a shared file

User C delete abc.cpp

C’s Directory B’s Directory

Owner = C

Name = abc.cpp
Count =1

i-node for a file

User C create abc.cpp User C and B share abc.cpp

10/17/2024

2

Shared Files
(with Symbolic Link)

 With symbolic link, the same problem with i-node does
not arise since only real owner has pointer to the i-node.

 With Symbolic Link, extra overhead is required

◼ To read or write a file

1. Get a path

2. Parse the path from the root

◼ Extra block for a i-node is required for each Symbolic link to

store only path – wasting disk space!

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

7

The link() System Call

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

8

i-node list Data
block

Direct
block

Data
block

Direct
Block

i-node

number

i-node i-node … i-node

separk

i-node

number

link.c

Direct
block

i-node

number

home

/

i-node

home separk

link ("link.c", "../link.c")

Data and Directory Block

/

directory

i-node

number

link.c

The symlink() System Call

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

9

i-node list Data
block

Direct
block

Data
block

Direct
Block

i-node

number

i-node i-node … i-node

separk

i-node

number

link.c

Direct
block

i-node

number

home

/

i-node

home separk

symlink ("link.c", "../link.c")

/

directory

i-node

number

link.c

Data block

/home/separk/l
ink.c

Data and Directory Block

Log-structured file systems

 CPU speeds have increased dramatically while disk access
times (seek time) have only improved slowly.

 This will cause more and more applications to become
disk-bound.

 Log-Structured file system is designed to reduce the
impact of this problem.

 (This idea is for HDD but this idea is used in SSD!)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

10

Log-structured file systems

 Log-structured file systems are based on the
assumption that files are cached in main memory.

 As a result, disk traffic will become dominated by writes.

 A log-structured file system writes all new information to
disk in a sequential structure called the log.(contiguous
blocks)

 This approach increases write performance speed
dramatically by eliminating almost all seeks.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

11

Log-structured file systems

 The sequential nature of the log also permits much faster crash
recovery:

◼ UNIX : scan the entire disk to restore consistency after a crash.

◼ LSF (Log-Structured File): examine the most recent portion of the log.

 Some file system use a log as a temporary storage to speed up
write and crash recovery.

 LSF system stores data permanently in the log: there is no other
structure on disk.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

12

10/17/2024

3

Log-structured file systems

 For a log-structured file system to operate efficiently, it must
ensure that there are always large extents of free space available
for writing new data.

 A segment cleaner thread continually regenerates empty

segments.

◼ Start out by reading the summary of the first segment.

◼ Check i-node map to find out it is currently used segment.

◼ If not, it set as a available segment for write operation

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

13

Log-Structured File System

 The basic idea is to structure the entire disk as a log.

 All writes are initially buffered in memory.

 Periodically, all buffered writes are written to the disk in a
single segment at the end of log.

 A single segment contains i-nodes, directory blocks, and
data blocks, all mixed together

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

14

Log-Structured File System

 In Unix file system, each i-node is at a fixed location on
disk.

 In LSF, each i-node is not at a fixed location; they are
written to the log.

 LFS uses a data structure called an i-node map to
maintain the current location of each i-node for each file.

 Opening a file consists of using the map to locate the i-
node for the file.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

15

Log-Structured File System

 Once a existing file is open for update, a segment of the
file is load to the memory (file cache).

 It always write back to the disk at the end of log.

 Which means that updated file will not copy back to the
previous location.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

16

Journaling File System

 When a system using non-journaling file system is improperly shut
down, the operating system detects this and performs a
consistency check using the fsck utility.

 The fsck scans the file system and fixes any issues that can be

safely corrected.

 In some cases, the file system can be in such bad shape that the
operating system boots into single user mode to allow the user to
further the repair process.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

17

Journaling File System

 To see the nature of problem with non-journaling file
system in Unix: removing a file need three steps.

1. Remove the file from its directory

2. Release the i-node

3. Return all disk block to the free block list

 If there is a crash after any of these step, system need
scan entire file system to recover!!!

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

18

10/17/2024

4

Journaling File System

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

19

Journaling File System

 In general, journaling file systems avoid file system corruption by
maintaining a journal.

 The journal is a special file that logs the changes destined for the
file system in a circular buffer.

 At periodic intervals, the journal is committed to the file system.

 If a crash occurs, the journal can be used as a checkpoint to
recover unsaved information and avoid corrupting file system
metadata.

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

20

Disk Space Management

 Disk is divided into same size blocks.

 We need to decide size of a block .

◼ Larger block size, internal fragmentation!!

◼ Smaller block size, need more seek and rotational delay!!

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

21

Disk Space Management

 Larger block size, internal fragmentation!!

◼ Lets consider disk space efficiency.

◼ With 4 KB files with 1KB, 2KB and 4KB per block- no wasting

space

◼ With 4 KB file with a 8 KB block – 50% wasting space.

◼ With 5 KB file with 1 KB, 2 KB, 4KB, 8KB block

 With 1 KB – need 5 blocks : no wasting space.

 With 2 KB – need 3 blocks : 1KB wasting space

 With 4 KB – need 2 blocks : 3kB wasting space

 With 8 KB – need 1 block: 3 KB wasting space

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

22

Disk Space Management

 Using a small block means that each file will consist of
many blocks.

 Reading each block requires more seek and rotation delay
in HDD.

ex) a disk with 1MB per track, a rotation time of 8.33 msec and
average seek time of 5 msec. The time in msec to read a block of

k bytes is sum of seek rotation and transfer time:

5 + (220 /k)  8.33 + 4.165(half of 8.33)

Seek time number of block Rotation time initial Rotation time

per track

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

23

Free Block Management

 System reserve spaces (blocks in secondary memory) to
save free block information.

◼ Linked-List – free block information is saved in the blocks

◼ Bitmap – system keep Bitmap for saving free block information
(1 for used block 0 for available block)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

24

10/17/2024

5

File System Layout

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

25

MBR

Logical space

Partition Table
Space Partitions

Boot block Super block Free space mgmt I-Nodes / Directory Files and Directories

Master Boot Record

Free Block Management
(Linked List)

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

26

1KB=210  8  210  8 /32 =256

Free Block Management
(Linked List)

 Each block for free blocks list holding as many free disk block
numbers as will fit.

Ex)

◼ With a 1 KB block size and a 32 bit disk block number.

◼ A block can hold 8  210 / 32 = 256 -1 = 255 free blocks numbers (1 slot for
next free block pointer)!!!

◼ 16 GB disk has 234/210 = 224 blocks

◼ Needs 224/255 = 65794 blocks to hold free block numbers

◼ Need 65794 KB

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

27

Free Block Management
(Linked List Implementation)

 When the free list method is used, only one block of pointers need
be kept in main memory.

 When a file is created, the needed block blocks are taken from the
block of pointers.

 When it runs out, a new block of pointer is read in from the disk.

 When a file is deleted, its blocks are freed and added to the block
of pointer in the main memory.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

28

Free Block Management
(Bit Map)

Ex)

◼ 16 GB disk

◼ Size of block = 1KB

◼ There are 234/210 = 224 KB blocks

◼ Need 224 bit (for bit map) = 224 / 23 Byte

= 211  210 Byte = 211 KB

Need 2048 blocks for the bitmap.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

29

Free Block Management
(Linked List Implementation)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

30

Under certain circumstances, linked method leads to unnecessary disk I/O

After delete a file with 3 blocks

10/17/2024

6

Free Block Management
(Linked List Implementation)

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

31

Free Block Management
(Bit Map)

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

32

A disk with n block requires a bitmap with n
bits. a free blocks are represented by 1s in
the map, allocated blocks by 0 (or vice

versa).

